
Modeling the Interactions between Decisions

within Software Architecture Knowledge

Mohamed Soliman and Matthias Riebisch

Universität Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

{soliman,riebisch}@informatik.uni-hamburg.de

Abstract. Software architecture is developed as a result of a selection

process for software architectural solutions. The complexity, diversity

and evolution nature of architectural solutions’ interactions forces the

architect to make critical design decisions based only on his own experi-

ence. Even though, the same design problem has already been addressed

by another architect in a similar situation. In this paper, we are pre-

senting a model for reusable software architectural knowledge to support

the architect within the design process in understanding the relationship

between the different architectural solutions, and how they impact the

architectural design reasoning. In addition, the model acts as a base for

organizational software architectural knowledge sharing. Our contribu-

tion in this paper is classifying and modeling the solutions and decisions’

interactions, as well as how the design decision can be used as a reusable

element for sharing the architectural experience.

Keywords: Software architecture, design decision, architecture knowl-

edge, design reasoning.

1 Introduction

The software architect is responsible on taking the most important design deci-
sions within the software design process. These architectural decisions [1] must
be identified early in the project lifecycle due to their long-term impact on the
system quality, and their tenacious behavior, which makes them quite expensive
to change [2]. Even with their well-known impact, the architect is forced to take
design decisions based solely on his personal experience, due to the enormous
amount of possibilities for interacting architectural solutions1, that must be se-
lected in a limited project budget and schedule. Morever, the current state of the
art approaches for architectural knowledge and solutions lack the required sup-
port for analyzing the interactions between solutions. Within this situation, the
architect is restricted in discovering the right series of architectural solutions,
and analyzing their impact on the system quality. This leads to sub-optimal
decisions, which can significantly influence the system quality.

1 In this paper, we use the term ’architectural solution’ to refer to the different solu-

tions that the architects use, such as patterns, tactics, technologies and products.

P. Avgeriou and U. Zdun (Eds.): ECSA 2014, LNCS 8627, pp. 33–40, 2014.
c© Springer International Publishing Switzerland 2014

34 M. Soliman and M. Riebisch

One of the main reasons that promotes this problem is the heterogeneous
nature of architectural solutions, such that it is hard to set a common handling
during design between the different solutions. In the past two decades, several
classes of architectural solutions were captured separatly in the current state of
the art (e.g. architectural styles [3], patterns [3,4], tactics [2], unit operations
and different technologies and products). Each class is concerned with solving
different types of design problems using different notions. In addition, each class
is described originally in a different way, such that its arduous to combine two
members from different classes together. Nevertheless, a combination of various
members is required to develop the system software architecture. Such a diversity
nature of software architectural solutions represents a challenge within the design
process, because each solution has its unique impact on the subsequent design
decisions as well as on the behavior of other solutions.

In addition to the above-mentioned problems, the interaction between the ar-
chitectural solutions and decisions are constantly evolving, through new design
ideas that emerge everyday from the mind of the designers. Thus, maintaining
an evolvable reusable architectural knowledge2 would support the organisation
to share the design experience and solutions between the different software archi-
tects. This objective is derived by the notion of characterizing the architecture
design process as a knowledge intensive process [5], such that losing this knowl-
edge, recollecting and transferring it again is an expensive process. This idea of
maintaining an architectural knowledge would improve the quality and produc-
tivity of the software architecture design process within the organization through
learning, verification and improvement of existing solutions.

In this paper, we are proposing a model for a reusable software architectural
knowledge to support the architect and the organisations in reasoning about
software architecture design, as well as maintaining and sharing architectural
knowledge. We concentrated our work on trying to understand and model the
impact of selecting an architectural solution on the subsequent architectural de-
cisions and the reasoning process, as well as providing the fundamental elements
for sharing the architectural design decisions among different projects. This pa-
per is organized as follows. First, related work to architectural knowledge and
solutions are presented and discussed. Then, our research steps are explained,
follwed by our result model which is explained with several examples. The paper
ends with a discussion, future work, and some concluding words.

2 Related Work

In the patterns community, pattern languages are proposed (e.g. [6]). However,
the relationships between patterns are modeled in a high level, without specify-
ing clearly how the patterns interact with each other. Harrison et al. [7] mod-
eled the relationships between architectural patterns and tactics. Their approach

2 we use the term ’architectural knowledge’ to refer to the reusable information that

supports the architect within the design process.

