
Combining Architectural Design Decisions

and Legacy System Evolution

Sebastian Gerdes1, Steffen Lehnert2, and Matthias Riebisch1

1 Universität Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

{gerdes,riebisch}@informatik.uni-hamburg.de
2 Technische Universität Ilmenau

Ehrenbergstraße 29, 98693 Ilmenau, Germany

steffen.lehnert@tu-ilmenau.de

Abstract. Software development is characterized by ongoing design de-

cisions that must take into account numerous requirements, goals, and

constraints. When changing long-living and legacy systems, former deci-

sions have to be considered. In order to minimize the risk of taking wrong

or misleading decisions an explicit representation of the relevant aspects

is crucial. Architectural decision modeling has proven to be an effective

means to represent these aspects, the required knowledge, and properties

of a potential solution. However, existing approaches do not sufficiently

cover the ongoing evolution of decisions and artifacts. They fail in par-

ticular to represent relations to existing systems on a fine-grained level

to allow for impact analysis and a later comprehension of decisions. Fur-

thermore, the effort for capturing and modeling of design decisions has to

be reduced. In our paper we integrate existing approaches for software

architectural design decision making. We extend them by fine-grained

traceability to elements of existing systems and explicit means for mod-

eling the evolution of decisions. We show how relevant decisions can easily

be identified and developers are supported in decision making.

Keywords: Software architecture, design decision, traceability, evolu-

tion, reengineering, legacy software.

1 Introduction

The majority of today’s software engineering efforts are spent on continuous
and evolutionary development of existing systems [1]. Hence, development faces
the ongoing integration, maintenance, and reengineering of existing (legacy) sys-
tems. An increasing amount of software is also composed of pre-existing building
blocks, such as COTS-components, which therefore represent another type of ex-
isting items that have to be considered during design decision making [2].

As software architectures cover many important design decisions, evolutionary
development of software systems demands for traceability between decisions and
the resulting artifacts to comprehend who made which decision when and why [3].

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 50–57, 2014.
c© Springer International Publishing Switzerland 2014



Combining Architectural Design Decisions and Legacy System Evolution 51

Additional traceability between (legacy) decisions is required to enable compre-
hensive change impact analysis in response to changes. However, this support is
not yet sufficiently provided by current research on the documentation and uti-
lization of design decisions. Therefore, our goals are to:

1. Support the evolution of design decisions.
2. Document the origins and potential impacts of design decisions.
3. Establish fine-grained couplings between design decisions, requirements, con-

straints, and elements of existing systems.
4. Reduce the effort for the modeling of dependencies.

To accomplish these goals, we consolidate the decision models as proposed
by Zimmermann [4] and Capilla et al. [5]. We augment the resulting decision
model with means for fine-grained traceability towards software artifacts which
are either impacted by the design decisions or contribute towards them, to help
developers understand the implications of their changes. As our main contri-
bution we illustrate how the evolution of every aspect of the decision model is
addressed by our approach to allow for a seamless documentation of design de-
cisions. We emphasize how developers are enabled to identify (legacy) decisions
relevant to their current tasks and how our approach helps developers to answer
the questions arising during software maintenance.

The remainder of this paper is organized as follows. In Section 2 we describe
requirements to design decisions, which will be derived from developer’s needs
represented by use cases. We introduce our revised decision model in Section 3
and explain how our model assists with decision making in Section 4. Related
work is discussed based on our requirements in Section 6 and finally Section 7
outlines future research and concludes the paper.

2 Requirements to Architectural Design Decisions

Before analyzing existing works on documenting architectural design decisions
we have to define valid criteria for the analysis of the proposed models. These
criteria are derived from studies that elicited questions frequently asked by devel-
opers during software maintenance and evolution [6,7,8]. These studies revealed
general information needs and special demands on software evolution, for which
they conducted interviews with developers working in different domains.

2.1 Derived Use Cases and Requirements

In a next step we distilled three use cases from these questions and illustrate
how they benefit from explicit design decisions and support developers.

Identifying Relevant Legacy Decisions: If legacy decisions shall support
developers with their current tasks, means going beyond simple text searches are
required for identifying relevant decisions by querying the set of legacy decisions
in a more structured way. The derived use case comprises the efficient access
to decisions by limiting the search space, focusing on relevant information, and
revealing links to elements of existing systems to support evolution.



