
Rule-based Impact Analysis for Heterogeneous Software Artifacts

Steffen Lehnert∗, Qurat-ul-ann Farooq∗, Matthias Riebisch†
∗Department of Software Systems / Process Informatics, Ilmenau University of Technology

98684 Ilmenau, Germany
{steffen.lehnert, qurat-ul-ann.farooq}@tu-ilmenau.de
†Department of Informatics, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
riebisch@informatik.uni-hamburg.de

Abstract—Typical software engineering activities, such as
program maintenance or reengineering, result in frequent
changes of software which are often accompanied by unin-
tended side effects. Consequently, research on impact analysis
put forth approaches to assess the adverse effects of changes.
However, understanding and implementing these changes is
often aggravated by inconsistencies and dependencies between
different types of software artifacts. Likewise, most impact
analysis approaches are not able to detect the possible side
effects of changes when different types of software artifacts are
involved. We present an approach that combines impact anal-
ysis and multi-perspective modeling for analyzing the change
propagation between heterogeneous software artifacts. Our ap-
proach assists developers with understanding the consequences
of changes by identifying impacted artifacts and determining
how they are affected. We utilize a model repository for
combining UML models, Java source code, and JUnit tests
by mapping them on a unifying meta-model. We introduce a
novel impact propagation approach that analyzes dependencies
between software artifacts according to the type of change
which is applied upon them. Our approach is implemented by
a set of impact propagation rules which are evaluated by a
case study.

Keywords-software evolution; impact analysis; multi-
perspective modeling; horizontal traceability;

I. INTRODUCTION

The lifecycle of software is characterized by frequent
changes, such as bug fixes, the adaptation to new technology
or the addition of new features. However, these changes are
often accompanied by unintended side effects [1], such as
new bugs or a loss of structure, which are also referred to
as “ripple effects” [2]. Consequently, performing software
change impact analysis [1] is required to assess the adverse
effects of changes. Impact analysis enables developers to
analyze the effects of changes prior to their implementation.
It allows for a better planning of changes and eases decision
making between alternative solutions based on their impacts.

Changes during software development apply to different
types of artifacts, such as source code files, UML diagrams,
and test cases. These artifacts provide different views on a
system and tailor information according to different stake-
holders [3]. As a result, the different artifacts are interdepen-
dent on each other [4], and changing one artifact requires

changing related artifacts to avert further inconsistencies [5].
A recent study [6], however, indicated that only very few

impact analysis approaches are able to determine the poten-
tial consequences of changing different types of artifacts.
The majority of impact analysis approaches is still only
focused on source code and source code files [6].

Research on horizontal traceability [7], multi-perspective
modeling [8], and consistency checking [3], [9] addressed
the problems and challenges arising from the interplay of
different types of software artifacts. However, they do not
yet provide support for impact analysis and the planning
of future changes, nor do they facilitate the estimation of
cost and time schedules for maintenance measures. Hence,
multi-perspective impact analysis is required to support the
evolution of software comprised of heterogeneous artifacts.

We combine impact analysis, multi-perspective model-
ing, and horizontal traceability analysis into one holistic
approach supporting design models, source code, and test
cases. Our approach combines UML models, Java source
code, and JUnit tests through a unifying meta-model sup-
plied by the Eclipse Modeling Framework [10] and a cen-
tralized model repository. We apply a traceability detection
approach to uncover horizontal and vertical dependencies
between the artifacts which are recorded as traceability links
and are used for impact propagation.

Our main contribution is a novel rule-based approach for
impact analysis, which analyzes the interplay of change op-
erations and dependency relations between software artifacts
to determine further change propagation. Finally, we present
and discuss the design and results of an initial case study to
evaluate our impact propagation approach.

Our paper is organized as follows. Section II discusses re-
lated work. Section III presents our approach and elaborates
on our concepts of linking different models, dependency
analysis, and impact propagation. The design and the results
of an initial case study are presented in Section IV, before
outlining future work and concluding the paper.

II. RELATED WORK

In this section, we review impact analysis approaches for
their support of heterogeneous artifacts. We then discuss how

research in traceability management, multi-perspective mod-
eling, and multi-perspective consistency checking addresses
the challenges of heterogeneous software artifacts.

Typical impact analysis approaches are focused on only
one type of software artifact, such as source code or certain
UML diagrams. A previous study [6] revealed, that from
150 studied impact analysis approaches only 19 are able to
analyze at least two types of artifacts. Various techniques
have been proposed to assess the propagation of impacts,
such as program slicing [11], call graph analysis [12],
analysis of execution traces [13], [14], static execute after
relations [15], impact rules [16]–[18], information retrieval
[19]–[21] or the mining of software repositories [22]–[24].
However, most techniques are limited to only one type of
artifact. For example, a call graph analysis cannot be applied
on requirements’ specifications. Due to this limitation, most
of the proposed approaches are not able to detect impacts
in heterogeneous software artifacts. This, however, is typical
for most software as discussed in the previous section.

Ibrahim et al. [25] proposed an approach for impact
analysis spanning classes, packages, tests, and requirements.
The authors establish traceability relations between soft-
ware artifacts which are based on similar names, domain
knowledge, and explicit relationships. However, they provide
semi-automated traceability analysis only, which limits the
applicability of their approach. They further neglect widely
used UML diagrams and fine-grained code artifacts.

Most impact analysis approaches are further limited by
the amount of change types they support. They treat different
types of changes equally and assume that they result in the
same consequences. Only few works, such as the approach
of Keller et al. [17], [18], treat different types of changes
separately during the impact analysis process. However, their
set of change operations is not comprehensive either, as only
a subset of operations discussed in [26] is covered.

The problem of multi-perspective impact analysis is
closely related to challenges that researchers are confronted
with in the fields of multi-perspective modeling, vertical
and horizontal traceability analysis, and multi-perspective
consistency checking, namely: highly interdependent, but
heterogeneous artifacts with different structure and purpose.

