
Towards the Essentials of Architecture Documentation for
Avoiding Architecture Erosion

Sebastian Gerdes Stefanie Jasser Matthias Riebisch

Sandra Schröder Mohamed Soliman Tilmann Stehle

Department of Informatics, University of Hamburg
Hamburg, Germany

{gerdes, jasser, riebisch, schroeder, soliman, stehle}@informatik.uni-hamburg.de

ABSTRACT
Software architecture documentation is essential for prevent-
ing architecture erosion that is a major concern of sustain-
able software systems. However, the high effort for elabo-
ration and maintenance of architecture documentation hin-
ders its acceptance in practice. Most state-of-the-art re-
search methods assume comprehensive architecture docu-
mentation. By reducing architecture documentation to those
aspects that are most important for architecture erosion, we
want to achieve more acceptance for architecture documen-
tation especially in agile projects. This reduction, however,
has effects on architecture-related activities during software
design and implementation.

Keywords
Software architectures, Agile software development, Archi-
tecture description languages, Software evolution

1. INTRODUCTION
Software architectures are widely accepted as crucial for

developing complex and long-living software systems. Ar-
chitecture documentation is frequently considered as a po-
tential overhead effort. This holds especially true for ag-
ile development processes which are considered mainstream
today. On the other hand, documenting software architec-
ture and the underlying decisions is essential to communi-
cate with developers, in order to make them accept and un-
derstand the proposed architecture. This activity is known
as Architecture Enforcement [12]. Supporting developers to
have a better understanding and acceptance for the pro-
posed architecture would result in a more disciplined imple-
mentation of the architecture, which would consequently re-
duce the possibility of architecture erosion [7] as one factor.
Most works in academic research on architecture sustain-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAGRA’16, Nov 28 - Dec 2, 2016, Copenhagen, Denmark.
c© 2016 ACM. ISBN . . . $15.00

DOI:

ability assume fully documented architectures, as for exam-
ple the methods on impact analysis based on traceability.
A high effort for architecture documentation would be re-
quired to transfer these methods into industrial practice. In
addition, efforts in software architecture documentation (see
Section 2) do not provide enough guidance to support devel-
opers perceiving it.

With this position and vision paper, we present research
efforts extending a recent study [8] towards identifying as-
pects that are essential for architecture documentation dur-
ing evolution and which address the actual needs of software
architects and software developers who we consider as the
main stakeholders of an architecture documentation. The vi-
sion behind our research is twofold: an increased acceptance
for architecture documentation in practice by reducing the
effort for establishing and maintaining it, as well as sup-
porting developers to understand and implement software
architectures correctly.

2. RELATED WORK
Documentation of software architectures can be accom-

plished in various ways:
Informal documentation like drawings and associated text

are still widely used in industry [2]. In general, this kind
of documentation is unstructured, ambiguous and hardly
maintainable especially when systems evolve.

Semi-formal documentation consist of syntactically de-
fined elements with informally described semantics, such as
the de-facto industry standard Unified Modeling Language.

Formal documentation with formally defined syntax and
semantics are represented for example by several formal Ar-
chitecture Description Languages (ADL). Their formal and
detailed specification allows for tool-supported conformance
and consistency checking. However, a recent survey [5] re-
vealed that the majority of practitioners either stopped us-
ing formal ADLs or did not even consider to use them, be-
cause they considered ADLs as too heavy-weight.

Documentation of decisions. In the past decade there was
a paradigm shift towards documenting design decisions [4].
One of the first means to document them are design decision
templates [10] followed by various approaches in the field of
architecture knowledge management [9].

In agile approaches of software development, effort reduc-
tion and simplification led to the goal that software archi-
tecture documentation should only contain critical aspects,

such as architecturally significant requirements or diagrams
showing critical views [1]. Hadar et al. proposed the Ab-
stract Architecture Specification document containing the
relevant and updated information [3].

Prioritization occurs for example in requirements engi-
neering as well as in architecture design methodologies. Util-
ity trees represent an example, established for describing hi-
erarchies of goal refinement and for expressing priorities of
goals, for example as part of the Attribute-Driven Design
methodology ADD [11].

