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ABSTRACT
Designing a software architecture is a highly complex task
and associated with a high degree of uncertainty. There are
a variety of reusable and established solutions, but they dif-
fer in their impact on the system’s functionality and quality.
The architect has to consider different aspects like stakehold-
ers’ requirements as well as numerous constraints coming,
among others, from the technical environment and organi-
zation. The context of software evolution sheds a different
light on constraints. The existing system with its structure
based on previous decisions is a limiting factor constrain-
ing the ongoing development. However, current approaches
do not sufficiently consider constraints induced by an ex-
isting system until now. To assist the architect in taking
the right design decisions efficiently, tool support for the
recommendation of solutions and structured documentation
of the design decisions are indispensable. In our paper, we
propose a decision process focusing on the consideration of
constraints in evolving systems. Furthermore, we introduce
our tool Decision Buddy and show how it contributes to the
application of our constraint-based decision process.
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1. INTRODUCTION
Large software systems are composed of multiple, interde-

pendent components and subsystems, which make them in-
herently complex. Effective means to handle this complexity
are software architectures, which play an important role in
fulfilling customers’ requirements and particularly the qual-
ity requirements of a system. One key aspect in designing a
sustainable software architecture is to take the right design
decisions, which is a major challenge in the field of software
engineering. The architect needs to reason about the archi-
tecture, to deliberate on different design alternatives, and to
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balance cross-cutting concerns in order to make sound de-
sign choices. The important role of design decisions led to a
paradigm shift, which perceives a software architecture as a
composition of architectural design decisions (ADD) [7] in-
stead of limiting the description of software architecture to
its underlying structure based on components and connec-
tors. Certainly, capturing these decisions, which are part of
the architecture knowledge, has proven to be difficult. Part
of it is tacit as it is just in the mind of the architect, and thus
is exposed to so-called knowledge vaporization inducing ar-
chitectural erosion. Over the past decade, the research com-
munity proposed various approaches and tools in the field of
architecture knowledge dealing with the capturing of design
decisions [20], the documentation of the rationale and the
assistance in taking decisions [18, 4].

It is no secret that the architect relies on existing solu-
tions when taking decisions. There is a lot of established
and well-known solutions like design patterns, architectural
styles, and reusable technology solutions, such as frame-
works, or COTS-components. But it is hard to decide for
the right solution for the problem to solve, which might re-
sult in selecting inapplicable architectural solutions and thus
increasing the risk of fail. There are multiple factors like un-
certainty about advantages and disadvantages of solutions,
costs, and implications of a solution, which influence the
decision, also known as forces [22]. However, a survey of
practitioners conducted by Tang et al. revealed that design
constraints are one of the most important factors in design
rationale [17]. Design constraints limit the solution space –
the more constraints there are, the smaller the degree of free-
dom when deciding for a solution. Tang et al. classified con-
straints into four different categories as they can come from
different sources: requirement-related, quality requirement-
related, contextual and solution-related constraints [19].

Within the context of large systems, the majority of to-
day’s software engineering efforts are spent on continuous
and evolutionary development [23], which sheds a different
light on constraints. All previous decisions, which resulted
in any kind of design or implementation, constitute a limit-
ing factor constraining the ongoing development. However,
current research is aware of the influencing nature of design
constraints but does not sufficiently address them, especially
not in the context of design decision reasoning during soft-
ware evolution.

In our paper, we propose a decision process, which con-
siders the constraints of an existing system as first-class
entities. Furthermore, we present our tool called Decision



Figure 1: Constraint-based decision process in the context of evolving systems.

Buddy and describe how it assists the architect in taking
design decisions based on our suggested concept.

2. CONSTRAINT-BASED DESIGN DECISION
PROCESS

Our proposed process puts emphasis on the consideration
of constraints in the context of evolving systems. Figure
1 displays the process, which comprises seven steps, which
need to be executed sequentially in the order of their num-
bering. The process expects four inputs to start with: an
Existing System, other sources of knowledge about the ex-
isting system (e.g. design documents), a New Requirement
and Environmental Constraints. Each step, the mentioned
inputs, and outputs are explained in detail in the following
paragraphs.

Step 1 - Identification of Architecturally Signifi-
cant Properties. One of the inputs is the Existing Sys-
tem, which comprises its source code, executable compo-
nents, and configuration. Another input is diverse knowl-
edge about the existing system, which contains documen-
tation such as software architecture descriptions as well as
tacit knowledge, which could be elicited by interviews with
architects and developers. The main goal of this step is
to identify the Architecturally Significant Properties (ASP),
which comprises the Existing System ADDs and the Archi-
tecturally Significant Metrics (ASM). Both constitute the
outputs of this step and are described below.