Multi-perspective consistency checking [9] encompasses
approaches developed for maintaining different types of
software artifacts in a consistent state. Fradet et al. [9]
presented a framework for analyzing architectures comprised
of multiple views, which are linked by traceability relations.
Sunetnanta and Finkelstein [3] explored the reasons why
software development requires different perspectives, mod-
els, and diagrams from an end-users point of view. They
propose a multi-perspective viewpoint framework, which
is used for linking different models. Likewise, Olsson and
Grundy [4] utilized traceability relations between different
artifacts to adapt them to changes, thereby maintaining the
overall consistency of the system. Eramo et al. [8] presented

a framework for multi-view modeling utilizing multiple
independent views and viewpoints which are connected by
correspondence relations.

Research conducted by Lindvall and Sandahl [7], [27]
outlined the applicability of vertical and horizontal traceabil-
ity relations for impact analysis, since existing traceability
relations can be used for ripple effect analysis [28]. Trace-
ability links allow for connecting different types of software
artifacts [29], which makes them suitable for expressing
dependencies between heterogeneous software artifacts.

De Lucia et al. [5] discussed the need of traceability
support for impact analysis and the two main problems of
traceability analysis: link recovery and link evolution. In
our approach, we only deal with link recovery. We refer
to the work of Mäder [30] for a detailed discussion of the
maintenance problem and to our previous work [31]–[33]
for further discussions of traceability recovery approaches.

Rochimah et al. [34] reviewed traceability detection ap-
proaches based on various criteria, where the applicability
for software evolution, the support for different types of
software artifacts, and their degree of automation are of
special interest for our approach.

Imtiaz et al. [35] analyzed various traceability techniques
for their support of multi-perspective impact analysis, which
is based on a similar classification of techniques as applied
by Rochimah et al. They define a set of criteria for compar-
ing approaches, where the support for horizontal and vertical
traceability is of particular importance for our work.

We can draw the following conclusions. First, a unifying
representation or framework on which all the different
artifacts can be mapped upon eases multi-level analysis [8],
[9]. Secondly, it requires adequate means for connecting
the heterogeneous artifacts, i.e. horizontal and vertical trace-
ability links [7], [27], to enable further analysis. According
to results of Rochimah et al. [34] and Imtiaz et al. [35],
a rule-based traceability mining technique is suitable for
dependency detection among the different types of artifacts,
which can also be fully automated. Last, our impact analysis
approach should be able to address different types of changes
adequately [18] and support the operations defined in [26].

III. MULTI-PERSPECTIVE IMPACT ANALYSIS

A. Problem Space and Requirements

We consider the perspectives of requirements, architec-
ture, source code, and test cases to provide a holistic
approach providing support for different development stages.
Hence, we support UML models, Java source code, and
JUnit tests. Figure 1 illustrates these perspectives, their
respective software artifacts, and potential dependencies
between them (arrows). Analyzing the impact propagation
between these heterogeneous software artifacts holds two
major challenges: (1) interconnecting the different types of
software artifacts and (2) propagating changes across them.
Based on our problem space, the challenges discussed above,

and conclusions drawn from related work, we define our
requirements as follows:

1) Enable impact analysis of dynamic and static UML
models, requirements, source code, and test cases.

2) Combine the artifacts on a common base to use the
same analysis approach for all types of artifacts.

3) Detect and record dependencies between software
artifacts for impact analysis.

4) Enable developers to easily understand and retrace the
propagation of changes.

Requirements

Dynamic Behavior Static Architecture

Java Source

Code

Class
Diagrams

Activity
Diagrams

Sequence
Diagrams

Package
Diagrams

State Machine
Diagrams

Use Cases

Test

Component
Diagrams

JUnit Tests
Implementation

Figure 1. Views and artifacts considered by our approach

The following section presents an overview of our ap-
proach and answers how we fulfill our four requirements.

B. Overview

Our first two requirements demand for a homogenous
treatment of the different types of artifacts. This, however,
requires a unifying framework supplying a common meta-
model on which all types of artifacts can be mapped upon.
Furthermore, it requires a centralized model repository for
storing the artifacts. Thus, we build our approach upon the
Eclipse Modeling Framework (EMF) [10] and the EMF-
based model repository EMFStore1. EMF implements a
unifying meta-model and allows us to map all artifacts to
EMF-based models. Section III-I further explains the details
of this mapping, the model repository, and the model import.

After the artifacts are unified, we apply a rule-based
approach for traceability discovery to record dependency
relations between them as traceability links. This approach
extends our previous work on dependency detection [31]–
[33], which is based on an analysis of related work on trace-
ability discovery, such as information retrieval approaches.
Section III-C discusses the structure of our dependency
relations, while Section III-D elaborates on the structure,
origin, and evaluation of our dependency detection rules.
Both sections therefore contribute towards fulfilling our third
requirement.

The diversity of software artifacts requiring impact anal-
ysis directly influences our choice of a suitable impact

1http://eclipse.org/emfstore/

analysis algorithm. Most code-based techniques, such as
slicing or call graph analysis, are not applicable for the
different types of artifacts. Dependency analysis, on the
other hand, can be applied on any kind of dependency
relation which exists between software artifacts. However,
pure dependency analysis is too imprecise and produces
too many false-positives [36]. Therefore, we propose an
improved version of dependency analysis resulting in less
false-positives as confirmed by our case study (see Section
IV), which is based on a novel propagation approach.

Our impact propagation technique is based on the type
of dependency which exists between two EMF-models and
the type of change which is applied on one of them.
The underlying hypothesis is that the interplay of change
type, dependency type, and the types of involved artifacts
determines if and how a change ripples to related artifacts.
This interplay is implemented by a set of impact propagation
rules, which are applied in a recursive manner until all im-
pacted elements have been identified. Section III-F illustrates
the structure and origin of our propagation rules, whereas
Section III-G further explains our propagation concept. Our
propagation rules are able to analyze any kind of EMF-
model and thus contribute towards our first requirement.

Model Repository

Transformation & Import

Dependency Analysis

Change Classification

Impact Propagation

Estimated

Impact Set

UML, Java,

JUnit

Changes

Dependency
Rules

Impact
Rules

Change
Types

Figure 2. Overview of our approach.

Our concept of change types is built on previous research
on the role of change types in software evolution [26]. We
distinguish between atomic and composite changes, which
are used for modeling real change activities. Section III-E
summarizes this concept and provides an example.

