
Optimal Feature Selection via Evolutionary Algorithms
and Constraint Solving

Yibo Wang and Lothar Hotz 1

Abstract. In software development, product lines especially with
feature models are promising technologies to manage variability of
software products. A new challenge in deriving software products
from the product line is not only to select a set of features, which do
not incur any feature inconsistencies, but to optimize multiple objec-
tives (e.g. cost minimization and maximization of feature reuse) at
the same time. This challenge is a constrained multi-objective opti-
mization problem and has been proved to be difficult. In this paper,
we approach this problem by utilizing the state-of-the-art method
SATIBEA, which combines a multi-objective evolutionary algorithm
with constraint solving techniques. The contribution of our approach
is that we enhanced SATIBEA in two ways: by improving its muta-
tion operator and by providing a novel crossover operator. Our em-
pirical experiment results have shown that our approach SATIBEA+
improved SATIBEA noticeably, in providing more valid and more
qualitative feature selections in terms of the standard measures such
as hypervolume and Pareto front size.

1 INTRODUCTION

In many engineering fields, more and more emphasis is put on prod-
uct line technology due to the need for customization with low efforts
and in short terms. Planned variability, expressed in product models
such as feature models [8], allows a smart configuration of products
and services. However, products and services have to fulfill growing
non-functional requirements, such as safety or cost, due to the in-
creased competition on the markets. Such requirements more often
demand for optimizations for achieving best fitted products to user-
s’ needs. Meanwhile, multiple non-functional requirements have to
be considered together during optimization, although they might be
non-commensurable or competing.

The field of product configuration is trying to cope with such prob-
lems. A configuration is a description of all parts with their appropri-
ate parameters that are needed to build the product that hopefully
will fulfill the given requirements. In product configuration, the con-
figuration problem starts from certain user requirements and from a
configuration model which implicitly describes all configurations of
a certain domain. By using reasoning technology (e.g. a SAT-Solver
[16]), the configuration problem is solved by automatically creating
configurations. In the specific case of software product lines (SPL),
configuration models are often expressed by feature models repre-
senting all features of a product and the configuration consists of
selected features from such models. In this paper, this general task is
further enhanced by taking optimization into account.

1 Department of Informatics, University of Hamburg, Germany, email:
wang@informatik.uni-hamburg.de

Technologies that approach this problems are SAT-solvers that al-
low the computation of valid feature configurations [7, 16] and evo-
lutionary algorithms that are capable to compute solutions for multi-
objective optimization problems [5, 10, 12, 14]. Evolutionary algo-
rithms start with a set (an initial generation) of individuals (here,
potential feature configurations), and modify them by mutation and
crossover in the following generations. A mutation changes one in-
dividual (here, by selecting other features) and crossover combines
a few individuals to a further individual (here, a new configuration
generated by combination).

Syyad et al. [12] showed that for solving multi objective problem-
s, especially with an increased number of objectives, indicator-based
approaches (IBEA) outperform dominance-based ones. Dominance-
based approaches rank solutions according to absolute dominance
while indicator-based approaches provide an “amount” of dominance
by computing a value which incorporates user preferences. Based on
this, Henard et al. [5] introduced SATIBEA, which applies a SAT-
solver in the mutation operator to correct a configuration for return-
ing a valid mutation. However, we have found that SATIBEA often
fails for complex feature models with thousands of features and con-
straints. In addition, the standard 1-point crossover used in SATIBEA
generates in most cases worse offsprings (with more feature viola-
tions) than their parents, due to an arbitrary combination from par-
ents. Thus, our work complements the existing work of SATIBEA
(leading to SATIBEA+). The main contributions of our approach
SATIBEA+ can be summarized as following:

• We improve mutation operator of SATIBEA so that it finds more
valid configurations for complex feature models.

• We provide a novel crossover operator which reduces the num-
ber of feature violations for an invalid solution by learning from
another configuration.

• We show that SATIBEA+ outperforms SATIBEA, in providing
more valid and qualitative configurations in terms of hypervolume
and Pareto front size.

