
Evaluation Across Multiple Views for
Variable Automation Systems

Lothar Hotz, Yibo Wang,
Matthias Riebisch

Department of Informatics
University of Hamburg

wang@informatik.uni-hamburg.de

Olaf Götz, Josef Lackhove
Lenze Automation GmbH
olaf.goetz@lenze.com

ABSTRACT
Automation systems in industry are often software-intensive
systems consisting of software and hardware components.
During their development several engineers of different dis-
ciplines are involved, such as mechanical, electrical and soft-
ware engineering. Each engineer focuses on specific system
aspects to be developed. To enable an efficient development,
product lines especially with feature models for variability
modeling are promising technologies. In order to reduce the
complexity of both feature models and development process,
views on feature models can be applied. The use of views for
filtering purposes constitutes an established method. How-
ever, views also enable further options missing in current
approaches, such as evaluations regarding requirements, in-
cluding non-functional ones. This paper presents an ap-
proach for evaluation across multiple views to enable collab-
orative development for developers who focus on different
system aspects. We validate our approach by applying it in
an industrial project for the planning of flying saws.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering, reusable models

Keywords
Product lines, Automation systems, Feature model, Config-
uration, Consistency check, Multi-criteria evaluation

1. INTRODUCTION
In many engineering fields, more and more emphasis is put

on product line technology due to the need for customiza-
tion with low efforts and in short terms. Planned variability
allows a smart adaptation of products and services. How-
ever, the increasing complexity of both the development pro-
cesses and the artifacts due to an introduction of variabil-
ity requires modeling as a means to master this complexity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC 2015, July 20 - 24, 2015, Nashville, TN, USA
c⃝ 2015 ACM. ISBN 978-1-4503-3613-0/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2791060.2791082

Models are essential for many engineering disciplines, how-
ever, their linkage with variability and their integration into
product line processes requires special efforts. Furthermore,
developed systems for products and services have to fulfill
growing non-functional requirements, such as safety or cost,
due to the increased competition on the markets. A contin-
uous evaluation of the development processes even in early
phases has to be performed to reduce risks. Modeling fa-
cilitates a prediction of properties early in a development
process. A prediction of global system properties calls for a
consideration of several engineering disciplines. The prob-
lem is, different models have been established in these dis-
ciplines. For evaluation purposes, these models have to be
integrated into one holistic model with several views. Fur-
thermore, variability has to be accounted to each view.

In this paper, we present an approach, in which multi-
ple views have been integrated along with feature models.
The approach has been developed primarily for the produc-
tion automation domain, with a consideration of the relevant
views. Customization is performed here as a configuration
of pre-fabricated building blocks. These configurations have
to be evaluated for validity, for which constraints are used
as reasoning technology (see Section 3). This paper con-
centrates on evaluations in multiple views (Section 4), other
aspects arising in the configuration process such as resolv-
ing conflicts in invalid configurations, are not considered.
Our approach has been evaluated for applicability and fea-
sibility during an industrial project (see Section 2 and the
examples throughout the sections). The paper closes with
related work (Section 5) and a conclusion (Section 6).

2. RUNNING EXAMPLE
In order to illustrate our approach, we use a running ex-

ample of a so-called flying saw: A slide with the flying saw
is synchronized with the material’s speed [5], as shown in
Figure 1. Once the material is cut completely, it returns to
the starting position as soon as possible to get ready for the
next cut. Variability of the flying saw exists for example
in its control architecture (centralized or decentralized) and
cutting methods (cutting controlled by length or by marks
on the material). In our previous work [10], we used a fea-
ture model to represent variability and defined integrity con-
straints between features and their attributes.

As stated above, several disciplines are involved in the de-
velopment process for the flying saw, such as production,
mechanical, electrical, communication, and automation en-
gineering. There are constraints both within one discipline
and between different disciplines. An example for a con-

311

Figure 1: Running example - Flying saw

straint within the discipline production engineering is that
the motion speed of the saw carriage is constrained by the
motion speed of the conveyor. An example for constraints be-
tween two disciplines is that the motion speed of the saw car-
riage in the discipline production engineering is constrained
by the motor and transmission in the discipline mechanical
engineering.

