
Architectural Knowledge for Technology Decisions
in Developer Communities

An Exploratory Study with StackOverflow

Mohamed Soliman∗, Matthias Galster†, Amr R. Salama∗, and Matthias Riebisch∗
∗Department of Informatics, University of Hamburg, Germany
Email: {soliman, salama, riebisch}@informatik.uni-hamburg.de
† University of Canterbury, Christchurch, New Zealand

Email: mgalster@ieee.org

Abstract—Architectural decisions have a big influence on basic
properties of a software system, and are difficult to change
once implemented. Technology decisions deserve special attention
because they are one of the most frequently occurring types
of architectural decisions. Architectural knowledge is crucial
for good decisions. Current architecture knowledge management
approaches try to support architects by offering a rich base
of architectural solutions and design decision rules. However,
they mostly depend on manually capturing and maintaining
the architectural knowledge. In this paper, we utilize the most
popular online software development community (StackOverflow)
as a source of knowledge for technology decisions to support
architecture knowledge management approaches with a more
efficient methods for knowledge capturing. We conducted an
exploratory study, and followed a qualitative and quantitative
content analysis approach. We analysed the posts in this com-
munity to identify architecture-relevant and technology-related
knowledge, and to classify the posts into different types for the
purpose of knowledge structuring. In addition, we evaluated our
findings through feedback from practitioners.

I. INTRODUCTION

Software architecture is about making design decisions
which potentially impose risk on product success. Such deci-
sions significantly affect structural properties of a system but
also its quality attributes. Once an architectural solution is im-
plemented it is quite difficult to change [1]. This differentiates
software architecting from implementation e.g., fixing a bug
in a Java method tends to be less complex than changing a
technology or pattern.

Architecture Knowledge (AK) plays an important role in
taking the right Architectural Design Decisions (ADDs) [2].
Some existing AK management approaches (e.g., [3], [4])
focus on building repositories of AK to guide architects during
the decision making process. The repositories are populated
with knowledge by architects manually, which is a time
consuming and tedious process. As a result, the amount of
gathered knowledge is limited. Moreover, their maintenance
and evolution is an additional laborious task. Therefore, effi-
cient methods for capturing and maintaining AK are needed
to support existing knowledge management approaches.

ADDs could be classified into conceptual and technology
ADDs [3]. Conceptual ADDs influence the system architecture
configuration, independent of the implementation. Examples
for conceptual ADDs are selecting architectural patterns and

tactics [1], [5]. Technology ADDs are concerned with the
selection of concrete technology solutions to implement the
architecture, such as frameworks. The selection between tech-
nology solutions depends on architecture-significant technol-
ogy aspects associated with technology features. These aspects
differentiate technologies based on benefits and drawbacks
[6]. A recent survey shows that executive decisions constitute
around 25% of a system ADDs, and most of them are tech-
nology ADDs. In addition, technology ADDs are the mostly
documented ADDs [7].

Social software (e.g., forums) offer new methods for
knowledge capturing and sharing [8]. Software engineers can
now ask questions, and learn from others through many
technical social media. In our previous research we interviewed
software architects about the process of technology design
decision making [6]. Many architects mentioned social soft-
ware as a source of knowledge for technology solutions. In
addition, recent studies (e.g., [9]) on social media in software
development show that developers use social media to discuss
high-level concepts, such as features and domain concepts
(which are architecture-relevant). These findings indicate that
AK may exist in software development communities. Our
main goal is to complement AK management systems with
efficient methods for technology-related AK capturing, through
utilizing existing developer communities as a source for this
type of knowledge.

To achieve this, we need an example of online software
development community that provides a good source of well-
structured and architecturally related information. We selected
StackOverflow (SO)1. SO is one of the biggest software de-
velopment social media websites, which follows a Question
and Answer (Q&A) structure. In addition, it supports useful
knowledge management features, such as inclusion of context
details in posts, the quality of the knowledge on SO is ensured
through evaluation of posts from users, and the ability to manu-
ally categorize posts through assigning tags to them. Moreover,
SO provides a very large pool of knowledge and information
that is constantly updated with new posts from users. All these
features could support AK management systems with valuable
and evolvable technology-related AK, which has already been
evaluated by technology experts.

In detail, we conduct an empirical study with the objective
1http://stackoverflow.com/



of identifying SO posts which provide useful technology-
related AK. Furthermore, we explore the key differences
between this type of SO posts and other programming posts.
Based on this objective, we formulated our research questions:

• RQ1: What are the types of architecture-relevant posts
(ARPs) in SO and how could we classify ARPs?