The paper is organized as follows: Section 2 presents the underlying
technologies which are used in our approach (Section 3). For eval-
uating this approach, we defined research questions (Section 4) and
verify them through experiments (Section 5 and Section 6). The sec-
tions 7, 8, and 9 provide discussions, related work, and a conclusion.

2 BASIC TECHNOLOGIES
In SPL, the variability of products (i.e., the configuration space) is
typically represented as feature models. They express all decision
variables that are subject to select and optimize (Subsection 2.1).
A main aspect of this paper is to support the combination of tech-
nologies that are capable to compute consistent configurations and



that are capable to optimize those configurations. In our approach,
we use SAT-solvers for consistency checking (Subsection 2.2) and
evolutionary algorithms for computing multi-objective optimization
problems (Subsection 2.3). The rest of the paper shows, how we in-
corporate both technologies, i.e., the SAT-solver used as a mutation
method for the evolutionary algorithm.

2.1 Feature Models and Feature Constraints

In software product lines, feature models are often used to express
variability of products. Features can be modeled with mandatory,
optional, and alternative constraints, as well as attributes (extended
feature models [2]). Furthermore, relations between features can be
expressed such as exclude or require which are all considered here
as integrity constraints or simply constraints (see [11]). Thus, con-
straints relate to features. In this paper, we divide a feature model into
features and constraints on one side to form the consistency part of
the feature model and feature attributes on the other side to form the
optimization part of the feature model. In the general form, feature
attributes might also belong to the consistency part. Figure 1 presents
an example also later used in the paper.

The task is now to select features from the feature model given
some preferred features so that a valid configuration is created (fea-
ture selection) that fulfills the constraints. For simplicity, in this pa-
per we consider the special case where the set of preferred features is
empty. This can be considered as a constraint satisfaction problem,
defined as follows [7]:

Definition (Constraint Satisfaction Problem – CSP). A con-
straint satisfaction problem (CSP) is defined by a triple (V,
D, C) where V represents a set of finite domain variables
V = {v1, v2, ..., vn}, D represents variable domains D =
{dom(v1), dom(v2), ..., dom(vn)}, and C represents a set of con-
straints defining restrictions on the possible combinations of variable
values (C = {c1, c2, ..., cm}).

A feature selection problem is a CSP where variables represent
features defined in a feature model.

A solution to a given CSP = (V, D, C) can be defined as follows:
Definition (CSP Solution). A solution for a giv-

en CSP = (V, D, C) is represented by an assignment
A = {ins(v1), ins(v2), ..., ins(vk)} where ins(vi) ∈ dom(vi).
We require solutions to be complete, i.e., to be represented by an
assignment where each variable in the definition of the CSP is
instantiated and consistent which means that the assignment A is
consistent with the constraints in C.

Thus, a feature selection (or configuration) is a CSP solution of a
feature selection problem.

2.2 SAT-based constraint resolving

A propositional logic formula consists of binary variables and the op-
erators AND, OR, and NOT . A truth value (TRUE or FALSE)
can be assigned to each binary variable. By assigning a truth value
to each variable a formula can be satisfied, i.e., results to TRUE.
A boolean satisfiability problem (SAT) is given by the task to check
whether a given formula is satisfiable. As an extension, a further task
is to assign values to not pre-assigned variables to make a formula
satisfiable.

A feature selection problem can be mapped to a SAT problem by
introducing binary variables for each feature and map constraints to
formulas. A SAT solver, such as SAT4J [1] can be used to check
the constraint violations of a solution or to compute valid variable
assignments for not pre-assigned variables.

2.3 Multi-objective Evolutionary Optimization
Algorithms (MOEAs)

In multi-objective optimization, multiple objective functions have to
be optimized at the same time. We define a feature optimization prob-
lem as follows (see [5]): Compute min(F1(x), F2(x), . . . , Fk(x))
with k the number of objective functions and x ∈ X is the set
of possible feature configurations. Each Fi(x) is an objective func-
tion based on feature attributes. We introduce the boolean attribute
“selected” to indicate if a feature is selected in the configuration or
not. Each Fi(x) has to be minimized. In evolutionary algorithms, d-
ifferent Fi(x)s are combined to a single value, the fitness value, to
evaluate a feature configuration.