3. ENFORCEMENT CONCERNS TO
REDUCE ARCHITECTURE EROSION

This paper focuses on architecture enforcement. The aim
of this process is twofold. Firstly, it means sharing the re-
sults with stakeholders - especially developers - and getting
them accepted [12]. Moreover, this process also encompasses
architecture conformance checking, which means to assure
that decisions are implemented as intended by the archi-
tect, in order to minimize architecture erosion. Regardless
of the individuality of development projects, in [8] we iden-
tified concerns that are generally considered important by
software architects during architecture enforcement and to
reduce architecture erosion. In this study, we interviewed
12 experienced software architects from industry. In the fol-
lowing, we present some of our findings briefly:
for example, we found out that architects differentiate be-
tween macro and micro architecture. Those two views refer
to the level of architecture detail. The macro architecture
represents the general idea of the system and its fundamen-
tal architecture decisions, e.g. on structures, components,
data stores or architecture styles. The micro architecture
refers to the architecture within a specific component and
its detailed design. The micro architecture can be consid-
ered as the responsibility of a skilled developer and does not
have to be documented in the minimized architecture doc-
umentation. Architects should concentrate on documenting
the macro architecture.
Another interesting concern mentioned by experts was ap-
propriate use of technology. As shown in the survey of Mies-
bauer et al., most of the architecture decisions are technol-
ogy decisions [6], e.g. concerning frameworks, programming
languages or platforms. In our study, experts emphasized
that it is crucial to monitor how a specific technology is
used by developers. Technologies offer complex functional-
ity. Architectural rules can be easily violated if technologies
are not used in the intended way. That is why it could be
helpful to document how a chosen technology is supposed to
be used in the development project.
Patterns are also an important concern. Patterns can be
applied on different abstraction levels, from architecture, to
design and implementation. While the architect is consid-
ered to be responsible for patterns on design level, patterns
on implementation level are at the developers’ discretion. In
order to effectively guide the implementation (demand D3,
see next Section) and assess the architecture (demand D4),
the software architecture documentation should be able to
record the most important constraints regarding those pat-
terns. Even better, architecture patterns and styles and the
corresponding constraints should be expressible in testable
rules.
Other concerns mentioned by experts encompass architec-

ture principles, design for testability and visibility of domain
concepts, just to name a few. The full list of identified con-
cerns and corresponding explanations are given in [8].
Based on our findings we identified the need for a software
architecture documentation that helps architects - and de-
velopers - focusing on the most important concerns during
architecture enforcement, thus reducing architecture erosion
as one important factor. In the next sections we present the
demands to be fulfilled by such a documentation (Section
4). Moreover, we propose a process (Figure 2) which helps
deciding which concerns should be documented and which
of them should be documented semi-formally or even in a
formal way.

4. DEMANDS TO BE FULFILLED BY AR-
CHITECTURE DOCUMENTATION

In this section, we present four demands for an architec-
ture documentation D1 ... D4 in order to use it effectively
for architecture enforcement and as one factor preventing
architecture erosion during evolution:
D1: Preserving architecture knowledge. The mini-
mized architecture documentation needs to support the pre-
vention of uncontrolled loss of architecture knowledge for ef-
fective maintenance and evolution of software architecture.
D2: Facilitating Communication. The minimized ar-
chitecture documentation needs to facilitate the communica-
tion between architects and developers, for example through
the definition of a vocabulary to reason about a software
system’s essentials. Further support is provided through
the improved comprehension, which allows focusing on dis-
cussed elements. Moreover, the documentation should strive
for clarity and a shared understanding between stakehold-
ers, especially software architects and software developers.
D3: Guiding the implementation. The minimized doc-
umentation will guide the implementation and changes ef-
fectively by providing the information needed by developers
and maintainers and encourages a good comprehension of
the software architecture for those stakeholders. In order
to achieve this, the documentation should provide enough
information for them so that they are able to correctly im-
plement architecture decisions and additionally recognize if
their implementation adheres to the intended architecture
and the corresponding architecture rules.
D4: Support for Architecture Assessment. The mini-
mized documentation helps to validate and assess the archi-
tecture in terms of architecture conformance checking, i. e.
comparing the implemented architecture with the intended
architecture. In this way, it helps the architect to monitor
and control architecture evolution, in order to prevent archi-
tecture erosion and degraded software quality. That is why
the architecture documentation must record the architecture
rules that have to be respected by the implementation. It
should be possible to document which kind of violations can
possibly occur during implementation. Having this infor-
mation helps the architect to focus on the most risky parts
of an implementation during a code review. Furthermore,
the documentation needs to define how much flexibility is
allowed for developers, i.e. when they are allowed to break
certain rules and what aspects concerning architecture must
be definitely followed. In order to do this, it is required that
those aspects are appropriately formalized. In Section 5, we
will describe how to decide under which conditions an archi-

tecture solution should be formalized and when no documen-
tation is necessary, or a semi-formal documentation suffices.

5. PRIORITIZING ARCHITECTURAL AS-
PECTS

In order to minimize the effort which is needed to docu-
ment architecture decisions, the architecture’s documenta-
tion has to be reduced to its essentials. Although identify-
ing the architecture’s essentials induces additional efforts, it
helps to produce a useful architecture documentation that
developers can easily perceive. The extent of documentation
effort should represent the importance of the documented ar-
chitecture solution. This section introduces a process that
helps an architect to identify architecture essentials and de-
cide on the appropriate level of documentation for a planned
architecture solution.