In summary, our entire approach consists of four major
steps, which are also illustrated by Figure 2:

1) Transformation of artifacts into unified EMF-based
models and import into model repository.

2) Rule-based dependency analysis.
3) Classification of change type.
4) Rule-based computation of impact propagation.
The tool implementing our approach is introduced in Sec-

tion III-I. We also discuss the extensibility of our approach
regarding the integration of new modeling and programming
languages in Section III-I.

C. Dependency Relations
We record dependencies between software artifacts as

traceability links to fulfill our third requirement. A trace-
ability link consists of three attributes: the source model, the

target model, and the type of relation. Our approach requires
explicit types of dependency relations, which are based on a
review of related work and are clustered according to their
purpose:

• Structural relations expressing the structure of artifacts,
e.g. Contains or PartOf.

• Behavioral relations expressing the dynamic relations
between artifacts, e.g. Calls or Tests.

• Conditional relations expressing constraints and condi-
tions between artifacts, e.g. Satisfies or Requires.

• Lifecycle relations expressing evolutionary develop-
ment, e.g. EvolvesTo or Replaces.

• Similarity relations expressing similarities and equiva-
lences, e.g. Overlaps or SimilarTo.

Our dependency relation types are based on dependencies
within the object oriented design paradigm (e.g. inheritance
relationships), related work on requirements traceability
[37], [38], traceability recovery [39]–[41], impact analysis
[17], [18], and consistency management [4], [42]. Further
examples of relation types are displayed by Figure 3, which
presents an excerpt of our case study and is discussed in
Section III-H. A comprehensive list of all dependency types
can be obtained from our project website [43].

D. Dependency Detection Rules

The following section explains our dependency detection
rules which record dependencies as traceability links.

1) Origin of Rules: We are currently using a set of 130
rules to detect dependency relations between different UML
models, OWL models, URN models, Java source code, and
JUnit tests which are based on four different sources:

• Relations defined in the meta-models of artifacts. The
object-oriented paradigm for example contains a vari-
ety of dependency relations, e.g. inheritance-relations
between classes or implementation-relations between
classes and interfaces. Rules can be established which
transform these dependencies into explicit links.

• Correspondences according to design methodologies.
For object-oriented development for instance, there is
a general rule of equivalence between design and code.
For example, equivalences exist between UML and Java
classes or between UML and Java packages.

• Related work on rule-based traceability detection. For
example, Jirapanthong and Zisman [41] provide rules
for linking different UML models, whereas Filho et al.
[44] provide rules for linking UML and URN models
which are reused in our approach.

• Similarities and overlappings in names and identifiers of
artifacts. Although less precise than above discussed
relations, similar names can also provide useful trace-
ability relations, e.g. when a use case actor and a class
or a use case and a method share the same name.

All rules can be obtained from our project website [43] and
are ready to be used within our prototype tool, which is
introduced in Section III-I.

2) Structure of Rules: Our dependency detection rules
resemble typical SQL-queries and consist of three parts:
• Element-Definition: which types of artifacts are ad-

dressed by the rule?
• Query-Definition: how are the artifacts related?
• Result-Definition: what should be done with them?

Within the query-part, our rules analyze the structure, rela-
tions, and names of model elements to determine traceability
links. For further details, we refer to our previous work [32],
[33]. An example demonstrating the structure of our rules
and possible query-operators is illustrated by Listing 1.

<r u l e id =” TraceRule012 ”>
<elements>

<e lement a l i a s =” e1 ” type =” Method ”/>
<e lement a l i a s =” e2 ” type =” Method ”/>
<e lement a l i a s =” e3 ” type =” C l a s s ”/>
<e lement a l i a s =” e4 ” type =” I n t e r f a c e ”/>

</elements>
<query>

<c o n d i t i o n va lue =”RELATED TO(e3 , ’ Implements ’ , e4) ”/>
<c o n d i t i o n va lue =”PARENT OF(e3 , e1) ”/>
<c o n d i t i o n va lue =”PARENT OF(e4 , e2) ”/>
<c o n d i t i o n va lue =” e1 : : name=e2 : : name”/>

</query>
<r e s u l t s>

<c r e a t e l i n k from=” e1 ” to =” e2 ” type =” Implements ”/>
</ r e s u l t s>

</rule>

Listing 1. A rule linking corresponding methods of interfaces and classes.

This rule establishes a link between the declaration
and implementation of a method. It demonstrates how we
exploit the structure (“PARENT OF”-conditions), names
(“=”-condition), and relations (“RELATED TO”-condition)
which exist between models when searching for dependency
relations. Our rules offer a variety of query-statements,
which can be nested by AND, OR, NOT, and XOR.

3) Evaluation: We performed an evaluation of our de-
pendency detection rules using two case studies [31]. We
applied our rules on a robot control software and on our own
prototype tool EMFTrace [32]. The robot control software
was developed by more than 20 researchers and program-
mers, while five persons were involved in the development
of EMFTrace. All researchers and developers manually
analyzed the cases to provide an oracle for computing preci-
sion and recall. Finally, our dependency detection approach
achieved a mean precision of 0.84 and a mean recall of 0.85
[31], which is comparable to similar approaches [41].

E. Supported Change Types

As we consider the type of change essential for deter-
mining its impact, we investigated the usage of change
types in software evolution, maintenance, and regression
testing [26]. Using a graph-based representation of software
artifacts, we derived a taxonomy of change types comprised

<<tests>>

<<equivalence>>

<<contains>>

<<provides>>

JUnit
test cases

<<contains>>

<<realizes>>

<<refines>>

<<contains>>
<<defines>>

<<defines>> <<refines>>

<<refines>> <<realizes>>

<<equivalence>> <<equivalence>>

<<class>>
LinkManager

<<class>>
LinkManager

<<component>>
LinkManager

<<use case>>
create traceability

link

<<system>>
LinkManager

<<operation>>
createLink

<<method>>
createLink

UML
static architecture

Java
implementation

UML
requirements

UML
dynamic models <<package>>

LinkManager

<<package>>
org.emftrace.core.linkmanager

<<requires>>

<<testcase>>
testCreateLink

<<activity>>
create traceability

links

<<activity diagram>>
apply rules

<<use case>>
apply traceability

rules

Figure 3. An excerpt of our case study demonstrating our dependency concept.

of atomic operations (add, delete, update) and composite
operations (move, replace, split,merge, swap), where the
latter may consist of sequences of atomic and composite
operations. For example, the composite operation “splitting
a class” can be modeled by adding a new class and moving
all required attributes and methods to this new class. Each
move-operation itself is again modeled by a delete and add-
operation. Based on our taxonomy, we defined a set of
140 change types, which range from “simple changes” like
deleting a method from a class to complex operations, such
as merging UML components. A complete list of change
types can be obtained from our website [43].