Let x1 and x2 be two potential solutions to the problem. We say
that x1 dominates x2, if and only if ∀i ∈ {1, . . . , k} : Fi(x1) ≤
Fi(x2) and ∃i ∈ {1, . . . , k} : Fi(x1) < Fi(x2). Given x1, . . . , xn
potential solutions to the multi-objective optimization problem, the
Pareto front corresponds to the subset of these potential solutions
that are non-dominated by the others.

Each solution in the Pareto front is optimal in the sense that it can-
not be improved in one objective function without degrading another
one. Furthermore, all solutions in a Pareto front are equally optimal.
However, solutions obtained by MOEAs are not exactly the Pareto
front, but an approximation of it. Two properties are used to evaluate
the quality of the obtained solutions: convergence and diversity. The
first one describes how near they are to the Pareto front, while the
second one indicates how uniformly they distribute. A good solution
would have good convergence and diversity at the same time.

As pointed out in the introduction, indicator-based evolutionary
algorithms (IBEA) provide a mean for solving multi-objective opti-
mization problems (MOP). The rest of the paper will explain how
those technologies are applied for computing optimal feature config-
urations.

3 THE PROPOSED APPROACH - SATIBEA+

The main task of the automatic generation of configurations of SPLs
considered here is to find a set of valid and optimal feature selections
in consideration of multiple objectives. It means, at the end of the
search process, the resulting configurations must be valid. In other
words, the number of constraint violations should be zero in the final
configurations. Although invalid configurations are permitted as in-
termediate results, minimization of the number of invalid constraints
should be defined as an objective for the search process. Moreover,
the more valid configurations at the end of the process are generated,
the more useful is the search result, because more feasible configu-
ration could be given to decision makers for the final selection.

In order to reduce the number of feature violations and increase
the percentage of the valid configurations, the invalid configura-
tions should be replaced by valid ones or at least by “better” ones
(with less constraint violations) gradually during the search process.
Our approach is based on the SATIBEA approach, so we name it
“SATIBEA+”. Similar to SATIBEA, we also use the SAT-solver
to repair invalid configurations. In addition, SATIBEA+ can also
change an invalid configuration into a valid or a “better” one by learn-
ing from an another configuration. In our approach, we extend the
“smart” operators of “SATIBEA” to “smart+” operators to achieve
this goal.

3.1 “Smart” and “Smart+” Operators

We introduce two “smart+” operators as an extension of “mboxs-
mart” operators of [5]. The operators are called “smart”, because they



Figure 1. Example of a feature model including feature attributes based on [9]

can turn an invalid configuration into a full valid one or at least makes
it better. Furthermore, they change a configuration only slightly (the
change will be as little as possible).

3.1.1 Smart and Smart+ Mutation
This type of mutation operator is an unary operator acting on a single
configuration aiming to change it from invalid to valid. Thus, the out-
put of this operator should be a configuration without any constraint
violation.

Smart Mutation of SATIBEA: Before mutation, constraint vi-
olations are calculated for a configuration. Then, features in this
configuration are divided into two groups: the “bad” ones and the
“good” ones. The former refers to the features, which are involved in
at least one of the constraint violations. The latter refers to the fea-
tures, which do not incur in any constraint violation. Then the feature
assignments of bad ones will be removed while the assignments for
good ones remain unchanged. After that, smart mutation will inquire
the SAT-solver for a valid configuration under this assumption.

Figure 2. An positive example for the smart mutation in SATIBEA

Considering the configuration in the Figure 2 for the feature mod-
el defined in the Figure 1, it has a constraint violation of the require
relation between 7 and 15 (the left side of Figure 2). In the follow-
ing figures, the unselected features are struck out. If we remove the
assignments of the features 7 and 15 and give the assignments of the
rest features to the SAT-solver, then it will return a valid configura-
tion without any violations (the right side). In this case, only the bad
features will be changed (Feature 15). But what happens, if we apply
this operator to repair the other invalid configuration shown in Fig-
ure 3 (the left side)? Like in Figure 2, the exclude relation between
feature 7 and 15 is violated in this configuration.