52 S. Gerdes, S. Lehnert, and M. Riebisch

Decision Support Based on Legacy Decisions: Once relevant legacy
decisions are identified, they must be aligned with the current task to select
potentially suitable solutions. Afterwards and in combination with fine-grained
traceability towards software artifacts and requirements they enable change im-
pact analysis as one of the key requirements of developers [6]. Legacy decisions
and related requirements and constraints reveal why code was implemented in a
particular way, which is crucial when trying to understand the rationale behind
existing solutions and the evolution of code [6,8]. Historical decisions also expose
information about previous issues in terms of constraints, requirements, etc.

Documenting Design Decisions: Developers must be able to populate
the decision repository with recent decisions and related information to enable
further reuse. This task must be accomplished with as little overhead as possible.

Based on the needs and use cases, we distilled requirements for a metamodel
to capture design decisions, which can be summarized as follows.

1. Explicit support for evolution of decisions and related artifacts:

Considering the evolutionary characteristics of decisions will expose potential
pitfalls developers already experienced in the past.

2. Explicit traceability to related software artifacts: Fine-grained trace-
ability will show which legacy decision leads to certain artifacts, such as code
or models, which will make developers aware of potential impacts of changes.

3. Explicit traceability to constraints and requirements: This will reveal
the drivers of a decision and the reasons of the developer why code and design
are the way they are. They need to be represented as first-class entities.

3 Consolidated Metamodel for Design Decisions

Based on our requirements we propose a consolidated decision model which is
displayed by Figure 1 to better capture the evolution of decisions and their
relations to other software artifacts, requirements, and constraints.

3.1 Consolidating the Decision Model

The consolidation of the existing decision models is comprised of two steps aimed
to increase the applicability of the resulting model. Firstly, we remove several
elements from the models which are not necessary for documenting architectural
issues and decisions in a real-world context, but complicate the application of the
model for developers. Secondly, we revise the attributes of remaining elements
and purge those that do not contribute towards the comprehension of decisions.

The first element to be removed is the ADLevel as introduced in [4]. There are
two reasons, on the one hand its limited benefit when exploring legacy decisions
to assist developers to accomplish their task. On the other hand, the boundaries
between the different ADLevels are quite fluid and most classifications are rather
ambiguous, thus misleading developers when documenting issues and decisions.

Furthermore, we identified cases of redundancy in the existing models which
should be resolved to streamline the decision model. The first candidates are



Combining Architectural Design Decisions and Legacy System Evolution 53

 

  

wouldImpact 

0..* 

isDrivenBy 

                  0..* 

 

 

 

 

issues 

                     0..* 

 

 

 

satisfies 

isDrivenBy 

impacts                      0..* 

contains 

                                                           0..* 

0..* 

involves 

refersTo 

 

 

 

 

                                                0..* 

1..* 

 

            

             

 

 

          isSolvedBy 

1..* 

           hasOutcome 

1              

 

   realizes 

dependsOn 

 

 

 

            0..* 

evolvedFrom 

 

    subgroups 

  0..* 

ADEvolvableItem 

name : String 

backgroundReading : String 

description : String 

version : String 

ADAlternative 

pros : String 

cons : String 

ADDriver 

ADOutcome 

justification : String 

status : String 

assumptions : String 

consequences : String 

ADTopicGroup 

 

ADIssue 

motivation : String 

ADArtifact 

type : String 

ADConstraint 

 

ADRequirement 

 

0..* 

type : String 

0..* 

Fig. 1. Our revised decision model represented by a class diagram

ADRequirement, ADRequirementType, and ADRequirementsArtifact introduced
in [5]. We integrated the ADRequirementType as an attribute into ADRequire-

ment, thereby diminishing the need for a separate class (upper right corner of
Figure 1). Likewise, there is little conceptual difference between ADDesignAr-

tifact and ADRequirementsArtifact as both represent real software artifacts,
regardless of whether it is a free text, a use case, etc. By renaming ADDesignAr-

tifact into ADArtifact and by adding both an attribute type to it and a reference
from ADRequirement towards it we can omit the additional classes.