• RQ2: Which types of ARPs in SO do practitioners con-
sider architecture-relevant?

• RQ3: What are terms in SO posts that distinguish ARPs
from programming posts?

By answering the mentioned research questions, we create
a comprehensive overview of the SO ARPs through under-
standing their types and classification. This overview is a
framework for further analysis steps, such that each of the ARP
types embodies different AK concepts (e.g., quality attributes,
design decisions). If we identify the AK concepts within each
ARP type, we can enable more approaches for AK capturing
(e.g., automated mining and classification of ARP, as well as
extraction of AK from SO).

II. RESEARCH PROCESS

Our research process is divided into four phases, which are
described in the following subsections.

A. Phase 1: Prepare StackOverflow Posts for Analysis

1) Phase 1a: Query for Candidate Posts (Sampling): SO
posts could be classified into different topics. Some of these
topics are architecture-related (e.g., posts about web devel-
opment). On the other hand, posts about coding styles is an
example for a topic which is programming-related. We selected
the middleware topic as our sample topic for two reasons: 1)
Middleware is an important topic in the software architecture
field, for example, many architecture patterns (e.g., [5]) address
interoperability issues. 2) The amount of middleware posts in
SO is manageable for our exploratory study.

In order to gather candidate architecture-relevant middle-
ware posts, we applied the following selection criteria: 1)
Posts had to be concerned with at least one of 52 different
middleware technologies (e.g., RabbitMQ, WCF). We queried
post title, questions and tags for middleware technologies.
We identified these technologies through a review of existing
technologies on Wikipedia2. 2) We excluded posts with no
answer. 3) We considered posts with a question score higher
than or equal 7. This was to ensure the quality of the selected
posts [10]. 4) We excluded posts which include blocks of
source code in the question because most of those posts discuss
programming problems [10]. The gathering process has been
done using a set of SQL queries through the stack exchange
explorer3 and resulted in 2,561 posts.

2) Phase 1b: Initial Manual Classification of ARPs and
Programming Posts: Two of the authors classified the same
sample posts manually to differentiate architecture-relevant
posts from programming posts. We conducted three iterations,
including inter-coder reliability tests to ensure that the classi-
fications of the two researchers were consistent and calculated

2https://en.wikipedia.org/wiki/Category:Message-oriented middleware
https://en.wikipedia.org/wiki/Category:Enterprise application integration
3https://data.stackexchange.com/stackoverflow/query/new

TABLE I: Background of participants

ID IT Exp.
(Years)

Software Arch.
Exp. (Years)

Technology
Background Industries Role

1 11 4 Microsoft
Technologies

NLP,
E-Commerce

Technology
Consultant

2 10 4 Java / J2EE Telecom,
Billing, Defense

Enterprise
Architect

3 11 5 C++, WebLogic,
J2EE, Spring Telecom Technology

Consultant

4 14 7 Microsoft
Technologies

eGov,
Financial

Solution
Architect

5 17 8 Microsoft
Technologies

Healthcare,
Manufacturing

Program
Manager

6 10 4 Java J2EE Healthcare,
Retail, Billing

Technology
Consultant

7 11 5 J2EE, Weblogic,
Unix, RabbitMQ Telecom System

Engineer

8 12 4 Microsoft
Technologies Transportation Technology

Consultant

9 30 12 VME Mainframe,
J2EE, Unix

Defense,
Manufacturing

Solution
Architect

10 13 4 Microsoft
Technologies Telecom Solution

Architect

11 6 1 Microsoft
Technologies

Retail,
Procurement Developer

the kappa coefficient [11] to determine whether agreement
between researchers was beyond chance. In each iteration, 100
posts were randomly selected and classified by two researchers,
different types of posts and examples were gathered, and
disagreements were discussed. By the end of these iterations,
we defined architecture-relevant posts, together with a set of
classified post examples, according to the prototype theory of
definition [12]. Based on this definition, we classified the rest
of our sample as ARPs and programming posts. This step
resulted in 858 ARPs, and 1,653 programming posts, while 50
posts have been excluded for being out of middleware scope.

B. Phase 2: Classification of ARPs

In order to answer RQ1 and to classify the ARPs into
types based on the concerns that they address, we followed a
summarizing qualitative content analysis method [12], where
a short summary about each post is written, and based on the
summary, the post is assigned to a category. We applied this
method to the gathered 858 candidate ARPs from phase 1b.
The identified categories are presented in Section III as our
ARP types.