According to all of the possible feature assignments of 7 and 15
(the right side), it is impossible to find a valid configuration. The
more features and the more feature constraints a feature model has,
the more likely no solution could be found by a SAT-solver. We have
found that for the complex feature models (eCos, FreeBSD and Lin-
ux in Table 1) used in our experiment, the mutation operator of SAT-
IBEA failed to find even just one valid configuration.

Figure 3. An negative example for the smart mutation in SATIBEA

Figure 4. Using the new smart+ mutation to repair the configuration in the
negative example

Smart+ mutation of SATIBEA+: In order to overcome this
shortcoming, we introduce the concept of connected features. A
feature x is “connected” with a feature y, if both features appear in
the same feature constraint. For a feature x, we iterate all feature
constraints and save all connected features with x in a set S. Then,
we call S the connected features for the feature x. For example,
the feature 7 has the connected features {4, 5, 6, 10, 15} in the
Figure 1, because there is at least one feature constraint defined
between 7 and those. To search for an invalid configuration, we
extended the set of the bad features with their connected features. It
inquires the SAT-solver for a valid configuration while remaining
the assignments of the good features (but without keeping the
assignments of the connected features). Thus, we can now repair
the invalid configuration in the Figure 3. As shown in Figure 4,
not only the bad features, but also the their connected features,
can be changed (features 14, 15 and 16 have been changed). With
this extension, the failure rate of the repair operator for the Linux
configuration model has been reduced up to 30% (see Section 6).

3.1.2 Smart+ Crossover
This operator is a binary operator acting on two configurations
(called the parents in EA) aiming to reduce the constraint violations



of the first one. Thus, the output of this operator should be a new
configuration (called the offspring in EA) with a reduced number of
constraint violations. The crossover operator uses a crossover point
which splits a configuration (a list of features) into two parts, before
and after the point.

1-point Crossover of SATIBEA: This crossover operator com-
bines two configurations in a new one by applying the feature as-
signments of the first one before the randomly selected crossover
point and applying the feature assignments of the second one af-
ter the crossover point. Because the crossover point is selected ran-
domly and feature values are simply copied without consideration of
constraints, the number of constraint violations will be reduced also
randomly. The more features and the more feature constraints a fea-
ture model has, the more likely no reduction of constraints could be
achieved. We have found that for the complex feature models used in
our experiment, the constraint violations has been even increased in
most cases.
Algorithm 1 smart+ crossover

1: Input: p1, p2
2: offspring = p1.copy()
3: violatedConstraintsP1 = getViolatedConstraints(p1);
4: violatedConstraintsP2 = getViolatedConstraints(p2);
5: for each constraint in violatedConstraintsP1 do
6: if constraint not in violatedConstraintsP2 then
7: for each featureX in constraint do
8: valueOf(offspring, featureX) = valueOf(p2, featureX);
9: end for

10: end if
11: end for
12: return offspring

Smart+ crossover in SATIBEA+: Instead of generating an off-
spring by exchanging values of configurations arbitrarily, we correct
feature violations in one configuration by learning “good” feature as-
signments from the other one. We introduce the smart+ crossover op-
erator in Algorithm 1. The inputs are two configurations p1 and p2 as
parents (line 1) and the output is the resulting configuration offspring
(line 12). The algorithm begins with copying p1 as the prototype of
the offspring (line 2). Then it calculates the violated constraints of
both parent configurations (line 3-4). For each violated constrain-
t in p1 (also in offspring, because it is the copy of p1), if we could
find feature assignments in p2, which do not violate this constraint,
then we use these the “good” feature assignments of p2 to replace the
“bad” ones in offspring (5-11). Please note that smart crossover is not
aiming to resolve all invalid feature constraints, just as smart muta-
tion does. It will only “improve” a configuration. It could generate an
offspring without any invalid feature constraint, but not necessarily.