Formal
Documentation

Documentation
Effort

Validation
Effort

No
Documentation

Semi-formal
Documentation

Figure 1: Three Levels of Documentation

We distinguish three levels of documentation as depicted
in Figure 1: the architect can decide not to document a
solution at all. His second option is to document it semi-
formally. Semi-formal means of expression have a well-defined
syntax. Their semantics, however, are defined ambiguously
using natural language. Furthermore, they sometimes define
syntax elements for additional undefined extensions to the
basic syntax and semantics. An example of a semi-formal
document is a UML-diagram using notes and project-specific
stereotypes. Thirdly, the architect can document his deci-
sions using a formal language. The three options differ in
the extend of effort necessary to apply them (documenta-
tion effort) and their utility for validating implementations
against the planned architecture solution (saved validation
effort). Furthermore, the amount of details represents an-
other way to decide on the documentation effort, even if not
considered here.

We propose a process for deciding on the appropriate level
of documentation as depicted in Figure 2. Obviously, the
decision on what is essential depends on the goals of the
project. As a running example, we assume a project with
the goal to provide a cloud service for applying filters to
images.

The first step of the process is to define the Non-Functional
Requirements (NFRs) as clearly as possible. This is done in
cooperation with the customer, who finally has to accept the
product. In an agile development process, NFR definition
might occur in a later iteration as well.

Regarding our image filtering service, the targeted time
performance requirements can be stated clearly by accord-
ing measures such as response time. Accordingly, interoper-
ability can be defined by stating the interface and protocol
standards, that shall be fulfilled by the service.

As a second step, the NFRs have to be prioritized. Just
like the first step, this is done in accordance with the cus-
tomer’s demands. In our image filtering example, the cus-

Beneficiaries

Constraints

Requirements

Document
formally

Document
semi-formally

Assess risk
of nonconformance

Develop Solution

Define NFRs

Prioritize NFRs

[All NFRs
addressed]

[!high]

[high risk OR tool support] [else]

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 [more NFRs]

 [high]

Figure 2: Reducing architecture documentation
based on prioritized NFRs

tomer might assign a very high priority to interoperability,
while fault tolerance and correctness are less important. For
documentation, only high-priority NFRs are taken into con-
sideration, even if low-priority NFRs are addressed by ar-
chitecture solutions as well. Not documenting the solutions
has some obvious drawbacks: these solutions are less likely
to be implemented correctly, their implementation can not
be validated against a documentation, and new team mem-
bers can only learn them by reviewing the existing code or
by learning from other team members. The benefit of not
documenting some less important solutions in favor of oth-
ers is that developers are more likely to actually use and
completely perceive the documentation. Thus, they can un-
derstand the architecture’s value for the project, accordingly
obey the defined architecture constraints and use the doc-
umented structures and terms for communication. In this
way, the created lightweight documentation disencumbers
the architect’s job, as less effort is needed not only to main-
tain the documentation, but also to enforce it.

In the third step of the process, the architect develops an
appropriate solution for the most important NFRs. This ar-
chitecture development is highly influenced by the project’s
constraints such as existing infrastructures, predetermined
technologies or project budget. In this way, the architecture
decision itself, also the related constraints, are documented;
in this way, future architects and beneficiaries will be able to
assess and revise these decisions. In our cloud-based image
filtering example, the customer might already run a cloud
infrastructure which the new service shall be embedded in
to save additional costs of operation.

The risk of nonconformance is influenced by two factors,
that the architect has to assess, once solutions that fulfill the
NFRs of high priority are defined: one factor is the proba-
bility that implementations do not conform to the planned
solution. As a second factor, he has to assess the differ-
ent impacts of potential nonconformance. There are many
aspects that affect the probability of nonconformance: solu-
tions which are often discussed or need explanation by devel-
opers are more likely to cause nonconformance than common
sense solutions. Analogously, more complex or nonstandard

solutions bear a higher risk of nonconformance than a simple
or standard solution.

The architect has to ensure the correct implementation
of solutions that fulfill important NFRs. Accordingly, these
solutions should be documented formally, such that available
tools for validation can be used. Tool support for creating,
editing and utilizing the produced documentation represents
an important concern.

In contrast, a semi-formal documentation is sufficient for
architecture aspects that carry a lower risk of nonconfor-
mance. Although the utility of semi-formal documentation
for tool based validation is limited, they bring the benefit
of low learning efforts. On the other hand, they tend to be
ambiguous and incomplete. Furthermore, these typical in-
adequacies of semi-formal documentation are hard to find,
especially for their authors.