C. Phase 3: Obtain Feedback from Practitioners

1) Phase 3a: Practitioners Selection: Table I shows the
participants. All of the participants are familiar with SO and
use it as part of their work. All participants work or worked in
multinational companies with more than 100,000 employees.

2) Phase 3b: Evaluation Posts Sampling: In order to make
the sample of posts given to practitioners representative to
our overall sample of 2,561 posts, we conducted stratified
random sampling [13] among the ARP types (phase 2), as well
as the programming posts. This way of sampling guaranteed
that all types of posts were included in the evaluation sample
proportional to their occurrence in the overall sample.

3) Phase 3c: Evaluation Execution: Each participant re-
ceived a sample of posts (see Table IV). The total number of
posts used was 1,173 posts. It took each participant between 3



and 4 hours to classify the posts between ARPs and program-
ming posts. The analysis of the feedback of the participants
helped us to answer RQ2, which is presented in Section IV.

D. Phase 4: Identification of Terms in ARPs

In order to answer RQ3, we performed quantitative content
analysis using a data mining algorithm based on the classified
posts from phase 1.

1) Phase 4a: Preprocessing of Posts: We first removed
stopwords, which are common words in the English language
(e.g., ”the”, ”is”). We also removed numbers and punctuation
symbols. Then, we transformed each post section (title, ques-
tion, and answers) into a ”vector of features”, which is a vector
of 0s and 1s, where each element of a vector shows if a certain
word of the list of all words in all posts exist in this post (value
of 1) or not (value of 0). We considered the post title, question
and answers separately. Thus, each post is associated with three
vectors of features which represent the existence of words in
each of the post sections. In addition, each vector is marked
as being either an ARP or programming post.

2) Phase 4b: Terms Selection and Ranking: We used the
”Information Gain Ratio” algorithm [14] provided by the data
mining tool Weka 3 [15] to extract the words, which distin-
guish ARPs and programming posts. The ”Information Gain
Ratio” ranges between 0 and 1 and expresses the generative
probability ranking of each word with respect to the type of
post (ARP or programming post). In other words, it measures
the ability of a word to split the population of posts correctly
into the two main types of posts. Thus, a word with a higher
”Information Gain Ratio” has a better ability to classify the
posts between ARPs and programming posts because this word
is more unique and common for one particular type of post.
Section V presents a list of the top 20 words.

III. ARCHITECTURE-RELEVANT STACKOVERFLOW POSTS

In this section, we present the types of architecture-
relevant posts on SO as the results to RQ1. We identified
three main types of SO posts according to the concerns
mentioned in the questions of a post. We named them Pure
Programming Posts, Architecture-Relevant Posts, and Cross
Architecture/Programming Posts.

Pure Programming Posts (PPPs) are posts with questions
related to performing a programming activity. The answers to
questions in PPPs often include source code fragments, step-
by-step guidelines on how to code a feature, or lower level
technology details. This type of post constitutes the majority
of SO posts. Since these types of posts are not the focus of this
paper, we do not discuss their details. The reader may refer to
existing empirical studies on programming posts (e.g., [10]).

Architecture-Relevant Posts (ARPs) are posts with ques-
tions related to performing an architecture design activity. The
questions in ARPs sometimes consider quality attributes and
contextual factors, and the answers involve experience and
knowledge about technology solutions, their differences and
capabilities. This type of posts is the focus of this paper.
Therefore, in order to better understand ARPs to support
knowledge capturing and reuse, we classified ARPs based on
two dimensions: (1) the purpose of the question, and (2) the

solution type of the question. Along the purpose dimension,
ARPs could be classified into the following sub-types:

1) Solution Synthesis: concerned with searching for suitable
technology solutions, which have certain characteristics
(such as technology features, quality attribute evaluation);
address a design problem or context.

2) Solution Evaluation: concerned with assessing one or
more proposed technology solutions. The evaluation of
solutions could be done individually or through a compar-
ison between different alternative solutions. In addition,
several concepts are considered during evaluation, such
as technology features, benefits and drawbacks, suitable
use cases, and quality attributes.

3) Multi-purpose: this type of ARP comprise both types of
posts, solution evaluation and synthesis. Several questions
are asked within a single post.