Suppose the configuration Parent 1 in the Figure 5, which has 4
feature invalid constraints. Its counterpart Parent 2 has only 2 feature
constraints. Because the first three constraints of Parent 1 are not
violated in Parent 2, Parent 1 could replace their problem features 4,
6, 7, 13, 14 with the “good” feature assignments of Parent 2. Thus,
the generated Offspring has only one feature violation, which could
not be fixed anyhow (because it is violated in both configurations).
With this extension, the number of constraint violations for the Linux
configuration model can be reduced in almost 70% of the cases (see
Section 6).
3.2 Other changes against SATIBEA
3.2.1 Mating Selection
It is a selection operator which acts on a set of configurations aiming
to generate parents for crossover. In evolutionary algorithms, solu-

Figure 5. An example by using smart+ crossover to improve a
configuration

tions with better fitness values should have better opportunities to be
selected as parents for the crossover.

Mutation selection of SATIBEA: Binary tournament strategy
[14] has been applied in SATIBEA. From two randomly selected
configurations, the better one (with the better fitness value) will be
selected as the parent.

Changes in SATIBEA+: Instead of selecting parents by consid-
ering only fitness values, we make additional limitations on the s-
election process. Recalling the smart crossover defined in the last
section, the “bad” configuration will get improved by learning from
the “good” one. Thus, we limit a “good” configuration only on the
ones without any constraint violations. It can be selected only from
the set of valid configurations. In contrast, a “bad” configuration can
be selected from any configurations, as in SATIBEA.
3.2.2 Smart Replacement
This operator is aiming to add new solutions randomly in the current
population.

Smart Replacement of SATIBEA: In SATIBEA, it picks up a
configuration from the current population randomly and replace it
with a new valid configuration, which is also generated randomly.

Changes in SATIBEA+: Because this operator adds valid config-
urations into the population arbitrarily and periodically, it could pro-
duce uncontrolled influence on the final result so that effectiveness
of smart operators could not be measured properly. In this paper, we
investigated the influence of this operator.

3.3 The SATIBEA+ approach
The simplified activity diagram of SATIBEA+ can be seen in Figure
6. It augments SATIBEA with the new smart operators (steps 5-7).
The other activities (steps 1-4 and 8) are described in detail in [12]
and [5]. Like other MOEAs, it evolves a population of configurations
from generation to generation (circles from 3 to 7 and back to 3)
aiming to optimize given objectives. The difference is that features
constraints are taken into account in the following activities:

• Steps 2 and 3: The number of constraint violations is considered
as an extra objective to minimize. Its value is integrated in the
calculation of fitness value by IBEA.

• Step 5: Smart mating selection selects a “good” parent (without
constraint violations) and a “bad” parent (possibly with constraint
violations) for crossover.



Figure 6. Activity diagram of SATIBEA+. Extensions compared to
SATIBEA are marked in gray.

• Step 6: Smart+ crossover reduces the number of constraint vio-
lations in generating an offspring. It repairs the “bad” parent by
learning from the “good” one.

• Step 7: Smart+ mutation eliminates constraint violations in chang-
ing an invalid configuration into a valid one.

• Step 8: Only the valid configurations will be considered as result,
because configurations with any constraint violations are useless
for the end user.

4 RESEARCH QUESTIONS
We conducted experiments to empirically compare the performance
of SATIBEA+ with that of SATIBEA. Specially, we attempted to find
answers for the following questions:
RQ1. How are the results found by SATIBEA+ compared to the re-
sults found by SATIBEA? Is the improvement repeatable on feature
models with different sizes?
RQ2. How well does the new mutation operator affect the perfor-
mance of search techniques?
RQ3. Is the new crossover operator actually more effective than the
classic 1-point crossover used by SATIBEA?
RQ4. How much does the smart replacement operator affect the re-
sults?
RQ5. How does the algorithm implemented by SATIBEA+ work ac-
cording to performance compared to SATIBEA?

5 EXPERIMENTAL DESIGN
5.1 Experimental Subjects
The study uses 4 feature models from the public feature model repos-
itories SPLOT2 and LVAT3. The characteristics of these feature mod-
els used in the experiment are summarized in Table 1 with the repos-
itory information (Repository), the name of the feature model (Mod-
el), the number of features (#Fea.), and the number of constraints
(#Cons.).