F. Impact Propagation Rules

In this section, we present our impact propagation rules,
before explaining our propagation concept in Section III-G.

1) Origin of Rules: Our propagation rules are derived
from our previously defined dependency detection rules.
Depending on the types of artifacts addressed by a rule,
we extend the rule to react on one of the change types
presented in Section III-E. We illustrate this process us-
ing TraceRule012 as an example (see Listing 1), which
links method-declarations with their respective method-
implementations. Consequently, TraceRule012 should be
extended to react on changes that affect both elements. Thus,
we derived rules to react on name changes, return type
changes, the addition or deletion of parameters, modifier
changes, the deletion of the method, and moving the method
to another class or interface. For example, ImpactRule041
(see Listing 2) implements the “rename method”-case. The
conditions defined in the query-part check if the applied
change type matches “rename method”, if the change was
applied on the method-declaration, and if the method-
declaration is “Implemented” by a method of a class. If all
conditions are satisfied, the name change is propagated to
the method-implementation.

However, we do not consider all possible types of changes
for all types of artifacts. Some combinations are not relevant
in practice, e.g. splitting or merging attributes of classes.

Finally, we derived a set of 180 impact rules, which can
also be obtained from our website [43].

2) Structure of Rules: The structure of our propagation
rules is equivalent to our dependency detection rules. They
offer the same query-operators and utilize the same query-
mechanisms. The only difference is that they create impact
reports instead of traceability relations. Thus, they are able
to query any type of artifact converted into an EMF-based
model, and thereby fulfill our first requirement.

<r u l e id =” Impac tRule041 ”>
<elements>

<e lement a l i a s =” e1 ” type =” Method ”/>
<e lement a l i a s =” e2 ” type =” Method ”/>
<e lement a l i a s =” e3 ” type =” AtomicChangeType ”/>

</elements>
<query>

<c o n d i t i o n va lue =” e3 : : name= ’Rename method ’ ”/>
<c o n d i t i o n va lue =” e3 : : t a r g e t =e2 ”/>
<c o n d i t i o n va lue =”RELATED TO(e1 , ’ Implements ’ , e2) ”/>

</query>
<r e s u l t s>

<report impact from=” e2 ” to =” e1 ” type =” e3 : : name”/>
</ r e s u l t s>

</rule>

Listing 2. A rule to react on the change of a method’s name.

Our rules allow developers to easily retrace the propa-
gation of changes by inspecting generated impact reports
and the relations between models, which fulfills our fourth
requirement.

G. Impact Propagation Approach

We determine the propagation of impacts by analyzing
the type of dependency relation which exists between two
model elements and the type of change which is applied
on one of them. This approach is implemented by a set of
propagation rules, which are applied in a recursive manner
and were introduced in the previous section.

Each rule receives the following input: the changed el-
ement, the type of change, and a list of all related ele-
ments. This input is then processed according to the query-
conditions defined in the rule to remove all related elements
that do not adhere to these conditions. As a result of the

query-processing, a list of all impacted element(s) along with
the resulting change type(s) is computed. This output is then
again fed into the impact analysis process. The recursive
propagation continues as long as there is output matching the
required input of another rule. It is important to note, that the
change type resulting from a rule must not necessarily equal
the change type which is fed into the rule. For example,
merging two classes may result in all attributes that store
instances of one of the former classes having to change their
data types or being deleted otherwise.

Cyclic dependencies between software artifacts may lead
to infinite loops during impact propagation. We address this
problem by maintaining two lists storing 3-tuples (changed
element, change type, impacted element) to record the cur-
rent progress of impact propagation, which is inspired by the
A* -pathfinding algorithm [45]. The ClosedList contains all
already “explored” 3-tuples or impact paths. The OpenList
contains all 3-tuples which might lead to new impact paths
and should be further explored. If a possible new impact path
is found, the ClosedList is searched for a tuple containing
the same elements and change types. If such a tuple is found,
further propagation on this path is stopped. Algorithm 1
illustrates our propagation approach in pseudocode.

Algorithm 1 Recursive change propagation
1: openList.add(new Tuple(changedModel, change, relatedModels));
2: while (!openList.isEmpty()) do
3: List < Tuple > tmp = executeRules(openList.get(0));
4: for (i = 0; i < tmp.size()) do
5: if (!containsTuple(openList, tmp.get(i))) then
6: openList.add(tmp.get(i));
7: end if
8: end for
9: if (!containsTuple(closedList, openList.get(0))) then

10: closedList.add(openList.get(0));
11: openList.remove(0);
12: end if
13: end while

In contrast to existing dependency-based approaches, our
propagation strategy differs regarding certain key aspects.

First, we do not propagate changes across any dependency
relation regardless of their type, which limits the size of
impact sets to be computed.

Secondly, our propagation approach does not involve any
cutoff-distance to limit the change propagation, such as
in the work of Bohner [36] or Briand et al. [16]. In our
approach, only the interplay of change type and dependency
type determines the propagation of changes. This hypothesis
is underpinned by results of an initial case study presented
in Section IV. Furthermore, defining a reasonable cutoff-
distance becomes increasingly difficult when multiple per-
spectives are involved. A cutoff-distance set too close results
in many impacted elements being missed. On the other hand,
a cutoff-distance set too far away will result in too many
artifacts being considered as impacted.