Note that there might be other purposes for asking questions in
ARPs. We identified the purposes based on our sample. On the
solution type dimension, ARPs could be classified as follows:

1) Technology Feature: focus on specific features of a tech-
nology (such as deployment, authentication). For exam-
ple, Gorton et al. [4] provide a taxonomy for features in
database management systems.

2) Technology Bundle: consider the technology as a single
architecture solution, without referring to the features
within the technology. Technology bundle solutions are
usually referred to using technology names (e.g., WCF).

3) Architecture Configuration: concerned with the compo-
nents and connectors design configuration. The types
of components and connectors could either belong to a
technology feature (see above) or bundle (see above) or
a conceptual solution (such as an architectural pattern or
tactic). Note that conceptual solutions are not a category
of ARPs above since we were focusing technology solu-
tions. Also, we did not find many pure conceptual posts.

4) Combined Solution: concerned with different solutions
types. The post may consider two or more of the afore-
mentioned solution types.

Similar to the purpose dimension, there could be additional
solution types. In this paper we listed types identified in our
sample.

By combining the purpose and solution type dimensions,
we can specify types of ARPs. For example, an ARP which is
about evaluating a solution (purpose dimension) and discusses
a technology bundle (solution type dimension) is a post, which
is concerned with evaluating a technology bundle solution
(e.g., a framework). On the other hand, an ARP about solution
synthesis (purpose dimension) that discusses an architecture
configuration (solution dimension) is concerned with searching
for suitable component designs to a design problem at hand.
Thus, the combination of both dimensions, three types in the
purpose dimension and four types in the solution dimension,
leads to 12 types of ARPs in total.

In order to clarify the types of ARPs within SO posts, we
refined ARP’s types into question variations. We present in
tables II and III two examples for two variations in solution
evaluation and synthesis ARPs. We quoted sentences from
the ARP’s questions and answers, and associated them with



TABLE II: Quotations from a solution synthesis ARP

Solution Synthesis ARP Question:
• Business Requirement → ”One of my clients has asked me developing a stock

analysis program with close to 50 years of stock data for almost a thousand symbols”
• Design Issue → ”I’ve developed a series of filters (...). We want to run this filter

for each day of data (...) We are figuring about 40 hours or so to run the report on
our entire data (...) Does anyone have any general ideas or experiences with a web
architecture that will support ultra-long asychronous processes?”

Solution Synthesis ARP Answer:
• Recommended ADD → ”I would recommend a standalone Windows Service (...)

which would run constantly and check (poll) for ’jobs to process’ in a database, then
update the database with results and progress information.”

• ADD Rationale→ ”I’ve used it before many times and it’s reliable, scalable and has
good performance.”

• Technology Drawback → ”keep web requests to a minute or two maximum - they
were never designed for heavy processing times.”

TABLE III: Quotations from a solution evaluation ARP

Solution Evaluation ARP Question:
• Design Issue→ ”There a lot of different ways a Silverlight application can connect

back to it server”
• ADD Alternatives→ ”How do I choose between WCF, REST, POX and RIA services

for a new Silverlight application”
Solution Evaluation ARP Answer:
• ADD Rule→ ”WCF seems best suited when the service can be viewed as the business

layer of the application, that is, when your service has ”intelligent” operations”
• Technology Benefit → ”.NET RIA Services hides all this. It uses WCF under the

covers, but that is completely hidden. You don’t have to write asynchronous code”
• Recommended Technology ADD → ”I would strongly advise anyone to create a

service layer using WCF Web APIs”

formerly identified AK concepts [3], [6], which they might
refer to (e.g. Design Issue, ADD). The study of AK concepts in
ARPs, and their distribution among the different types of ARPs
is subject for future work. In addition, we provide additional
examples for the rest of the question variations online4.

Cross Architecture/Programming Posts (CAPPs) are
posts with questions which could be either asked to perform
a programming or an architecture activity. The answers to
these questions provide information about technology solutions
relevant for architecting but also for programming. Examples
are posts which are about searching or selecting programming
tools (e.g., unit testing frameworks, IDEs). These posts could
be of interest to both the architect and the programmer:
The architect is concerned with the impact of programming
tools on the productivity and quality of the software or how
tools integrate with frameworks and programming technologies
(languages, libraries, etc.), while the programmer is interested
in the programming features of tools. This type of posts are
not analyzed further within the next section. Nevertheless, they
are of interest to be addressed in a future work.