Web Portal is a small demo feature model, which we are using to
illustrate our approach (Figure 1). eCos and Linux X86 are exam-
ples of middle and big-sized feature models. They were reverse engi-
neered by analyzing source codes, comments, and documentations of
Linux kernel and eCos operation systems. Following the experiments
used by [5, 9, 12, 15], each feature of used feature models is aug-
mented by 3 attributes: cost ε R≥0, defects ε Z≥0 and used before
ε Boolean. The values for these attributes have been set arbitrari-
ly in the feature model with an uniform distribution (cost in (5.0,

2 Software Product Line Online Tools, http://splot-research.org/
3 Linux Variability Analysis Tools, http://code.google.com/p/
linux-variability-analysis-tools/

15.0), defects in (0, 10) and used before in (true, false)). There is
only one dependency which should be considered by the generation
of attribute values. It can be formulated as: if (not used before) then
defects=0.

Repository Model #Fea. #Cons.
SPLOT Web Portal 16 26

LVAT
eCos 1244 3146

FreeBSD 1369 62183
Linux X86 6888 343944

Table 1. Feature models used in the experiment

5.2 The optimization problems
For the feature models introduced above, we are optimizing the fol-
lowing objectives formulated as minimization problems uniformly.
They are calculated by the formula defined in Table 2.

• Correctness: Any constraint violation is not allowed in the final
configurations. But as an objective in the optimization framework,
we intend to minimize it.

• Richness of features: In a configuration, we want to have as many
features selected as possible. It implies that the number of unse-
lected features should be minimized.

• Cost: The total cost for a configuration should be minimized.
• Defects: The number of defects, which are caused by selected fea-

tures, should be also minimized.
• Feature used before: In order to reduce the product risk, we are

seeking to find the configurations that have minimized number of
unused features.

Objective Calculation formula for objectives
Correctness

∑
Cons.(violated = true)

Richness of features
∑

Fea.(selected = false)
Cost

∑
Fea.(selected = true).cost

Defects
∑

Fea.(selected = true).defects
Feature used before

∑
Fea.(selected = true&used before = true)

Table 2. Objectives used in the experiment

5.3 Implementation and Experimental Settings
1. Implementation:

We used jMetal[3], an open-source Java framework for multiob-
jective optimization and SAT4j[1], a open-source library of SAT
solvers to implement SATIBEA+. In addition, we compared SAT-
IBEA+ with the original SATIBEA algorithm4.

2. Parameter settings:
All the experiments were performed on a computer with Quad
Core@2.90 GHz CPU and 16 GB RAM, running on Windows
7. In order to compare with SATIBEA under fair conditions, we
used exactly the same parameters for the evolutionary algorithm
as the ones of [5]. Thus, SATIBEA+ differentiates SATIBEA only
from EA-operators. Table 3 lists the used parameter settings and
gives for each parameter a short description. To evaluate the in-
fluence of the smart replacement, we execute our experiment in
two variations, namely with smart replacement and without smart
replacement (last row of Table 3). In order to avoid the problem of
genetic drift (diversity loss) described in [14], the smart crossover
and smart mutation is only executed with low frequencies. Please

4 Implementation of SATIBEA, http://research.henard.net/SPL/
ICSE_2015/



note, the focus of this paper, was on comparing SATIBEA+ with
SATIBEA, rather than tuning the parameters to achieve the best
performance, which could be explored in future work.