Thirdly, our rules determine how impacted elements are

actually impacted; respectively how they should be changed.
This offers two benefits for developers: They are aware of
how to change the software, and they are able to discuss
alternative solutions based on the size of their impact sets
and the types of changes required by a certain solution.

H. Illustrative Example

For illustrative purpose, we discuss an example of recur-
sive type-based impact propagation. The example is taken
from our case study (see Section IV) and is depicted by Fig-
ure 3. In this example, the UML component LinkManager
is renamed and all impacted elements shall be identified. In
a first step, the propagation rules analyze all directly related
elements of the component. In this case, there are two related
and thus potentially impacted elements: a class and a system
with the same name. As both relations are of the type “Re-
fines”, both carry the name change. There is no further direct
dependency and we have to inspect previously identified
impacts recursively. When examining the system LinkMan-
ager, the remaining “Provides”-relation will not propagate
the rename-operation and there is no further recursive propa-
gation. The UML class LinkManager, however, is connected
to a Java class LinkManager (“Equivalence”-relation), and
with an UML package LinkManager (“Contains”-relation).
The “Contains”-relation does not propagate the rename-
operation and the inspection of the package is complete.
The Java class, however, is impacted by the name change
and should as well be renamed. The impacted Java class is
further related to a Java package (“Contains”-relation) and
to a Java method (“Defines”-relation), which both do not
propagate the name change any further.

I. Tool Support

The presented approach is implemented by our prototype
tool EMFTrace [43]. The tool was initially developed for
dependency detection between different types of software
artifacts [31]–[33], and is available as an open source
project. EMFTrace is based on EMF and the EMFStore
model repository (see Figure 4), which supply a homogenous
meta-model and a model repository respectively.

Our tool supports Java source code, JUnit test cases,
UML models, URN models, OWL models, and feature
models. Additional modeling or programming languages
can be added to EMFTrace by providing EMF-based meta-
models, which is explained by tutorials hosted on our project
website [43]. The required Ecore-mapping and model import
is fully automated and provided through the user interface
of EMFTrace. XSLT templates are used for converting
instances of UML, OWL, URN, and feature models, while
Java source code files and JUnit test cases are converted
using MoDisco2.

2http://www.eclipse.org/MoDisco/

EMFTrace further extends EMFStore by adding features
for rule-based dependency detection, dependency visualiza-
tion, distance-based impact analysis, and rule-based impact
analysis. All features are fully automated; however, manual
effort is required for creating and maintaining dependency
detection and impact analysis rules. Support for impact
analysis is currently provided for Java, JUnit, and UML only.
However, it can be extended to encompass other modeling
languages by providing suitable impact propagation rules.

Eclipse IDE Visual Paradigm for UML

Java UML

Eclipse UML2 Tools

MoDisco XSLT

EMFTrace

EMFStore EMF EMF

JUnit

Figure 4. Our prototype tool EMFTrace.

IV. CASE STUDY AND EVALUATION

The following presents an initial case study which was
conducted to test the applicability of our approach and to
evaluate its performance. We followed the guidelines of
Runeson and Höst [46] for designing the study, and the
approach of Basili et al. [47] for defining and quantifying
our metrics. We discuss our research questions, the design of
the study, achieved results, and possible threats to validity.
All the data used throughout our case study can be obtained
from the download section of our project website [43].

A. Objective and Research Questions

The purpose of our initial study is to demonstrate the
applicability of our approach and its benefits for developers
when applied on heterogeneous software artifacts. Our goals
are as follows. First, we seek confirmation for our hypoth-
esis that the impact of a change depends on the type of
change, the type of dependency relation between involved
artifacts, and the type of involved artifacts. Secondly, we
want to apply our approach on a system of realistic size and
complexity. Last, we are interested in the performance of
our approach regarding recall and precision. In conclusion,
we derived the following two research questions.

RQ1: Does the interplay of change type, dependency type,
and artifact type determine further change propagation? We
analyze, if our propagation strategy is able to determine the
impact sets defined by our oracle. We further investigate, if
our propagation strategy results in fewer missed impacts and
false-positives than existing dependency-based propagation
approaches. We accomplish this by computing and compar-
ing impact sets using (1) our approach and (2) distance-
based propagation using a cutoff distance. According to
results of Hassaine et al. [48], we use a cutoff distance of
2 for the second case. Based on the computed impact sets,
we determine the precision and recall for both techniques.

RQ2: Is our change propagation approach able to predict
impacts between heterogeneous artifacts? We apply our
approach on a system comprised of different, highly interde-
pendent software artifacts, such as Java source code, JUnit
test cases, and several UML diagrams. Different artifacts are
changed according to our taxonomy of change types [26]
and the propagation of those changes across the different
perspectives is analyzed. The amount of false-positives and
missed impacts is analyzed for each type of software artifact,
to assess the applicability of our approach on different types
of software artifacts.

B. Design and Subject of the Study

According to the goals of our study, we require a case
for which UML models, Java source code, and JUnit test
cases are available. To answer both research questions, we
apply a series of changes on the chosen case. We manually
analyze the case for the impacts of each change to provide
an oracle for comparing the computed impact sets. Thus,
we require decent knowledge of the studied system, its
structure, and dependencies to be able to carry out the
changes. We analyzed nine open source systems, including a
render engine3, a steering library for autonomous AI agents4,
and our own prototype tool [43]. Our main requirement, the
availability of different types of software artifacts, turned out
to be the limiting factor when deciding for a case, as most
free accessible projects only provide source code. Finally,
we decided to apply our approach on our own prototype
tool EMFTrace for three reasons. First, we have sufficient
knowledge to evaluate the impacts of changes, to supply the
oracle for comparing our results. Secondly, various UML
diagrams (component, class, package, use case, and activity
diagrams), Java source code, and JUnit tests are available
for analysis, altogether 16,500 elements. Last, we have full
access to all available data and the rights to publish them.

1) Designing the Change Operations: The change opera-
tions were designed and chosen as follows. For each type of
artifact provided by our case, we derived a list of possible
change operations to obtain all relevant combinations of
artifact types and change types. For example, class-changes
encompass: add method, delete method, add attribute, delete
attribute, rename class, merge with other class, split class (i.e.
extract sub-class), move to other package, change superclass,
and change implemented interface. This procedure was re-
peated for each type of artifact provided by the case and
resulted in 48 changes. The ratio of changes per type of
software artifact is further summarized by Table I.