Summary: Based on our analysis described in Section II,
we categorized 1,653 (65.8%) posts to be PPPs, 769 (30.6%)
posts as ARPs, and 89 (3.5%) posts as CAPPs. Fig. 1 shows
the distribution of the different types of ARPs within our
sample. The results show that the majority of the ARP posts
(91.4%) has one single purpose, either solution synthesis
or evaluation. In addition, most of the ARPs (449 posts,
58.4%) use technology bundles as their solution type. When
comparing the distribution of posts between the evaluation and
synthesis posts, we can observe that the combined solutions
post types within the synthesis posts are more than double
of the combined solutions post types within the evaluation

4https://goo.gl/EhXfxg

Fig. 1: Distribution of ARP types according to purpose and
solution types of SO posts.

posts. On the other hand, technology bundle post types within
the evaluation posts are nearly 30% more than the technology
bundle post types within the synthesis posts.

IV. PRACTITIONER EVALUATION

In this section, we present our result to RQ2. Participants
classified posts into ARP or PPP, and also indicated their
confidence. For each post, participants responded as follows:

1) Yes - Architecture Post: It is clear that the post is ARP.
2) Maybe - Architecture Post: The post is probably ARP.
3) Do not know: It is unclear if this is a PPP or ARP.
4) Maybe - Programming Post: The post is probably PPP.
5) Yes - Programming Post: It is clear that the post is PPP.

We calculated two measures to evaluate our classification:

1) Agreement between our own classification of posts into
ARP and PPP and the classification of posts into ARP
and PPP by practitioners (i.e., the percentage of posts
for which researchers and practitioners agreed versus the
total number of posts classified). We calculated in Table
IV the agreement for each participant for ARPs and PPPs,
and for all participants for each post type (Table IV - row
”All”). In addition, we calculated the agreement across all
posts (ARPs and PPPs) for each participant (Table IV -
column ”Total”). Moreover, we calculated the agreement
for the different types of ARPs in Fig. 2 and 3.

2) Confidence level of agreement, which has been calculated
for each post based on two levels of confidence (”Maybe”
and ”Yes”). We assigned ”Maybe” a value of 0 and ”Yes”
a value of 1. We then summed up the number of posts with
”Yes” for agreed posts for each participant. By comparing
this sum to the total number of posts, we obtained the
confidence in percent (e.g., if out of 20 ARPs 15 were
classified with a confidence of ”Yes” and 5 with ”Maybe”
then the overall confidence for the agreement of that
participant on classifying ARPs was 75%). We calculated
confidence for each participant and each type of post, and
also for each post type across all participants (Table IV -
row ”All”) and for each participant across all types (Table



TABLE IV: Agreement and confidence for each participant

Par.
ID

Posts
Given /

Answered

PPPs
Agreement &

Confidence

ARPs
Agreement &

Confidence

Total
Agreement &

Confidence
1 108/99 95.4% 95.5% 83.6% 92.7% 88.9% 93.9%
2 109/102 91.5% 85% 76.4% 87.3% 83.3% 86.3%
3 109/106 93.5% 85.1% 71.2% 87.3% 81% 86.3%
4 105/97 97.8% 91.3% 70.6% 59% 83.5% 74.2%
5 109/109 90.4% 86.5% 76.9% 75% 83.7% 80.8%
6 109/109 92.3% 86% 71.1% 69% 81.73% 77.9%
7 110/89 93.2% 50% 84.4% 24% 88.8% 37%
8 110/110 100% 96% 73.2% 89.3% 85.71% 92.4%
9 101/91 95.6% 82.2% 95.6% 78.3% 95.6% 80.2%
10 101/101 95.6% 78.3% 57.1% 51% 75.79% 64.2%
11 102/94 69.6% 84.8% 89.6% 85.4% 79.8% 85.1%
All 1173/1107 92.3% 83.6% 76.9% 71% 84.3% 77.1%

Fig. 2: Agreement and confidence for ARP types according
to the solution type.

IV - column ”Total”) and for the different types of ARPs
(Fig. 2 and 3).

Table IV shows the classification results of the differ-
ent participants. Column ”Posts Given/Answered” shows the
number of posts given to the participants (”Given”) and the
number of classified posts (”Answered”), i.e., the ”Given”
posts excluding the posts, which the participants marked as
”Do not know”. The PPPs, ARPs, and Total Agreement and
Confidence columns show the percentage of agreement and
confidence across two groups dimensions, participant and post
type.