Formal documentation demand for a considerable effort
to learn its syntax and the handling of associated tools. Ad-
ditionally, the architect is bound to the expressive power of
the chosen language, which possibly does not cover some as-
pects of the documented solution. Laborious workarounds
can be necessary in this situation. However, the according
efforts are lowered by the available tool support for creating
and editing formal language (see Figure 1). Once a for-
mal solution is set up, it can be utilized to automatically
validate an implementation. Due to its’ automation, the
validation can be conducted earlier in the development pro-
cess and it can be repeated at the same precision without
high efforts. In our exemplary development project for im-
age filtering in a cloud environment, the architect assesses
the risk very high, that developers might not fulfill a certain
protocol, because they can freely edit the client to commu-
nicate with the service in a non-standard way. In this case, a
well-documented dummy-client could serve to document the
concrete interface in a testable manner. This way, the archi-
tect can ensure, that the service can be used by any other
client that communicates in conformance with the chosen
protocol. For the performance requirements, a short, non-
formal documentation might suffice, if the developers are
experienced in implementing image processing software and
according libraries are already part of their toolbox.

6. CONCLUSIONS AND FUTURE WORK
In this paper we propose a first suggestion about how ar-

chitecture aspects should be prioritized and if they should
be captured in the architecture documentation. The goal
is to create software architecture documentation that only
captures the most essential architecture aspects w.r.t evolu-
tion. For this, we propose a process helping in identifying
the most important concerns. We additionally present sev-
eral demands concerning software architecture documenta-
tion. This paper provides a vision towards a more efficient
and effective software architecture documentation.

Nevertheless, more work has to be done in order to eval-
uate the suggested process presented in Section 5. We plan
to conduct empirical studies in order to investigate the state
of the practice concerning software architecture documenta-
tion. In this study, we firstly want to investigate what kind
of information is actually captured in a software architecture
document, who is using it and which information is actually
used from it. Furthermore, the study shall reveal if and how
practitioners use a kind of prioritization in order to decide
which information should be documented. Additionally, we

want to investigate the influence of architecture documenta-
tion on a reduction of architecture erosion. In a next step,
we want to evaluate our process in an industrial environ-
ment. Based on the study results, the prioritization process
will be refined.

Beyond the guideline on what is to be documented at
what level (see Section 5), we plan to further investigate,
which concrete types of semi-formal and formal means of
expression and which amount of detail are appropriate for
architecture enforcements of different architecture aspects.
Thus, we strive to provide clear guidelines for architects to
use appropriate architecture documentation instead of using
UML-like diagrams or informal boxes and lines at random.

More work has to be invested to documentation activities
in agile processes because of the inherent focus on simplifi-
cation and process efficiency.

7. REFERENCES
[1] S. Ambler. Agile ModModel. Effective Practices for

eXtreme Programming and the Unified Process. John
Wiley & Sons, 2002.

[2] P. Clements, F. Bachman, L. Bass, D. Garlan,
J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architectures. Views and
Beyond. Addison-Wesley Longman, Amsterdam, 2003.

[3] I. Hadar, S. Sherman, E. Hadar, and J. J. Harrison.
Less is more: Architecture documentation for agile
development. In CHASE ’13, May 2013.

[4] A. Jansen and J. Bosch. Software Architecture as a
Set of Architectural Design Decisions. In WICSA ’05,
2005.

[5] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and
A. Tang. What Industry Needs from Architectural
Languages: A Survey. IEEE Trans. Softw. Eng., 2013.

[6] C. Miesbauer and R. Weinreich. Classification of
design decisions–an expert survey in practice. In
ECSA 2013, pages 130–145. Springer, 2013.

[7] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes,
17(4):40–52, Oct. 1992.

[8] S. Schröder, M. Riebisch, and M. Soliman.
Architecture enforcement concerns and activities - an
expert study. In ECSA ’16, 2016.

[9] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and
M. Ali Babar. A comparative study of architecture
knowledge management tools. J. Syst. Software,
83:352–370, 2010.

[10] J. Tyree and A. Akerman. Architecture decisions:
Demystifying architecture. IEEE software,
22(2):19–27, 2005.

[11] R. Wojcik, F. Bachmann, L. Bass, P. Clements,
P. Merson, R. Nord, and B. Wood. Attribute-Driven
Design (ADD), Version 2.0. Technical report,
CMU/SEI, 2006.

[12] O. Zimmermann, T. Gschwind, J. Küster,
F. Leymann, and N. Schuster. Reusable architectural
decision models for enterprise application
development. In QoSA ’07, pages 15–32, 2007.