1. Existing System ADDs
They are previous design decisions, which influenced
the design of the existing system. The resulted de-
sign solutions are part of the ASPs. For example, a
design decision could have led to a particular tech-
nology, framework, architectural style, design pattern,
or COTS, which represent the ASPs. Furthermore,
existing interfaces, components, connectors, and their
configurations are the results of previous decisions and
thus also part of the ASPs. In order to extract these

Existing System ADDs, numerous approaches from sys-
tem reverse engineering can be applied [3]. Even though
the bare results of the decision without any justifica-
tion are already a good start, recent approaches try to
recover the rationale of design decisions (e.g. [21, 8]),
which are also part of the ASPs. A further input, as
shown in Figure 1, is a repository with Generic Archi-
tecture Knowledge supporting the exposure of various
architectural solution properties.

2. Architecturally Significant Metrics (ASM)
Another factor, which influences the ADDs, is the qual-
ity of the existing system. Metrics such as McCabe
complexity, Halstead’s metrics, and measurable object-
oriented metrics [10] can be consolidated in different
abstraction levels to support the architect in assessing
the system and taking ADDs.

Step 2 - Determine the Significance of the Change.
The main purpose of this step is to find out whether the
New Requirement is architecturally significant or not. As
this process is quite similar to the identification of Archi-
tecturally Significant Requirements (ASR), one could make
use of existing approaches such as the framework proposed
by Chen et al. [5]. The input of this step is the new re-
quirement itself and the Existing System ADDs identified
in Step 1, which influence the determination process. If the
new requirement has no architectural impact, it can be im-
plemented directly by the developers, which is out of the
scope of the proposed process.

Step 3 - Derive Constraint Candidates. The input
of this step are the Existing System ADDs identified in Step
1. As mentioned before, the result of each ADD is a so-
lution, which influenced the existing system design. These
solutions are source of constraints, which limit the ongo-
ing system evolution, e.g., the application of a particular
technology such as Spring MVC would discard future solu-
tions based on Struts MVC design pattern. The goal of this
step is to codify the Existing System ADDs as constraints,



i.e., concrete properties need to be expressed by conditional
constraints. A simple example would be the property ”JRE
version 7”, which would be codified as ”JRE version == 7”
or ”JRE version ≥ 7”. OCL constraints, e.g., could be used
to express object-oriented models such as interface speci-
fications. Every single Existing System ADDs results in at
least one Existing System Constraint Candidate, which con-
stitutes the output of this step. The reason for treating the
constraints as candidates is explained in the following step.

Step 4 - Classify constraint candidates. This is the
core step of our process. Already known inputs are the
ASMs from Step 1, and the constraint candidates from the
previous step. All of them are considered as candidates due
to the fact, that it still needs to be decided whether they
are immutable or mutable constraints, which both consti-
tute the output of this step. We call them hard and soft
constraints, respectively. Hard constraints are immutable
and mandatory. They need to be adhered to in any case.
On the contrary, breaking soft constraints is at the archi-
tect’s discretion. In case the architect decides to relax the
constraints for the sake of meeting the new requirement or
improving the design, it triggers a new design issue. For ex-
ample, changing an existing interface is usually something
one should avoid whenever possible. If it is a benefit to
change the interface and it has a manageable amount of de-
pendencies, it would be feasible to change it.

The main challenge of this step is how to determine the
classification. Besides from the already mentioned ASMs
in Step 1, the classification is driven by multiple factors
depicted as Environmental Constraints in Figure 1. They
consist of the four generic constraint categories proposed by
Tang et al. [19].

• Requirement Related Constraints: They are de-
rived from the functional requirements and include
both the still valid requirements from the existing sys-
tem and the recent ones from the new requirement.

• Quality Requirement Related Constraints: These
constraints are derived from the non-functional require-
ments of both the existing system and the new require-
ment.

• Contextual Constraints: They correspond to the
organizational and technological factors mentioned in
the Global Analysis. Examples are factors like budget
and platform but also social aspects such as skills.

• Solution Related Constraints: They arise during
the design process, e.g., when deciding for a technology
limiting further design choices.