2) Building the Oracle: Obtaining the oracle for each
change operation was achieved by manually applying the
change on the system and inspecting its impact. For each
of the 48 change operations, we analyzed the source code

3http://www.ogre3d.org/
4http://opensteer.sourceforge.net/

Artifacts and Changes Results of Rule-based Propagation Results of Distance-based Propagation
Type # of Changes Change IDs |AIS�| |EIS�| Precision Recall F1-score |EIS�| Precision Recall F1-score

Component 9 C01 - C09 25 25 0.9783 0.9231 0.9498 58 0.1640 0.4506 0.2404

Package 7 C10 - C16 10 8 0.9365 0.9080 0.9220 5 0.4285 0.5751 0.4910

Class/Interface 10 C17 - C26 19 21 0.9556 0.8809 0.9167 208 0.0649 0.7027 0.1188

Method 8 C27 - C34 4 4 1.0000 0.9000 0.9473 138 0.0386 0.8463 0.0738

Methodparameter 4 C35 - C38 3 3 1.0000 1.0000 1.0000 50 0.0196 0.3333 0.2468

Attribute 6 C39 - C44 7 6 1.0000 0.9023 0.9486 26 0.0958 0.4220 0.1561

Use case 4 C45 - C48 11 11 1.0000 0.9210 0.9588 48 0.1339 0.6840 0.2239

Table I. CHANGES AND RESULTS OF OUR CASE STUDY.

and UML diagrams for change propagation. Each artifact
identified by manual inspection was then added to the oracle
impact set for comparing the results of our approach.

C. Results and Discussion

The following discusses the results of our study regarding
our two research questions. Due to space constraints, we
are not able to discuss the impact sets of all 48 change
operations in detail. However, a list of all changes along
with the computed impact sets can be obtained from the
download section of our project website [43]. The source
code, test cases, and all UML diagrams used within our
study can also be obtained from the same website.

1) RQ1 - Does the interplay of change type and de-
pendency type determine further change propagation: To
answer this question, we compare the impact sets computed
by our approach against our oracle and with the impact sets
computed by distance-based propagation.

First, we need to compare the sizes of our impact sets
with those of the oracle. There is a maximum difference of
20% between the sizes of our impact sets and the oracle
(Package-changes, see Table I), whereas impact sets com-
puted by distance-based propagation contain up to 2100%
more elements (Class-changes, see Table I). In average, the
sizes of our impact sets correspond to those of the oracle,
while those of distance-based propagation vary considerably.

Secondly, we have to analyze our impact sets for false-
positives to determine the precision of our approach. Only
four out of 48 computed impact sets contain false-positives
at all (C07, C08, C15, and C24 ; see Figure 5). In con-
trast, 44 out of 48 impact sets computed by distance-
based propagation consist of more than 40% false-positives
(see Figure 5). While our type-based propagation approach
achieved an average precision of more than 80%, distance-
based propagation resulted in a mean precision of less than
20%. Results of type-based propagation are also much more
“stable” than those computed by distance-based propagation.
There are only two outliers for precision using type-based
propagation (C15 : 0.556, C24 : 0.614; see Figure 5), which,
however, are still well above the average precision computed
by distance-based propagation.

Thirdly, we need to determine the recall of our approach
by analyzing the impact sets for missed impacts. Compared
to the average recall of type-based propagation, there is only

one outlier (C21 : 0.294; see Figure 5) which is caused by
yet not recorded dependency relations between attributes
and their getter and setter methods. In contrast, impact
sets of distance-based propagation show a greater overall
variance and missed more impacted elements (see Figure 5).
The recall of distance-based propagation could have been
improved by applying a larger cutoff distance, e.g. 3 or
5. This, however, would further reduce the precision by
introducing too many false-positives.

In conclusion, our approach was able to determine the
impact sets defined by our oracle with an average precision
and recall of well above 80%. Our approach identified only
few false-positives and did not overestimate the propagation
of changes. From a practical point of view, this means that
our approach can provide developers with a solid estimation
of the impact of a change. Hence, we are able to positively
answer RQ1.

2) RQ2 - Is our change propagation approach able to pre-
dict impacts between heterogeneous artifacts: We applied a
series of changes on different types of software artifacts,
compared the computed impacts sets against our oracle,
and finally measured the achieved precision and recall.
Table I summarizes the distribution of changes across the
different types of artifacts. The changed artifacts represent
typical artifacts from different perspectives and development
phases, such as use cases (requirements), component dia-
grams (static architecture) or class diagrams (fine-grained
architecture, implementation, tests). As shown by Table I
and discussed for RQ1, our rule-based propagation approach
was able to determine the impacts of changes with reliable
and stable results for any type of software artifact. Although
many changes had affects on different types of artifacts
simultaneously, our approach was able to correctly determine
the change propagation across the different perspectives.
Therefore, we are also able to positively answer RQ2.

In conclusion, our approach was able to determine im-
pact sets which correspond to those of the oracle. Our
propagation strategy provided reliable and stable figures
for precision and recall. Furthermore, our study indicates
that our approach is applicable on heterogeneous artifacts,
and produces significantly less false-positives than distance-
based propagation. Our approach also required less than
five minutes for computing the impacts sets, while manual
analysis took more than 16 hours. Consequently, it reduces

0
0,2
0,4
0,6
0,8

1

Rule-based

Precision

Recall

0
0,2
0,4
0,6
0,8

1

Precision

Recall

Distance-
based

Figure 5. Precision and recall of impact sets computed by rule-based propagation (upper diagram) and distance-based propagation (lower diagram).

the effort for developers when examining and understanding
the affects of changes, thus assisting with changing software.

D. Threats to Validity

There are four categories of potential threats limiting the
validity of our initial case study [18], [46].

Construct Validity: do we measure what was intended? We
measure the impact of a change according to the amount of
impacted artifacts and use formulas for precision and recall
as provided in related work.