We calculated the total agreement and confidence levels
across the different ARP types, i.e., question purpose (evalu-
ation, synthesis, and multi-purpose) and solution type (tech-
nology bundle, technology feature, architecture configuration,
and combined), without differentiating participants. Fig. 2 and
3 illustrate the agreements and confidence levels.

We can observe that ARPs, which were classified by
the authors to be evaluation or multi-purpose posts have
high agreement and confidence, while the ARPs which were
classified by the authors to be synthesis posts have a moderate
agreement and confidence. On the other hand, ARPs which
were classified by the authors to involve technology bundles
have high agreement and confidence, while the ARPs, which
were classified by the authors to involve technology features
have a lower agreement and confidence. Moreover, architecture
configuration posts have the highest agreement among solution
types. However, they have moderate confidence level.

TABLE V: Top 20 distinctive terms between the ARPs and
PPPs in our sample

Title term
and gain ratio

Question term
and gain ratio

Answer term
and gain ratio

soa 0.171 scalability 0.176 throughput 0.177
alternatives 0.169 compared 0.175 scaling 0.168

versus 0.167 pros/cons 0.162 xmpp 0.162
comparison 0.151 subscribers 0.162 cloud 0.159
lightweight 0.151 pros 0.159 scalable 0.155
notification 0.151 cons 0.159 tibco 0.148
choosing 0.151 meet 0.154 broker 0.141

distributed 0.148 real-world 0.151 esb 0.14
apps 0.148 amqp 0.151 enterprise 0.14

real-time 0.144 xmpp 0.148 governance 0.14
backend 0.144 mule 0.148 messaging 0.137
oriented 0.144 decision 0.124 brokers 0.136

pros 0.144 soa 0.116 redis 0.136
cons 0.144 corba 0.116 soa 0.132
ready 0.144 messaging 0.11 lightweight 0.129

middleware 0.144 scalable 0.106 scalability 0.128
share 0.14 balancing 0.106 udp 0.128

experience 0.14 availability 0.106 mule 0.128
dto 0.14 dtos 0.106 activemq 0.127

communicate 0.14 alternatives 0.104 bus 0.126

Fig. 3: Agreement and confidence for ARP types according
to the purpose of the question.

V. DISTINCTIVE TERMS BETWEEN ARCHITECTURE AND
PROGRAMMING POSTS

In this section, we present our result to RQ3. Based on the
analysis process described in Section II, we present in table
V the top 20 terms. The distinctive terms in the post title,
question, and answers are represented as separate columns in
table V, and the gain ratio is associated with each term. The
terms are sorted in descending order according to their gain
ratio.

From table V, we notice that many of the mentioned terms
might refer to existing architectural concepts. For example,
words such as ”scalability”, ”throughput” and ”availability”
are amongst the top distinctive words, which are used usually
to refer to quality attributes, while words such as ”pros/cons”,
”compared” and ”decision” might refer to a decision making
situation, where the architect needs to decide between two or
more architectural solutions. In addition, we notice that archi-
tecture patterns (e.g., ”broker”, ”soa”, ”messaging”) are part of
the list of words to distinguish ARPs from programming posts.
Note that the terms do not express a strict relationship between
the terms and architectural concepts. This requires additional
context analysis. However, the mentioned observations could
give an indicator for the existence of such relationships.



VI. DISCUSSION

A. Interpretation of Results

The results of our study indicate that it is possible to
identify technology-related AK in SO. We found that most of
the ARPs belong to one of two types according to the purpose
of the question: solutions synthesis and evaluation. Both are
common software architecture design activities [16]. This
finding is a positive indicator for the suitability of capturing
and reusing of AK for technology decisions from SO posts.

By analysing the agreement across ARPs, we find that
ARPs related to evaluation have a higher agreement and
confidence level than synthesis posts. One explanation could
be that due to the richness of AK within the evaluation posts
(e.g., benefits and drawbacks of solutions, decision rules). This
type of knowledge embodies important factors for taking an
ADD. On the other hand, the classification of some other types
of posts differed among practitioners. For example, 56.2% of
practitioners agree with our classification of technology feature
posts for being ARPs. These results show that there could be
other aspects within these types of posts which have influenced
the classification decision of practitioners. The analysis and
discovery of these aspects is subject to future work.