Based on the environmental constraints and the ASMs, we
are now able to decide whether a constraint candidate is con-
sidered to be hard or soft. For example a company-wide pol-
icy prohibits to use open source encryption would make an
existing, easy to replace, and commercial encryption com-
ponent to become a hard constraint instead of a soft one.
These hard and soft constraints constitute a new category
of constraints in the context of evolving systems. We call
them Existing System Related Constraints.

Step 5 - Create Design Issues from New Require-
ment and Soft Constraints. The main output of this
step is a set of design issues (ADIssue). Firstly, design is-
sues are triggered by the ASRs of the New Requirement. In

order to perform this step, the New Requirement itself and
the Existing System ADDs revealed in Step 1 are required.
The Existing System ADDs enable the architect to identify
sound design issues. For example, if the New Requirement
demands multi-language support of the software, the Ex-
isting System ADDs would provide information about the
implementation details. Hard-coded values strewn through-
out the code, e.g., would result in a design issue demanding
a technology to handle multiple languages like a localiza-
tion framework. On the contrary, an existing localization
framework would only entail the translation of a language
file instead of introducing a new technology. Secondly, de-
sign issues can be triggered by the Soft Constraints, if the
architect decides to relax them as mentioned in the previous
step. Although creating design issues can somehow con-
sidered as initial decision-making as well, the final design
decision considering different design alternatives, is taken in
the following step.

Step 6 - Decide for a Solution. During this step the ar-
chitect is taking the architectural design decisions, analogous
to the decision making approaches widely described in the
literature [18, 24, 6]. The activity requires two main inputs:
the design issues ADIssue and a set of design alternatives
ADAlternative. The design issues have been specified in the
previous step and the design alternatives originate from the
Generic Architecture Knowledge. Even though all alterna-
tives are considered as solutions in the beginning, only very
few are actually feasible. The design space with all its po-
tential solutions is limited by multiple factors, namely our
further inputs: the Environmental Constraints, the ASMs
and finally the hard and soft constraints determined in Step
5. These factors are referred to as ADDriver [24, 4]. They
all influence the architect in taking the decisions. For fur-
ther assistance, feasible alternatives are ranked by suitabil-
ity, e.g., by their contribution to quality attributes [2] or
users’ rating. The output of this step is a design choice
represented by ADOutcome.

Step 7 - Implement Solution. To complete the pro-
cess, the selected solution ADOutcome from the previous
step is implemented in the last step. In addition, if the
chosen solution yield new constraints, they are added to
the Solution Related Constraints within the Environmental
Constraints, as they may limit further design choices.

3. DECISION BUDDY
In this section, we describe how the tool Decision Buddy

supports our constraint-based decision process. Initially the
support is focused on Step 5 and 6 of the process. In these
steps, the architect needs assistance in making design deci-
sions by proposing suitable solutions. Furthermore, he needs
assistance for the appropriate consideration of constraints
originating from the existing system and the environment,
as well as for the documentation of design issues, decisions,
and their rationales. Steps 1-4 of the process provide input.
Therefore, they have to be considered by the tool as they
influence the decision making process. In order to provide
the intended support, the tool has to offer a proper level
of usability and collaborative features. Otherwise it would
not contribute to improvements of the decision process in
terms of efficiency, communication and reusability of solu-
tions. In Figure 1 the semi-automated steps are marked by
a cog wheel; the inputs and outputs, which are stored by
the tool, are marked by a floppy disk symbol.



Firstly, the fundamentals of the tool are summarized. Sec-
ondly, the application of the tool concerning the decision
making is described. Due to space limitations, we cannot
describe the whole application in detail and concentrate on
key features especially addressing the constraints and deci-
sion making.

3.1 Fundamentals of Decision Buddy
Decision Buddy is a web-based Java application. Key

technologies used for the implementation are Spring MVC
4 using JavaServer Pages, and the JavaScript framework
jQuery to offer a user-friendly web interface, Spring Data
with Hibernate ORM and MySQL to persist operational
data, and Spring Security to support authentication and au-
thorization. Subsequently, some basic features and elements
are described.

Solution Repository: The tool has a repository con-
taining solutions, grouped by different categories like ar-
chitectural styles, design pattern, frameworks, COTS, and
refactoring solutions. It represents the Generic Architec-
ture Knowledge in the aforementioned process. It can be
browsed, added, modified, and deleted. Each solution is de-
scribed by solution specific properties such as a version or
license for frameworks or a type like structural or behav-
ioral for design patterns. In addition, each solution can be
commented and rated by the users, e.g., the solution’s con-
tribution to quality attributes or its applicability. Finally,
multiple constraints can be defined and partially proposed
automatically based on the solution’s properties. The con-
cept of constraints is described in the next but one para-
graph.