In addition, configurers from different disciplines may have
different needs and objectives during configuration. Although
all are interested in system attributes such as building costs,
machine weight, production performance, and future sus-
tainability, a single configurer is concerned in particular with
the properties of his own discipline, such as process accura-
cies (e.g. position, speed, torque etc.) and maintainable
software design. Thus, the need for an evaluation approach
based on constraints and criteria across different disciplines
is very urgent. Furthermore, the configuration of an au-
tomation system as part of a product line requires expertise
in the different disciplines, which is rarely available from a
single expert. However, experts with expertise in one disci-
pline are available, and they can cooperate according to our
approach.

3. BASIC TECHNOLOGIES
In product lines, one can distinguish the development of

a product line and the development of products. These en-
gineering tasks are identified as domain engineering and ap-
plication engineering [11]. Feature models are often used to
express variability of the products. Features can be mod-
eled with mandatory, optional, and alternative constraints,
as well as attributes (extended feature models [1]). Further-
more, relations between features can be expressed such as
exclude or require as well as algebraic restrictions (equations,
inequalities, including computational functions such as +,
−, ∗, /, sum, min etc.) which are all considered here as
integrity constraints or simply constraints (see [6]). Con-
straints relate features or feature attributes. For example,
the constraint Scut ≥ Tcycle time ∗ Vconveyor represents that
cut length of the material is constrained by the cycle time of
the cutting process and the motion speed of the conveyor.

Starting with the feature model including constraints a
human configurer makes decisions about a specific product
in a product development process (also called configuration
process or decision process). A decision is (a) a selection of
a feature, i.e., the decision of an optional or alternative fea-
ture, or (b) the selection of a value for a feature attribute,
or (c) a change of a previously selected feature or feature
attribute value. Through a decision, a new partial configura-
tion is created with less variability than the previous partial
configuration.

After one decision has been made, a constraint processor
checks consistency and computes the impacts of the decision
on other features or feature attributes. This impact com-
putation comprises the addition of mandatory or required
features to the partial configuration, the explicit exclusion
of excluded features, as well as the computation of feature
attribute values based on algebraic constraints. We expect

that the impact computation is processed by a so-called fea-
ture tool, i.e., a configuration system [2], a feature system
(such as pure::variants or Gears), or a constraint system [6].
Multiple constraints form a constraint graph consisting of
features or feature attributes (constraint variables) as nodes
and constraints as edges. Hence, a constraint processor gets
a partial configuration as input and computes another par-
tial configuration that follows from the constraints modeled
in the feature model.

The above process is a commonly known process, see e.g.
[2, 3]. In this paper, we enhance this technology by views
and their evaluation. A view is a filter on a feature model.
Multi views are multiple filters on a feature model. They
can be overlapping but don’t have to. Dependencies be-
tween views are modeled by constraints, which relate fea-
tures or feature attributes from different views. In Figure
2, V iew 1 and V iew 2 are two views on a feature model.
The features are restricted by require constraints as indi-
cated in the figure. If the decision is made that Feature 1 is
selected, the constraint processor computes that Feature 2
and Feature 3 in V iew 2 and Feature 4 in the original
V iew 1 are part of the partial configuration, according to the
require constraint require(1), require(2) and require(3).
We call require(1), and require(3) view-crossing constraints.
All dependencies can be automatically computed through
analysis of the constraint graph.

Figure 2: Dependencies of two views through view-
crossing constraints in a feature model

Additionally, evaluations are related to views. An evalu-
ation is specified by an evaluation scheme consisting of an
evaluation criterion, an evaluation condition, and an evalu-
ation threshold. An evaluation scheme represents a certain
non-functional property (NFP) of a system fulfilling a spe-
cific non-functional requirement. An example is that the
cost of a system (an evaluation criterion computed by an
evaluation function) may not exceed (an evaluation condi-
tion) a specific value (an evaluation threshold) or that the
weight of a system (another evaluation criterion computed
by another evaluation function) has to be equal (another
evaluation condition) a certain value (another evaluation
threshold). Thus, an evaluation condition in combination
with the evaluation threshold determines the condition un-
der which the evaluation scheme holds. The evaluation con-
dition is expressed by an arbitrary logical expression (see
Section 4.3 for more details).

4. MULTI-VIEW EVALUATION
The configuration for automation system is a complex

task. Lacking complete expertise, each configurer can only
concentrate on his own discipline. By using views to sepa-
rate the feature model, the complexity of configuration will
be reduced. Furthermore, it makes configuration changes
easier because of a division of responsibilities.