A similar level of redundancy can be observed in the instances of ADDesig-

nArtifact, ADDesignElementType, ADDesignElement, ADRuntimeElement, and
ADRuntimeArtifact. In this case we also propose to merge the classes into the
ADArtifact class (right side of Figure 1) for the following reasons: First of all,
for the traceability of decisions and issues with design elements the additional
layer as introduced by the ADDesignArtifact is not required if the granularity
of the traceability concept is refined. This will be discussed in detail in Section
3.3. Additionally, the ADDesignElementType is dispensable as this information
is already encoded in the metamodels of the actual design artifacts.

Finally, we have to reorganize and purge several attributes of the remaining
model constituents. To begin with, there is a redundancy in ADOutcome class
of [4], namely the candidateAlternatives attribute which is already encoded by
the isSolvedBy references of the containing ADIssue. This is likely to introduce
inconsistencies as architects and developers are forced to link the same entities
twice in two different places. There are also various attributes of the ADIssue

class which turned out to hamper the capturing of issues in practice or were
never used, but in turn complicated the representation of recorded informa-
tion. Therefore, the attributes phase, role, and shortName are removed from our
model. Moreover, the attribute scope is omitted and instead replaced by more



54 S. Gerdes, S. Lehnert, and M. Riebisch

fine-grained traceability links to software artifacts. This will be explained in
Section 3.3 because an issue can encompass more than just one type of artifact.

3.2 Addressing Software Evolution

The next important step towards an enhanced decision model is its support for
ongoing development by supporting the evolution of architectural issues, deci-
sions, alternatives, etc. to better reflect real development contexts. Yet current
models capture only a small excerpt of an ongoing evolution and thus have to
undergo major revisions to support the continuous development.

We observed that every aspect of a decision may evolve over time, including
the issues that triggered the decision, potential alternatives and the final out-
come of a decision. To address this phenomenon, we introduce the EvolvableItem
(left upper corner of Figure 1) as a base-class for ADIssue, ADOutcome, ADAl-
ternative, ADDriver, and ADTopicGroup. By adding the evolvedFrom relation
to the EvolvableItem it is possible to model the ongoing refinement and revi-
sion of entities, for example when new constraints were introduced or existing
requirements changed. This enables architects and developers to explore and in-
spect the various influences leading to the current state of the issue, decision,
alternatives, and so forth. Moreover, by providing the link back to the previous
version of a certain entity developers are able to trace and understand the effects
of changes. The mere presence of evolutionary links helps to inform developers
about changes of issues etc. which would be lost if all entities would simply
be overwritten or replaced. This is especially important for developers joining
development at a later stage to focus their attention on recent changes.

3.3 Interweaving Traceability Support and Decision Modeling

Finally, we incorporate an enhanced traceability scheme into our decision model
to allow for fine-grained traceability between its constituents. While we keep the
relations of Zimmermann and Capilla et al., we add further relations towards
software artifacts and provide means for linking dependent entities.

We first introduce impact -relations between ADOutcome entities and software
artifacts represented by the ADArtifact entity. Using these relations developers
can clearly highlight those artifacts that are impacted by a certain decision,
thus assisting with software maintenance. Likewise, potential impacts between
ADAlternatives and ADArtifacts can be expressed as wouldImpact -traceability
links to signify the consequences of implementing a certain alternative.

Secondly, developers must be able to link architectural issues with the involved
software artifacts, as the origin of an issue might result from their interplay. We
therefore add the involves-relation between ADIssues and ADArtifacts, which
acts as the inverse relation to the aforementioned impact -relation.

Moreover, the outcome of a decision (ADOutcome) might entail new archi-
tectural drivers, like for example when the decision to utilize a SQL-database
would impose a new constraint on the storage layer of the software. Hence, the
ADOutcome is also related through an issues-link with the ADDriver.



Combining Architectural Design Decisions and Legacy System Evolution 55

We further extend the scope the dependsOn-relation by moving it from the
ADIssue to the EvolvableItem, since our model should support traceability links
between different decision entities. As for example, an ADAlternative may de-
pends on a previously decided ADOutcome, which is not expressible with the
current models. Another advantage of this relation is that it provides informa-
tion about temporal dependencies. It indicates whether a decision has been made
before or after another one and would justify it from today’s perspective.