Projects, Design Issues and Design Decisions: Fur-
ther basic elements are projects, design issues and design
decisions. A project groups multiple design issues as shown
in Figure 2. Its advantage is the clear arrangement and
structured storage of design issues, which enables the user
to efficiently browse and survey the issues and the related
information such as the status. A design issue represents
a specific architectural design task including a description,
a status and diverse meta data like author and date. It is
linked to potential solutions representing design alternatives
and to design decisions. Design decisions always include a
justification of chosen or neglected solutions and affect the
status of the issue, which can whether been solved or open.
How the tool supports the decision making is described in
Section 3.2. Analogously to the solutions, also design issues
can specify constraints as described in the following para-
graph.

Figure 2: Screenshot of the issues within a project.

Constraint Catalog: Constraints are stored within a

dedicated constraint catalog. The concept to represent the
constraints is based on previous work [14], which defines so-
called technical terms. These technical terms consist of a
meaningful identifier, a data type such as string or integer,
and an informative but optional unit like kilobyte or version.
String related data types further expect a set of string val-
ues. An example for a simple technical term is ”Operating
system” as the identifier, ”stringInt” as data type and ”Win-
dows 7” as value. By the means of the technical terms, the
constraints can now be specified by combining a technical
term with an operator (equals, smaller than, etc.) and a
value as shown in Figure 3. Each constraint may consists of
multiple constraints elements, e.g., to match multiple oper-
ating systems. In addition, constraints can be combined by
a logical condition. There is no differentiation between the
different types of constraints in the catalog yet, as mentioned
in Step 4 of our process.

Figure 3: Screenshot of a specified constraint.

Users and Roles: The tool supports users and roles to
enable the collaboration of different kind of stakeholders.
Depending on the user’s role, project specific information,
e.g., are read only or even inaccessible.

Last but not least, to increase the ease of use, several
usability features have been implemented. This includes
and is not limited to the auto completion for quick search
bars, inline editing and validity checks for inputs, themes
and multi-language support for look and feel, and the fil-
tering capabilities to speed up browsing of repositories and
projects.

3.2 Tool-Supported Decision Making
Based on Step 5 and 6 of the decision process in Section 2

and the fundamentals explained in Section 3.1, we now de-
scribe how our tool Decision Buddy assists the architect in
taking ADDs. Assuming that in previous steps of the pro-
posed process the design issues have been created, potential
solutions are available in the repository, and the constraints
are known and specified, then the detailed view of each de-
sign issue displays a tab containing recommended solutions.
As shown in Figure 4, the recommendation of solutions fol-
lows a process. In the beginning, the solutions are filtered
in a way that only solutions, which adhere to the numerous
constraints defined on both the solution’s and design issue’s
side, are considered for further processing. After that, the
solutions are ranked as specified by the user. To emphasize

Figure 4: Process to filter and rank solutions.



the most convenient solutions, two different kind of rankings
are available. The first one is the ranking by the solution’s
contribution to specific quality attributes determined by the
Goal Solution Scheme (GSS), which has been introduced in
earlier works [2]. The second ranking is based on the user’s
rating for specific solutions. A filtered and ranked list of
solutions is depicted by Figure 5.

Figure 5: Screenshot showing ranked solutions.

Usually, the architect now selects the top-ranked recom-
mendations as the most suitable solutions candidates, which
will be added to another tab. The selected candidates are
considered as design alternatives (ADAlternative) to be align
with the common ADD-making approaches [18, 24, 6]. Fi-
nally, for each alternative needs to be decided whether to
approve it as solution (ADOutcome) or to reject it, as shown
in Figure 6. In all cases the documentation of the rationale
is mandatory. If at least one alternative has been accepted
as a solution, the related design issue is considered as solved,
which is shown in the project view (Figure 2) as well.

Figure 6: Screenshot showing the decision making.