The goal of our approach is to support a collaborative

312

configuration process for a system development executed by
different configurers. Each configurer focuses on one view,
i.e., each configurer makes decisions related to his discipline.
A constraint processor checks for consistency and impacts of
such decisions (see Section 3). More importantly, an evalua-
tion based on predefined evaluation criteria is computed for
each view as well as system-wide. After a configurer makes
a decision, the influences on the system evaluation can di-
rectly be computed and presented to the configurer. Thus,
multiple views support an informed collaborative product de-
velopment process, which has the following characteristics:

• All configurers work towards one system development,
jointly but not necessarily synchronously.

• Each configurer focuses on his discipline, i.e., on his
view in the feature model, and makes decisions related
to this filtered feature model. Impacts are computed
by the constraint processor.

• Each configurer gets evaluations of his view.
• Each configurer gets information about influencing de-

cisions of other configurers created by view-crossing
constraints.

• Each configurer gets information about evaluations of
other views on demand.

• Each configurer gets information about evaluations of
the system as a whole.

• Each configurer is able to get a complete view of the
current partial configuration on demand.

Thus, during a product development process each config-
urer is informed about the current state of the development
in relation to own decisions, other configurers decisions, and
the impacts of the decisions on the evaluation criteria. The
following sections detail how this process can be achieved.

4.1 Activities in Domain and Application En-
gineering

For accomplishing such an informed collaborative product
development process, the activities in domain engineering
and application engineering have to be defined accordingly.

4.1.1 Activities in Domain Engineering
In domain engineering, in addition to a feature model,

multiple views on the feature model have to be defined. As
mentioned above, views are considered to be filters on the
feature model (see Figure 3 left, and Section 4.2). In addi-
tion to the feature models, an evaluation scheme has to be
specified (Figure 3 right). This activity includes the estab-
lishment of the evaluation schemes for the system as a whole,
i.e., the decision which criteria are of interest for all prod-
ucts of the product line. Examples are cost or construction
weight (see Section 2). Second, an evaluation scheme per
view has to be specified (view evaluation) which includes the
selection of the criteria of interest for the view. Third, the
selection of features and feature attributes has to be speci-
fied which contribute to each criterion (see Subsection 4.3).
Finally, the specification of the system evaluation based on
these view evaluations has to be defined.

4.1.2 Activities in Application Engineering
When developing a specific product in the application

engineering process, the configurers use the models devel-
oped in domain engineering (see Figure 4). During require-
ments acquisition, functional and non-functional properties

Figure 3: Domain engineering: Feature modeling
with views and evaluations

are specified, which are later used as system evaluation cri-
teria. For example, a NFP indicates that cost of a product
should not exceed a certain amount of money (cost < m).
These requirements are mapped to features by the config-
urers. In an iterative process, each configurer selects fea-
tures and feature attribute values in his particular view, i.e.,
makes decisions about the product to be developed. After
every single decision, the constraint processor keeps track of
consistency and impacts of the decision, which usually cross
view borders (see Section 3). Besides the constraint proces-
sor, the evaluator computes the evaluation criteria of each
single view and the system’s overall evaluation criteria. For
example, the evaluator keeps track of the current cost of the
system as well as the restricting evaluation condition. The
evaluator is implemented as a constraint system, similarly
to the constraint processor.

Figure 4: Application engineering: Feature selection
based on requirements and continuous tool-based
computation of constraints and evaluation

4.2 Defining Feature Models and Views regard-
ing Disciplines

In addition to commonly used extended feature models
(see Section 3), we introduce a view indicator v for each
feature and each feature attribute to mark it. A feature
attribute belongs to one view (e.g. v) and a feature can be-
long to multiple views (e.g. v and w) (see Figure 5). Each
view represents a discipline, and each feature and feature
attribute which belongs to v are handled by one configurer
Cv who is familiar with that discipline. If a feature belongs
to v and w, the existence of the feature in the partial con-
figuration can be decided by Cv or Cw, i.e., the decision
if an optional or alternative feature has to be selected is
made by Cv or Cw. Note that mandatory, required, and ex-
cluded features are computed automatically by the feature
tool (computed features), as described in Section 3.