Modeling Decisions Interactions in Architecture Knowledge 35

is based on relating the solutions through their impact on the system compo-
nents. Such modeling supports the architect to describe the solutions within
the software architecture. However, with less guidance on how to take the de-
sign decisions. Since the paradigm shift of modeling the software architecture as
a set of design decisions [1], several models and tools [8] have been proposed.
The main target for the former suggested approaches is to document and share
the design decisions of a specific software system for the sake of preventing the
software architecture erosion phenomena. The recent work by Zimmerman et.
al. [9] and its extension [10] distinguish between project specific design decision
outcomes and its reusable part of design issues and solutions. Zimmermann et
al. formally described the relationships between the design issues and the ar-
chitectural solutions, as a way to support the architect in the decision making
process. Neverthless, the distinct behaviors of the different types of solutions are
not explicitly described. To the best of our knowledge, there are no more recent
work which address the mentioned problem. Therefore, our approach in this pa-
per is an extension to the model proposed by Zimmerman et al. to address the
aforementioned points.

3 Research Method and Steps

To achieve our goal, we followed an inductive qualitative content analysis process
[11]. First, we analyzed the influence of selecting an architectural solution on the
design reasoning independent from other solutions. Then, we experimented with
the relationships between the different solutions. In order to implement these
steps, we selected samples from the architectural solutions. Two main criteria
were considered in the selection process: A) Diversity: The chosen solutions
belong to different classes, B) Popularity and success in the industry. The chosen
architectural solutions were the Layer architectural style, the MVC architectural
pattern, the architectural tactics by Bass et al. [2], basic unit operations and the
GoF design patterns. We performed our analysis through the design realization
steps, descriptions and examples provided in the solutions’ sources, as well as
case studies, which used the mentioned architectural solutions.

4 Reusable Software Architectural Knowledge Modeling

Fig. 1 shows our view for a high level contextual diagram for the reusable ar-
chitectural knowledge. The diagram shows how an architectural knowledge is
used within an organisation. First, the architect - influenced by the stakehold-
ers’ concerns and constrains - utilize the data and the reasoning logic within
the architectural knowledge in order to support him taking the design decisions
of the system. This process is followed by or intervened with capturing and
documenting the system design decisions, which would act later as a source for
enriching the architectural knowledge with new design solutions or logic in a sep-
arate harvesting process. Our main goal in this paper is to model the reusable
architectural knowledge in relation to other contextual entities.

36 M. Soliman and M. Riebisch

Reusable Architectural Knowledge

Architectural

Solutions

Design

Issues

Reusable Design

Decision

Decision

Factors

Existing Projects’ Artifacts

Project Design

Decisions

System Quality

Evaluation

Harvesting Designing Designing

Stakeholders

Software Architect

ders
Concerns

Softwar

Constrains

Organization

Solutions

g

Decision
e Architect

Design Decisions Capturing and Recording

Fig. 1. Reusable Architectural Knowledge Context Diagram

We describe our model into two sections. The first section concentrates on the
interaction between the architectural solutions and their influence on the design
reasoning process, while the second section shows how the design decisions can
act as a reusable component, in connection with existing software systems.

4.1 Solutions’ Interactions within a Reusable Architectural

Knowledge

Fig. 2 shows the proposed model. In the core of this model is the Design Issue

concept, which represents the architectural design problems 3 that the architects
need to solve, and associated to each design issue, there is a set of alternative
architectural solutions which address this design problem [9]. Each architectural
solution has a different impact on the quality attribute of the system, as well as
a different impact on the resulting structure of the system components. Based
on our described analysis process, we classified the architectural solutions into
two main types:

1. Triggering Architectural Solutions: They are the type of solutions that
have the ability to trigger new architectural design issues, such that in order
to complete the architectural design of these solutions, new architectural
design issues must be addressed. In this group belong architectural styles
and architectural patterns.

2. Elementary Architectural Solutions: These are architectural solutions
that do not trigger new architectural design issues. They are either as archi-
tectural unit operations (e.g. Component Decomposition) or solutions rec-
ommendations for a subsequent detailed design (e.g. Design Patterns [4]).

Architectural tactics [2] have a different nature as other solutions, such that it
is hard to classify them all in a single group. Therefore, we divided the tactics
among the two groups, into elementary and triggering tactics. Elementary tac-
tics are tactics that do not triger new architectural design issues. For example,
to improve the performance of a well-known process (e.g. Products sorting), se-
lecting or changing the algorithm usually would not produce new architectural

3 We diffrentiate between an architectural design issue and other detailed design or
implementation issues, based on the software architecture definition of Bass [2].