4. RELATED WORK
Since the paradigm shift of describing the software archi-

tecture as a set of architectural design decisions [7], several
tools have been developed to support capturing, reasoning,
and sharing the ADDs. Each tool is based on a different
architecture knowledge model and uses different terminolo-
gies. In addition, each tool provides different capabilities
to assist the architect in dealing with the ADDs. Existing

surveys [15, 16] have been conducted to evaluate and com-
pare the different AK tools. However, each survey uses a
different set of evaluation criteria. In order to understand
the differences in the capabilities between the different tools,
we analyzed and consolidated the different surveys. More-
over, we appended additional recent tools, which have not
been considered by the surveys. We focused our analysis on
two main aspects: A) The decision reasoning capabilities,
B) The provided support for system evolution. Our analysis
result showed to us the lack of support for design decision
reasoning during system evolution. In other words, assist-
ing the architect to choose the suitable architectural solution
during the system evolution. In the following paragraphs,
we analyze and report the differences between the different
tools in regarding to both aspects.

PAKME [1] is a web-based tool, which provides services
for architecture knowledge acquisition, retrieval, presenta-
tion and maintenance. In addition, the knowledge is classi-
fied between project specific and generic. The tool supports
the reasoning process with a library of generic patterns, sup-
ported with an advanced searching capability. ADkwik is a
web based tool, using the Web 2.0 and wiki technologies.
The tool provides the ability to capture ADDs through se-
lecting the suitable solution alternative from a list of stored
architectural solutions. In addition, it relates the differ-
ent ADDs using different types of relationships. The tool
is based on the model of Zimmermann et al. [24], which
guides the architect in exploring the design space. Software
Architecture Warehouse [13] is a collaborative decision mak-
ing web site, which provides different architectural solutions
for design issues and gives the ability for different users to
collaborate and discuss about solutions. In this way, each
proposed solution is evaluated, which supports the decision
maker to select the right solution. However, the evolution of
design decisions and the influence of existing system design
decisions on the future decisions are not being considered
as part of the decision making model in the aforementioned
tools.

On the other hand, AREL [18] is an ADDs capturing and
traceability tool, which supports UML similar modeling for
ADDs, as well as their drivers and constrains. Through this
modeling, the architect can assess the impact of require-
ments or constrains changes on the existing system ADDs,
which can support the architect to identify the possible im-
pacted system changes during system evolution. Archium
[9] is an eclipse based plugin tool, which provides the abil-
ity for the architect to describe the software architecture
through a textual description. The Archium compiler vi-
sualizes the software architecture components and their as-
sociated ADDs. Moreover, it supports consistency check
and traceability between the implemented Java code and
the architecture design. An industrial implementation for
an ADDs documentation framework [12] is proposed, which
supports documenting the chronological order of ADDs. In
addition, the tool supports the traceability between ADDs
and the different artifacts within the development process.
The mentioned tools in this paragraph support documenting
the evolution of ADDs. Nevertheless, they lack the support
for decision making guidance.

ADDSS [4] is an AK tool, which provides the ability to
document ADDs for each project iteration, as well as the
dependencies between them, through constrains relation-
ships. In addition, the tool provides a repository for pat-



terns, to support the architect selecting an architectural
solution. ADvISE [11] is an eclipse plug-in, which sup-
port the architect to reason about the ADDs, through the
QOC (Question, Option, Criteria) concept. An extension to
the tool supports the uncertainty of taking the design de-
cision through fuzzy logic. Additional support is provided
for mapping ADDs to design diagrams and supporting the
consistency between both. Both tools provide features for
architecture reasoning and the documentation of ADDs evo-
lution, but they do not support the architect in reasoning
about their decision, during an existing system evolution.

5. CONLUSION AND FUTURE WORK
Architectural design decision making should not only con-

sider requirements, organizational factors and technological
limitations, but also constraints induced by existing systems.
This paper presented a decision process focusing on the con-
sideration of Existing System Related Constraints. It de-
scribes how this type of constraints is identified, classified
and taken into account when making design decisions. Fur-
thermore, the tool Decision Buddy is presented, which con-
tributes to the decision making part of the proposed process.

As the decision process is still on-going work, there is
enough space left for future research. First of all, we will
elaborate more on the analysis of the existing system to
improve the identification of the architecturally significant
properties. Furthermore, the determination of constraints
based on these properties need to be extended, especially
regarding more complex properties and their formalization
to enable automated processing. Another area of investiga-
tion is on how to maintain and fill the repository storing the
Generic Architecture Knowledge, e.g., by extracting knowl-
edge from websites and blogs. Finally, additional evaluation
of our process is required through implementing and test-
ing our proposed tool. We will implement further steps of
the process and plan an industrial case study to reinforce its
applicability.
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