4 Supporting Decision Making and Comprehension

The following illustrates how our revised decision model assists developers deal-
ing with the use cases outlined in Section 2.1.

Identifying Relevant Legacy Decisions: As previously stated, simple text
searches are not the most feasible way to identify an entry point to documented
(legacy) decisions which are related to the current task. Instead, a more struc-
tured search approach should be used, both limiting the search space and re-
ducing irrelevant information at the same time. This can be accomplished by
exploring the topics in which architectural issues are grouped, allowing a step-
wise navigation through the available (legacy) data. We support this by using
hierarchic ADTopicGroup entities where the lowest level of topic groups finally
links towards architectural issues (ADIssue). By classifying and refining a current
problem, developers can navigate the topic hierarchy to find the topic group(s)
containing the most similar issues.

Decision Support Based on Legacy Decisions: Once an initial set of rel-
evant issues and decisions has been identified, the developer must be enabled to
decide which of those are most relevant to him. For this purpose three novel as-
pects of our decision model come into play. Firstly, with the help of our traceabil-
ity concept the developer can inspect the software artifacts that were impacted
by the decisions or which the decisions are based on. Hence, by correlating the
impacted artifacts to his current situation he can estimate potential impacts and
identify problems. This is further strengthened by the traceability of alternatives
and software artifacts to reveal artifacts which would have been impacted. Pre-
vious experiences allow to track and understand possible issues and support in
balancing current decisions. Secondly, due to our support for linking constraints
and requirements with issues, decisions and alternatives, a developer can judge
whether similar constraints hold for a project. If so, those (legacy) decisions
and alternatives, which do not meet the constraints, can be excluded. This is
especially important since similar issues appear in many projects, whereas the
outcome is project-specific due to project-specific constraints. Finally, analyzing
the “historical” development of a design decision might reveal issues a developer
is not yet aware of. By comparing the evolution of a decision, issues which oc-
curred at a certain point in time and might have altered the course of a decision
are revealed, thus enabling him to judge the impacts of similar scenarios on the
current case. Moreover, it allows to study the refinement of decisions over time
which might support in taking the right decision earlier.



56 S. Gerdes, S. Lehnert, and M. Riebisch

5 Evaluation Plans - The CoCoME Case Study

Our evaluation plan is built on the Common Component Modeling Example

(CoCoME)1 which was developed to evaluate and compare component-based
modeling approaches in a real world context based on the implementation of
a trading system for handling supermarket sales and enterprise management.
We identified two works that performed various refactorings on CoCoME using
different modeling methodologies and also documented their decisions, yet in
an unstructured and semi-formal manner [9,10]. Our goal is to apply our model
for the documentation of their decisions and to establish the linkage between
software artifacts, requirements, and constraints to support software evolution.

6 Related Work

Tang et al. [11] proposed AREL as a rationale-based architecture model to doc-
ument architectural design by means of a UML profile. However, the model lacks
dependencies to design elements from design alternatives, which would expose
potential impacts. Furthermore, it does not distinguish between constraints and
requirements and lacks direct linkage of interdependent decisions. Van Heesch et

al. [12] proposed a documentation framework consisting of four viewpoints for
architectural decisions, which satisfy several stakeholders’ concerns but neglect
fine-grained traceability to related software artifacts and requirements. Capilla
et al. [13] developed a web-based approach to capture and manage design deci-
sions, yet it still lacks support for ongoing evolution which is only supplied in a
partial manner [14] and fine-grained linking of decisions and software artifacts.
Furthermore, Capilla et al. [5] extended the metamodel of Zimmermann et al.

for decision modeling and reuse [4]. Due to their focus on capturing and reusing
decisions, the model has various shortcomings in regard to decision evolution and
traceability, which were not addressed in a comprehensive manner. They neglect
traceability links required for maintenance, i.e. traceability links from issues or
alternatives to fine-grained artifacts. Malavolta et al. [15] proposed an approach
for systematically defining traceability links between decisions to enable “deci-
sion impact analysis”. However, their linking concept does not provide means
to link decisions with artifacts impacted by them. Likewise, linking the artifacts
a decision is based on with the actual decision is also not possible either. Che
and Perry [16] introduced the Triple View Model (TVM) to manage the docu-
mentation and evolution of decisions. The core of TVM is almost identical to
Capilla’s model, hence both share the same disadvantages. Its major derivation
is its support for best practices that are interweaved with the decisions.