Modeling Decisions Interactions in Architecture Knowledge 37

-Importance

-IsRootIssue

-IsSolutionSpecific

-IsCommonIssue

DesignIssue

**
Directly related issues

Constrain

DesignConcept

*

*Influence the Issue

ArchitecturalPattern/Style

-QualitativeEvaluation

-QuantitativeEvaluation

ReusableDecisionEvaluation

* *

-QualityImpact

-Preconditions

-Postconditions

ArchitecturalSolution

1* Issue alternatives

ReusableDesignDecision

1

1

Selected Solution 1

1

Issue

ArchitectureDesignChange

1*
Components Change

*

*
Trigger

DesignPattern

ElementaryArchitecturalSolution TriggeringArchitecturalSolution

1 0..*

Existing Decisions in Projects (Connection to AK contextual element)

ElementaryTactic
TriggeringTacticUnitOperation

1

*

Solutions encapsulated

DecisionFactor

Functional Requirement

 Reusable Architectural Design Decisions

Architectural Solutions‘ Interactions

ProjectDesignDecision

Quality Attribute

Fig. 2. Reusable Architectural Knowledge Domain Model

design issues, however, it can produce algorithmic or implementation issues. On
the other hand, triggering tactics require more architectural design issues to be
addressed in order to realize the design of the tactic. For example, improving the
performance through caching, this would require to answer other design ques-
tions such as: which and where to cach the data? and how to synchronize the
cached data?

Architectural design issues vary in their importance, types, scope and position
within the reasoning process. Zimmerman et. al classified design issues based on
their abstraction level. In order to support the architect in understanding when
design issues occur within the reasoning process. We propose a classification for
design issues, based on their occurance within the design reasoning process and
their relationship to the architectural solutions.

1. Root Design Issues: They are design issues which are stimulated indepen-
dently from previously selected architectural solutions. Enterprise or princi-
pal high level design issues (e.g. deciding the high level architectural style of
the system or the main implementation technology) are popular examples
that belong to this group.

2. Solutions-Triggered Design Issues: They are design issues that must
be triggered based on a stimulation from a previously selected architectural
solution. We further classified these issues based on their relationship to the
architectural solutions into the following groups:
(a) Solution-Specific Design Issues: They can only be triggered as a

result of selecting a specific solution. They can’t be triggered by any
other solutions.

(b) Joined Design Issues: A common design issue which can be triggered
by different solutions.

38 M. Soliman and M. Riebisch

(c) Integration Design Issues: This is a type of design issue which is
conditionally triggered as a result of selecting two or more architectural
solutions. It represents the integration design problem between the dif-
ferent architectural solutions.

Fig. 3 shows an example of a subset of issues and solutions that are triggered
as a result of selecting the Layer architectural style and the MVC architectural
pattern. Both solutions were triggered as a result of two root design issues,
independently from any previous solution selected. However, they are influenced
by several decision factors (e.g. requirements, team structure, . . .). In order to
realize the design of both triggering solutions, several design issues have to be
addressed. For example, to define the Layer structure, an abstraction paradigm
(e.g. distance from hardware or complexity) must be defined, this decision can
depend on several factors (e.g. system domain). Similarly, in order to design the
relationship between the Model and Views/Controllers within the MVC pattern,
a ’change propagation mechanism’ (e.g. using a Publish-Subscribe pattern) must
be selected. Both of these issues are examples of solution specific design issues.
On the other hand, designing the domain components of the system is required
to be addressed for both solutions, however, for two different purposes. Firstly,
to define how objects are communicated between layers, and secondly to provide
a separation of concerns between the Model and View components. Finally, the
introduction of both the Layer and MVC solutions together triggers an issue,
whose purpose is the integration of both solutions components.

4.2 Reusable Architectural Design Decisions

In contradiction to other models, which consider an architectural design decision
only as a project-specific entity, we argue that design decisions taken within
different projects constitute a part of a reusable software architecture knowledge,
such that a design decision consists of three main elements; A) The design issue
addressed by this decision, B) The selected architectural solution, and C) The
decison factors which influence the selection of this architectural solution to the
design issue. The combination of the three elements acts as a reusable tuple
which can be used among other projects.

The quality and success of design decisions varies from one project to another,
such that a design decision concerned with a certain design issue and influenced
by the same factors may be supported by different architectural solutions with
different qualities. Therefore, a quality measurement factor should be associated
with each of the reusable architectural design decisions. This quality measure-
ment factor is originally obtained from the actual system quality or an evaluation
for the architecture of the harvested projects. Fig. 2 shows the connection of the
three tuples that constitutes a reusable architectural decision within the pro-
posed model, as well as how the quality evaluation values are associated to the
decisions and related to it’s original sources in referenced projects.