For feature attributes, we introduce three not necessarily
disjoint attribute types: a feature attribute is (a) a com-
puted feature attribute if it is computed by a constraint (e.g.
the weight of a flying saw is the sum of weights of all its

313

Figure 5: Example for feature modeling with views

mechanical parts), (b) an evaluation feature attribute (see
Section 4.3) if it is used for computing an evaluation cri-
terion (e.g. the cost of a flying saw), or (c) a configurable
feature attribute if the attribute value shall be selected by a
configurer1(e.g. the production requirements cycle time and
cut length). Thus, if a configurable feature attribute belongs
to a view v, the attribute’s value has to be selected by Cv.
See Figure 5 for an example for feature modeling with two
views for CProduction and CMechanic with cost production
and cost mechanic as evaluation feature attributes.

4.3 Evaluation Across Multiple Views
As one of our central contributions, we now introduce the

evaluation schemes for the development of product lines (see
Section 4.3.1). These system evaluation schemes are spec-
ified through single view evaluations (Section 4.3.2), which
are then combined to system evaluations (Section 4.3.3).

4.3.1 Establishing System Evaluation Schemes
During domain engineering, all evaluation schemes ES for

a product line are established. In our example, these are cost
for the product and construction weight. As usual in do-
main engineering, the models, here the evaluation schemes,
are pre-thought for the whole product line. However, for
the evaluation schemes it is not yet specified how they are
computed, this is done in the activity single view evaluation.

During application engineering, in particular requirements
acquisition, the customer, assisted by the configurer, selects
from ES a subset of evaluation schemes that is important
for the product to be developed. Furthermore, the customer
specifies the evaluation thresholds for the selected evaluation
schemes. This is an optional specification and only needed
if the configurers should be informed if the product to be
developed does not fulfill a certain criterion.

4.3.2 Single View Evaluation
For each evaluation scheme established in the above de-

scribed activity, a single view evaluation (see Figure 6) de-
fines how an evaluation criterion is computed for a single
view, i.e., evaluation feature attributes contribute to the eval-
uation criterion are selected. This specification is done dur-
ing domain engineering by (a) selecting evaluation feature
attributes of the view and (b) specifying an evaluation func-
tion of the attribute values that combines these values (at-
tribute evaluation function). For example, for the cost eval-
uation scheme in view V , the cost feature attributes are
selected that constitute the cost in V . In this case, the eval-

1
If a configurable feature attribute occurs in a constraint, it is also a

computed feature attribute.

uation function is the sum of those costs. Typical evaluation
functions are sum, minimum, maximum, mean value. Be-
side the computation of an evaluation criterion, an evalua-
tion condition for the scheme has to be specified, e.g., the
fact that cost should not exceed an evaluation threshold.
In principle one can define here suitable power functions
for a specific domain such as step functions. In total, for
each established evaluation scheme in each view, the un-
derlying feature attributes and their combination (i.e. the
evaluation criterion), as well as the evaluation condition are
specified in this activity. Figure 6 shows a constraint graph
which represents feature attributes as constraint variables
and evaluation functions as well as evaluation conditions as
constraints. Such a constraint graph can be implemented
with a constraint system (see Section 3).

Figure 6: Constraint graph for a single view evalu-
ation criterion

During application engineering, the evaluator computes
the view evaluation and the results are presented to the con-
figurer of the view, i.e, the computed evaluation criterion
value and the checked evalution condition. Figure 8 illus-
trates this aspect. For each configurer CMechanic, CElectric

(i.e. hardware engineers), and CAutomation(i.e. software en-
gineers), a specific view is presented where the influence of
the view-specific partial configuration on the evaluation cri-
teria costs and weight are presented in respect to the over-
all system evaluation, e.g., in view Mechanic cost mechanic
=‘115 (of 131)’.

4.3.3 System Evaluation
For computing a system evaluation criterion for an estab-

lished evaluation scheme, the single view criteria are com-
bined through a system evaluation function (see Figure 7).
In the example, the costs of each view are combined through
addition. Furthermore, a system evaluation condition deter-
mines if the combined value, the system evaluation value,
holds a certain condition in respect to the system evalua-
tion threshold. In Figure 8 the system evaluation criterion
weight is fulfilled whereas the criterion cost system is not.

Figure 7: Constraint graph for one system evalua-
tion criterion

314

Figure 8: Example for configurers’ screens. Each
configurer Cx sees his view and the system view
CSystem.