The list of distinctive ARP terms show to align with exist-
ing software architecture concerns and solutions (e.g., quality
attributes, architectural patterns). This possible relationship
provides additional validation for our classification between
ARPs and PPPs, and indicates the possibility of analysing and
capturing knowledge within ARPs.

B. Threats to Validity

1) Reliability: By the end of our categorization of ARPs,
we made a final reliability test, and calculated Cohen’s Kappa
reliability coefficients [11] among 10% of our sample posts.
The reliability coefficient for the classification between ARPs
and PPPs is 0.9, while the classification of the ARPs into sub-
types has a reliability coefficient of 0.75. This indicates relia-
bility and agreement between classifications beyond chance.

2) Validity: The generalizability of our results could be a
limitation, as our conditions for gathering our sample, as well
as the sample size may not be representative for all possible
ARPs in SO. However, the results could be an initial hypothesis
for other future studies on ARPs. During our evaluation phase
with practitioners, we did not select our participants randomly,
but through our personal contacts. However, we considered
their architecture experience as a factor for selection. In
addition, the evaluation sampling method (stratified) of posts
given to practitioners helped us cover all the types of posts,
which made the evaluation more realistic. We collected our
analysis posts based on keywords for technology names. Even
though we considered the most popular technologies within the
middleware domain, we cannot claim that our list technologies
was exhaustive. There could be other posts related to less
popular technologies, which were not included in our list
of technologies. However, less popular technologies are most
likely not discussed in many posts and therefore should not
significantly impact our findings.

VII. CONCLUSION AND FUTURE WORK

Our goal was to support existing AK management
approaches with a more efficient method for capturing
technology-related AK. We wanted to check if SO could be a
viable source for reusable AK. Therefore, we conducted quali-
tative content analysis for a sample of SO posts. As a result of
this analysis, we identified Architecture-Relevant Posts (ARPs)
as one of the SO types. In addition, we further classified
ARPs into several sub-types, which have been evaluated by
practitioners. Our results showed that the identified ARP’s
types could be mapped to typical software architecture design
activities. This finding does not only proof the usefulness of
capturing AK from SO, rather it supports further analysis steps
for the AK concepts within the SO posts. As a first step
towards this direction, we performed additionally quantitative
analysis for the distinctive terms between the classified ARPs
and programming posts. The result list of distinctive words
shows a possible relationship with existing AK concepts. In
our future work, we will extend our analysis using additional
analysis methods to further explore the different AK concepts
and their relationships within ARPs, which will support build-
ing tools for automatically mining, classifying, and capturing
AK from ARPs, in order to support AK management systems.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

[2] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in WICSA, 2005, pp. 109–120.

[3] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster,
“Managing architectural decision models with dependency relations,
integrity constraints, and production rules,” Journal of Systems and
Software, vol. 82, no. 8, pp. 1249–1267, 2009.

[4] I. Gorton, J. Klein, and A. Nurgaliev, “Architecture knowledge for
evaluating scalable databases,” in WICSA, IEEE/IFIP, May 2015.

[5] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented
Software Architecture, Volume 4: A Pattern Language for Distributed
Computing. Chichester, UK: Wiley, 2007.

[6] M. Soliman, M. Riebisch, and U. Zdun, “Enriching architecture knowl-
edge with technology design decisions,” in WICSA, May 2015.

[7] C. Miesbauer and R. Weinreich, “Classification of design decisions: An
expert survey in practice,” ser. ECSA 2013. Springer-Verlag.

[8] G. von Krogh, “How does social software change knowledge manage-
ment? toward a strategic research agenda,” The Journal of Strategic
Information Systems, vol. 21, pp. 154 – 164, 2012.

[9] D. Pagano and W. Maalej, “How do open source communities blog?”
Empirical Software Engineering, vol. 18, no. 6, pp. 1090–1124, 2013.

[10] S. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming q & a in stackoverflow,” in
ICSM, Sept 2012, pp. 25–34.

[11] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educa-
tional and Psychological Measurement, vol. 20, no. 1, p. 37, 1960.

[12] P. Mayring, Qualitative Content Analysis. Theoretical Foundation, Basic
Procedures and Software Solution. Beltz, 2014.

[13] R. Rosnow and R. Rosenthal, Beginning Behavioral Research: A
Conceptual Primer. Pearson/Prentice Hall, 2008.

[14] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009.

[16] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and
P. America, “A general model of software architecture design derived
from five industrial approaches,” Journal of Systems and Software,
vol. 80, no. 1, pp. 106–126, Jan 2007.