Modeling Decisions Interactions in Architecture Knowledge 39

Root Design Issue
Root Design Issue

Layer

Style

Layer

Selected Solution

MVC

Pattern

MVC

Selected Solution

 Define Abstraction

Paradigm and Layers

Solution Specific Design Issue

Trigger

 Application

Decomposition
 User Interface

Decomposition

Solution Specific Design Issue

Trigger

Which layer would the MVC

Model Component belongs

Design Domain

Components

D

Trigger

Depends on

Trig

Depends on

Joined Design Issues

n

ues
Trigger

Integration Design Issue

Conditional Trigger Conditional Trigger

Triggering

Solution

Triggering

Solution

Publish-Sub

Pattern

S

Selected Solution
Elementary

Solution

Fig. 3. An example showing the interaction of objects based on the proposed architec-

tural knowledge domain model

5 Discussion and Future Work

In our analysis work, we selected solutions, which are well known and more used
within the software development industry, specificly within the information sys-
tems domain. In addition, we considered various architectural solutions from
different groups, in order to discover the different relationships and their im-
pact on the design process. However, based just on this research, our results are
not yet generalized to all types of architectural solutions in different domains.
Throughout our analysis of solutions, we assumed that the design issues men-
tioned in their sources represent the expected solutions decisions. Neverthless, it
is possible that other design issues can be generated in different other contexts,
providing more relations.

The proposed model is a first step in our research plan, which seeks promoting
ideas and solutions for the purpose of architectural knowledge sharing within
organizations and architectural communities. Our plan involves several research
steps: A) Developing a process to support the architect in utilizing the model,
and how it relates with the existing design processes. B) Propose an approach for
the harvesting process, to show how the project specific decisions can contribute
to the architecture knowledge. C) Providing a tool support for the architect in
using the model within the design process. We are working to verify our model in
an industrial environment, through experimenting the model to support software
architects in driving architectural designs.

40 M. Soliman and M. Riebisch

6 Conclusion

The current state of the art describes the architectural solutions based on their
impact on the system components, without addressing their influence on the
decision making process. On the other hand, studies which are concerned with
modeling architectural design decisions tend to describe decisions as project
specific elements. We argue that using the design decision as a reusable element
for modeling the interaction between the solutions, as well as for sharing the
architecture knowledge, would support the architect within the design process.

In this paper, we made our first step towards our research objective. Through
proposing a conceptual model for a reusable architectural knowledge. The model
explained our classification of architectural solutions and design issues, as well
as their interrelationships. In addition, it showed how an architectural design
decision can be part of the reusable architectural knowledge, and how it would
interact with other entities in its context. The model can assist the architects in
selecting the right software architectural solutions path, and therefore, improving
the quality of the produced software architecture.

References

1. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions.
In: 5th Working Conf. on Software Architecture, pp. 109–120 (2005)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns, 1st edn. John Wiley &
Sons (July 1996)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Softwaresystemen. Addison-Wesley Professional (1994)

5. Lago, P., Avgeriou, P., Capilla, R., Kruchten, P.: Wishes and boundaries for a
software architecture knowledge community. In: WICSA. IEEE Computer Society,
271–274 (2008)

6. Avgeriou, P., Zdun, U.: Architectural patterns revisited - a pattern language. In:
Longshaw, A., Zdun, U., eds.: EuroPLoP, UVK - Universitaetsverlag Konstanz,
pp. 431–470 (2005)

7. Harrison, N.B., Avgeriou, P.: How do architecture patterns and tactics interact? a
model and annotation. Journal of Systems and Software 83(10), 1735–1758 (2010)

8. Shahin, M., Liang, P., Khayyambashi, M.R.: Architectural design decision: Existing
models and tools. In: WICSA/ECSA. IEEE, pp. 293–296 (2009)

9. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. Journal of Systems and Software 82(8), 1249–1267 (2009)

10. Capilla, R., Zimmermann, O., Zdun, U., Avgeriou, P., Küster, J.M.: An enhanced
architectural knowledge metamodel linking architectural design decisions to other
artifacts in the software engineering lifecycle. In: Crnkovic, I., Gruhn, V., Book,
M. (eds.) ECSA 2011. LNCS, vol. 6903, pp. 303–318. Springer, Heidelberg (2011)

11. Elo, S., Kyngas, H.: The qualitative content analysis process. Journal of Advanced
Nursing 62(1)(2), 107–115 (2007)