7 Conclusion and Future Work

Architectural design decisions provide urgently needed support for evolutionary
development, yet current approaches are not fully capable of capturing the evo-
lution of decisions and their fine-grained traceability. Thus we propose a revised

1 http://cocome.org/index.htm



Combining Architectural Design Decisions and Legacy System Evolution 57

version of an architectural decision model for which we consolidated existing
decision models and extended them with comprehensive means for expressing
the evolution of their constituents to enable developers to trace the historical
development of decisions, their drivers, and their outcomes. We enhanced the ob-
tained decision model with means for fine-grained traceability to enable impact
analysis and to further strengthen the integration of decisions when changing
long-living software systems during software evolution. Currently, we evaluate
our approach in a controlled lab experiment and plan an industrial case study.
Further works will focus on the recovery of design decisions and the rationale
behind them, as well as on constraints induced by legacy systems to differentiate
their impact on design decisions and to underpin their necessity.

References

1. Vliet, H.: Software Engineering: Principles and Practice, 2nd edn. Wiley (2007)
2. Perry, D., Grisham, P.: Architecture and Design Intent in Component & COTS
Based Systems. In: ICCBSS 2005, pp. 155–164 (2006)

3. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design De-
cisions. In: 5th Working Conf. on Software Architecture, pp. 109–120 (2005)

4. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

5. Capilla, R., Zimmermann, O., Zdun, U., Küster, J.M.: An enhanced architectural
knowledge metamodel linking architectural design decisions to other artifacts in
the software engineering lifecycle. In: Software Architecture, pp. 303–318 (2011)

6. Ko, A.J., DeLine, R., Venolia, G.: Information Needs in Collocated Software De-
velopment Teams. In: 29th Intl. Conf. on Software Engineering, pp. 344–353 (2007)

7. Sillito, J., Murphy, G.C., De Volder, K.: Questions programmers ask during soft-
ware evolution tasks. In: SIGSOFT 2006/FSE-14, pp. 23–33 (2006)

8. Fritz, T., Murphy, G.C.: Using information fragments to answer the questions
developers ask. In: 32nd Intl. Conf. on Software Engineering, pp. 175–184 (2010)

9. Knapp, A., Janisch, S., Hennicker, R., Clark, A., Gilmore, S., Hacklinger, F.,
Baumeister, H., Wirsing, M.: Modelling the CoCoME with the Java/A Component
Model. In:Rausch,A.,Reussner,R.,Mirandola,R.,Plášil, F. (eds.)CommonCompo-
nent Modeling Example. LNCS, vol. 5153, pp. 207–237. Springer, Heidelberg (2008)

10. Küster, M., Trifu, M.: A case study on co-evolution of software artifacts using
integrated views. In: WICSA/ECSA 2012, pp. 124–131 (2012)

11. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-
ability and reasoning. Journal of Systems and Software 80(6), 918–934 (2007)

12. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-
tecture decisions. Journal of Systems and Software 85(4), 795–820 (2012)

13. Capilla, R., Nava, F., Pérez, S., Dueñas, J.: A web-based tool for managing archi-
tectural design decisions. SIGSOFT Softw. Eng. Notes 31(5) (2006)

14. Capilla, R., Nava, F., Dueñas, J.C.: Modeling and Documenting the Evolution of
Architectural Design Decisions. In: SHARK/ADI 2007, pp. 9–15 (2007)

15. Malavolta, I., Muccini, H., Smrithi Rekha, V.: Supporting architectural design
decisions evolution through model driven engineering. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 63–77. Springer, Heidelberg (2011)

16. Che, M., Perry, D.E.: Managing architectural design decisions documentation and
evolution. International Journal of Computers 6(2), 137–148 (2012)