Internal Validity: are there unknown factors which might
affect the causal dependencies? We were able to correctly
classify each change applied on our case study according to
our taxonomy of change types [26]. Thus, we can be sure
that the correct set of rules was chosen by our tool.

External Validity: to what extent it is possible to generalize
our findings? We analyzed a variety of UML diagrams, Java
source code, and JUnit test cases to test our rules with a wide
range of possible data sources. However, the studied case
provided almost complete and very detailed architectural
diagrams, whereas other applications might lack such details.
Due to time constraints, we were further not able to test all
combinations of change types and artifact types. However,
our initial study covered a variety of change operations, such
as merging packages or the deletion of use cases.

Reliability: are the results dependent on the researcher and
the tools? Although we supplied the oracle to compare the
output of our approach, we can limit our influence on the
results due to our experience in developing, maintaining,
and analyzing the studied case. Our dependency detection
technique may also influence the results of our case study.
However, we evaluated the performance of our dependency
detection technique in previous research using two case
studies and achieved reliable results for both [31].

V. CONCLUSION AND FUTURE WORK

Software development requires different types of artifacts
to reflect different views on the system and to express dif-
ferent concerns. Frequent changes introduce inconsistencies
to these artifacts, if changes are not addressed adequately
among them. This results in further defects, decreased main-
tainability, and increased gaps between high-level design and
implementation. However, most impact analysis approaches

are not applicable for heterogeneous artifacts, while existing
techniques for multi-level modeling and multi-perspective
consistency checking are not able to predict future changes
and their impacts.

We presented an approach combining impact analysis
with the concept of multi-level modeling, to assist with
maintaining software through impact analysis of different
UML models, Java source code, and related JUnit tests.
Our impact analysis approach relies on change propagation
rules, which analyze dependency relations between software
artifacts according to the type of change which is applied
upon them. We illustrated how a dependency detection tech-
nique is used to elicitate vertical and horizontal dependency
relations between the various artifacts, and how our approach
is implemented by our prototype tool EMFTrace.

Results of an initial case study confirmed that our ap-
proach is able to determine impacted artifacts with reliable
precision and recall. Our approach also required significantly
less time when compared to manual analysis. Furthermore,
it determined the propagation of impacts more reliably than
distance-based dependency analysis. Impact sets computed
by our approach were more precise, missed fewer impacted
artifacts, and provided a greater overall stability. Our study
also revealed that rule-based impact propagation can be
applied in the context of heterogeneous software artifacts,
as different types of software artifacts were changed and the
propagation of impacts was correctly determined.

Our approach offers several opportunities for further re-
search. First, a more systematic investigation of dependency
types is required, which is currently accomplished by a
literature review. Secondly, we need to refine and add
additional dependency detection rules to elicitate further, yet
missing dependencies, as revealed by our case study. Thirdly,
we are currently extending the dependency analysis of Java
source code to the level of program statements, to allow for
more fine-grained couplings with dynamic UML models.

REFERENCES
[1] S. A. Bohner and R. S. Arnold, Software Change Impact

Analysis. Los Alamitos, CA, USA: IEEE Computer Society
Publications Tutorial Series, 1996.

[2] S. S. Yau, J. S. Collofello, and T. M. McGregor, “Ripple effect
analysis of software maintenance,” in Computer Software and
Applications Conference (COMPSAC ’78), 1978, pp. 60–65.

[3] T. Sunetnanta and A. Finkelstein, “Automated consistency
checking for multiperspective software specifications,” in
Workshop on Advanced Separation of Concerns, 2001.

[4] T. Olsson and J. Grundy, “Supporting traceability and in-
consistency management between software artifacts,” in Intl.
Conf. on Software Eng. and Applications, 2002, pp. 63–78.

[5] A. De Lucia, F. Fasano, and R. Oliveto, “Traceability man-
agement for impact analysis,” in Frontiers of Software Main-
tenance (FoSM 2008), 2008, pp. 21–30.

[6] S. Lehnert, “A review of software change impact analysis,”
Ilmenau University of Technology, Tech. Rep., 2011.

[7] M. Lindvall and K. Sandahl, “Practical implications of trace-
ability,” Softw. Pract. Exper., vol. 26, pp. 1161–1180, 1996.

[8] R. Eramo, A. Pierantonio, J. R. Romero, and A. Vallecillo,
“Change management in multi-viewpoint system using asp,”
in 5th Int. Workshop on ODP for Enterprise Computing
(EDOC 2008), Munich, Germany, 2008, pp. 19–28.

[9] P. Fradet, D. Métayer, and M. Périn, “Consistency checking
for multiple view software architectures,” Lecture Notes in
Computer Science, vol. 1687, pp. 410–428, 1999.

[10] “Eclipse Modeling Framework (EMF).” [Online]. Available:
http://www.eclipse.org/modeling/emf/

[11] L. Vidács, A. Beszédes, and R. Ferenc, “Macro impact
analysis using macro slicing,” in 2nd Intl. Conference on
Software and Data Technologies, 2007, pp. 230–235.

[12] B. Ryder and F. Tip, “Change impact analysis for object-
oriented programs,” in Workshop on Program analysis for
software tools and engineering (PASTE ’01), 2001, pp. 46–
53.

[13] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging
field data for impact analysis and regression testing,” in 9th
European Conf. on Software Eng., 2003, pp. 128–137.

[14] J. Law and G. Rothermel, “Whole program path-based dy-
namic impact analysis,” in Intl. Conference on Software
Engineering (ICSE ’03), 2003, pp. 308–318.

[15] A. Beszédes, T. Gergely, J. Jász, G. Tóth, T. Gyimóthy, and
V. Rajlich, “Computation of static execute after relation with
applications to software maintenance,” in IEEE Intl. Conf. on
Software Maintenance (ICSM 2007), 2007, pp. 295–304.

[16] L. Briand, Y. Labiche, L. O’Sullivan, and M. Sówka, “Auto-
mated impact analysis of UML models,” Journal of Systems
and Software, vol. 79, pp. 339–352, 2006.

[17] A. Keller, H. Schippers, and S. Demeyer, “Supporting incon-
sistency resolution through predictive change impact anal-
ysis,” in 6th Intl. Workshop on Model-Driven Engineering,
Verification and Validation, 2009.