5. RELATED WORK
We are not aware of any research or industrial applica-

tion that focuses on multi-criteria evaluation across multi-
ple views for product line configuration scenarios. However,
views similar to our notion are used for the separation of
concerns in diverse use cases. [4] proposes three alterna-
tive visualizations to generate concern-specific configuration
views in feature models. [7] introduces formalization for
specification of views and customized perspectives including
consistency checks with respect to feature model semantics.
Although constraints between different views and perspec-
tives are well discussed in these works, the question is not
answered of how to satisfy different stakeholders’ objectives
and preferences during the configuration process.

[9] addresses a multi-stakeholder configuration process con-
sidering stakeholders’ preferences by using strategies from
the social choice theory. However, the final decision is strongly
influenced by the subjective opinions of stakeholders. Using
the task planning technique HTN (Hierarchical Task Net-
work), [8] proposes a framework to automatically select suit-
able features that satisfy both the stakeholders’ functional
and non-functional requirements. For design optimization,
they aggregate qualitative and quantitative properties into a
single object value. However, it is hard to find a proper util-
ity function to change a multi-criteria problem to a single-
criterion problem.

6. CONCLUSION AND FUTURE WORK
We presented a novel method for evaluating functional

and non-functional properties of an automation system across
multiple views during the configuration by different config-

urers. We extend the usual product line activities in domain
engineering and application engineering by view evaluation
and system evaluation to consider the integrity constraints
and evaluation criteria for non-functional properties. The
approach is partly implemented as an extension to the prod-
uct line tool pure::variants. A validation was performed in a
first industrial project for designing a flying saw that showed
the feasibility of the approach. As future works, we plan to
explore more industrial use cases and to integrate a visual-
ization of optimization results such as the Pareto front for
competing priorities (e.g. cost vs. security).

7. ACKNOWLEDGMENTS
This research has been partly funded by the German Fed-

eral Ministry of Education and Research BMBF under grant
01M3204C in the joint project “Design Methods for Au-
tomation Systems using Model Integration and Automated
Variant Evaluation” and by the Hamburg Computer Science
Technology Center, HITeC e.V. c/o University of Hamburg.

8. REFERENCES
[1] K. Czarnecki, S. Helsen, and U. Eisenecker.

Formalizing Cardinality-based Feature Models and
their Specialization. Software Process: Improvement
and Practice, 10(1):7–29, 2005.

[2] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen.
Knowledge-Based Configuration: From Research to
Business Cases. Morgan Kaufmann Publishers,
Massachusetts, US, 2014.

[3] L. Hotz, K. Wolter, T. Krebs, S. Deelstra,
M. Sinnema, J. Nijhuis, and J. MacGregor.
Configuration in Industrial Product Families - The
ConIPF Methodology. IOS Press, Berlin, 2006.

[4] A. Hubaux, P. Heymans, P.-Y. Schobbens,
D. Deridder, and E. K. Abbasi. Supporting multiple
perspectives in feature-based configuration. Software
& Systems Modeling, 12(3):641–663, Nov. 2011.

[5] Lenze Automation GmbH. Manual Standardised
Application L-force FlyingSaw V1.0. Lenze
Automation GmbH, 2010.

[6] F. Rossi, P. van Beek, and T. Walsh, editors.
Handbook of Constraint Programming. Elsevier, 2006.

[7] J. Schroeter, M. Lochau, and T. Winkelmann.
Multi-perspectives on feature models. In Model Driven
Engineering Languages and Systems, pages 252–268.
2012.

[8] S. Soltani, M. Asadi, and D. Gašević. Automated
planning for feature model configuration based on
functional and non-functional requirements. In
SPLC’12, pages 56–65, 2012.

[9] J. Stein, I. Nunes, and E. Cirilo. Preference-based
feature model configuration with multiple
stakeholders. In SPLC’14, pages 132–141, 2014.

[10] Y. Wang and M. Riebisch. Feature and Constraint
Mapping for Configuration and Evolution of Variable
Manufacturing Automation Systems. In Tagungsband
des Dagstuhl-Workshop MBEES, pages 63–73. fortiss
GmbH, 2015.

[11] D. Weiss and C. T. R. Lai. Software Product-Line
Engineering. Addison-Wesley, 1999.

315