[18] A. Keller and S. Demeyer, Change Impact Analysis for UML
Model Maintenance. IGI Global, 2011, ch. 2, pp. 32–56.

[19] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia,
“Identifying the starting impact set of a maintenance request:
A case study,” in 4th European Conference on Software
Maintenance and Reengineering, 2000, pp. 227–230.

[20] S. Vaucher, H. Sahraoui, and J. Vaucher, “Discovering new
change patterns in object-oriented systems,” in 15th Working
Conf. on Reverse Engineering (WCRE ’08), 2008, pp. 37–41.

[21] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy,
“Using information retrieval based coupling measures for
impact analysis,” Empirical Software Engineering, vol. 14,
no. 1, pp. 5–32, 2009.

[22] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll,
“Predicting source code changes by mining change history,”
IEEE Transactions on Software Engineering, vol. 30, no. 9,
pp. 574–586, September 2004.

[23] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,” IEEE
Transactions on Software Engineering, vol. 31, no. 6, pp.
429–445, June 2005.

[24] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta,
“Using multivariate time series and association rules to detect
logical change coupling: an empirical study,” in 26th IEEE
Intl. Conf. on Software Maintenance (ICSM 2010), 2010.

[25] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, “Inte-
grating software traceability for change impact analysis,” The
Intl. Arab Journal of Information Technology, vol. 2, no. 4,
pp. 301–308, 2005.

[26] S. Lehnert, Q.-U.-A. Farooq, and M. Riebisch, “A taxonomy
of change types and its application in software evolution,”
in 19th Annual IEEE Intl. Conference on the Engineering of
Computer Based Systems, 2012, pp. 98–107.

[27] M. Lindvall and K. Sandahl, “Traceability aspects of impact
analysis in object-oriented systems,” Journal of Software
Maintenance: Research and Practice, vol. 10, pp. 37–57,
1998.

[28] S. Winkler and J. von Pilgrim, “A survey of traceability
in requirements engineering and model-driven development,”
Software and Systems Modeling, vol. 9, no. 4, pp. 529–565,
2010.

[29] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-
Gafni, “Model traceability,” IBM Systems Jounal, vol. 45,
no. 3, pp. 515–526, July 2006.

[30] P. Mäder, Rule-Based Maintenance of Post-Requirements
Traceability. MV-Verlag, Münster, 2010.

[31] S. Lehnert, “Softwarearchitectural design and realization of
a repository for comprehensive model traceability,” Master’s
thesis, Ilmenau University of Technology, 2010.

[32] S. Bode, S. Lehnert, and M. Riebisch, “Comprehensive model
integration for dependency identification with EMFTrace,”
in 1st Intl. Workshop on Model-Driven Software Migration
(MDSM 2011) and the 5th Intl. Workshop on Software Quality
and Maintainability (SQM 2011), 2011, pp. 17–20.

[33] M. Riebisch, S. Bode, Q.-U.-A. Farooq, and S. Lehnert, “To-
wards comprehensive modelling by inter-model links using
an integrating repository,” in 8th IEEE Workshop on Model-
Based Development for Computer-Based Systems, 2011, pp.
284–291.

[34] S. Rochimah, W. Wan Kadir, and A. H. Abdullah, “An evalua-
tion of traceability approaches to support software evolution,”
in 2nd Intl. Conf. on Advances in Software Engineering, 2007.

[35] S. Imtiaz, N. Ikram, and S. Imtiaz, “Impact analysis from
multiple perspectives: Evaluation of traceability techniques,”
in 3rd Intl. Conf. on Software Engineering Advances, 2008,
pp. 457–464.

[36] S. A. Bohner, “Extending software change impact analysis
into COTS components,” in Annual NASA Goddard Software
Engineering Workshop, 2002, pp. 175–182.

[37] K. Pohl, “PRO-ART: Enabling requirements Pre-traceability,”
in 2nd Intl. Conf. on Requirements Eng., 1996, pp. 76–84.

[38] P. Letelier, “A framework for requirements traceability in
UML-based projects,” in 1st Intl. Workshop on Traceability
in Emerging Forms of SE (TEFSE’02), 2002, pp. 32–41.

[39] G. Spanoudakis, A. Zisman, E. Perez-Minana, and P. Krause,
“Rule-based generation of requirements traceability rela-
tions,” Journal of Systems and Software, vol. 72, no. 2, pp.
105–127, 2004.

[40] G. Spanoudakis and A. Zisman, “Software traceability: A
roadmap,” in Handbook of Software Engineering and Knowl-
edge Engineering, C. S. K., Ed. River Edge, NJ: World
Scientific Publishing Co., 2005, vol. III, pp. 395–428.

[41] W. Jirapanthong and A. Zisman, “Xtraque: traceability for
product line systems,” Software and Systems Modeling, vol. 8,
no. 1, pp. 117–144, 2009.

[42] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “Detecting
and repairing inconsistencies across heterogeneous models,”
in Proceedings of the 1st International Conference on Soft-
ware Testing, Verification, and Validation, 2008, pp. 356–364.

[43] “EMFTrace - Sourceforge Project Website.” [Online].
Available: https://sourceforge.net/projects/emftrace/

[44] G. A. A. C. Filho, A. Zisman, and G. Spanoudakis, “Trace-
ability approach for i* and UML models,” in Proceedings of
the 2nd International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS’03), 2003.

[45] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” IEEE
Transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968.

[46] P. Runeson and M. Höst, “Guidelines for conducting and re-
porting case study research in software engineering,” Journal
of Empirical Software Eng., vol. 14, pp. 131–164, 2009.

[47] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal
question metric approach,” in Encyclopedia of Software En-
gineering, J. Marciniak, Ed. John Wiley & Sons, 1994, pp.
528–532.

[48] S. Hassaine, F. Boughanmi, Y.-G. Guéhéneuc, S. Hamel,
and G. Antoniol, “A seismology-inspired approach to study
change propagation,” in 27th Intl. Conf. on Software Mainte-
nance (ICSM 2011), 2011, pp. 53–62.