Parameter Explanation Setting

Population size Number of new configurations in
the current population 300

Archive size Number of configurations from the
last population 300

Crossover
probability

Probability that a crossover is
executed 0.05

Probability for
using standard

mutation

Probability that a standard
mutation is executed 0.98

Probability for
bit flipping in the

standard
mutation

Probability that a changeable
feature (not mandatory and dead

feature) is flipped
0.001

Probability for
using smart

mutation

Probability that a smart mutation is
executed 0.01

Probability for
using smart
replacement

Probability that a smart
replacement is executed 0.01 or 0

Table 3. Parameter settings

5.4 Performance metrics
To evaluate the studied approach, we measure the calculated Pare-
to front in three directions: convergence, diversity, and computation
time. Convergence metrics evaluate the effectiveness of the solutions
in terms of their closeness to the optimal Pareto front, while diversi-
ty metrics measure the distribution of the solution set. Computation
time is the length of time required to perform an algorithm, which
represents its computational complexity. In our approach, they are
represented by the following three indicators:

1. Hypervolume (HV)
The hypervolume indicator, associated with a solution set S is giv-
en by the volume of the objective space portion that is weakly
dominated by the set S [14]. It combines convergence and diversi-
ty measurement in a single indicator. In jMetal, all objectives are
to be minimized and the Pareto front is inverted before the HV is
calculated. Thus, the more HV value a solution set has, the more
qualitative it is.

2. Pareto front size (PFS)
Like HV, it is a combined indicator for the measurement of conver-
gence and diversity. Although correctness is defined as a separate
objective to be minimized in Table 2, there might be still some in-
valid configurations (with constraint violations) in the results. We
use PFS to measure the number of unique and valid solutions in
the obtained Pareto front. Because duplicated configurations are
treated as a single one, it also gives a hint about the diversity of
the solution set. A higher PFS value is preferred, because more
valid configurations can be presented to the user.

3. Execution time (ET)
This run-time indicator calculates the duration of the evolutionary
algorithm for a given number of iterations. In each iteration, oper-
ations such as crossover and mutation will be executed. A higher
ET value denotes a higher time complexity of an algorithm.

6 EXPERIMENTAL RESULTS
This section presents the results when applied to the 4 feature mod-
els. The performance metrics achieved by SATIBEA+ and by SAT-

IBEA have been compared to each other. To investigate the contri-
bution of the smart operators independently, three combinations are
designed as followings:

1. The original SATIBEA with Smart Mutation: the original ap-
proach

2. SATIBEA+ with Smart Mutation+ but without Smart Crossover:
the filtered SATIEBA+ approach

3. SATIBEA+ with Smart Mutation+ and with Smart Crossover: the
SATIBEA+ approach

For each combination, we run the algorithm 30 times and for each run
with a given number of objective evaluations. The number of objec-
tive evaluations equals the execution times of crossover and mutation
in jMetal. Then we reported the medium values of the metrics.

6.1 With smart replacement vs. without smart
replacement

As described above, the smart replacement will add a valid configu-
ration to the population with a probability of one percent. If it had a
strong influence on the result, then it would “flood” the contribution
of the other smart operators. Thus, we executed our experiment with
and without smart replacement separately. Each run is executed with
25000 objective evaluations (default value set by jMetal). The results
are recorded in Table 4 and 5. When interpreting the results, we make
the following observations:

Model
Perfor-
mance

indicators
SATIBEA

Filtered
SATI-
BEA+

SATI-
BEA+

Web Portal
HV 0.066 0.067 0.067
PFS 24 27 27

ET (ms) 12909 12938 12980.3

eCos
HV 0.244 0.236 0.227
PFS 82 203 215

ET (ms) 16161 15925 15869

FreeBSD
HV 0.257 0.254 0.258
PFS 41 47 148

ET (ms) 64558 67647 67639

Linux X86
HV 0.237 0.241 0.238
PFS 40 112 151

ET (ms) 247084 256192 257110

Table 4. Evaluation results with smart replacement (25000 objective
evaluations)

Model
Perfor-
mance

indicators
SATIBEA

Filtered
SATI-
BEA+

SATI-
BEA+

Web Portal
HV 0.069 0.066 0.069
PFS 24 26 26

ET (ms) 13073 13809 13385

eCos
HV 0 0.203 0.209
PFS 0 196 190

ET (ms) 16971 17832 16184

FreeBSD
HV 0 0.255 0.254
PFS 0 55 148

ET (ms) 70034 66574 71213

Linux X86
HV 0.010 0.245 0.243
PFS 0 138 177

ET (ms) 224468 264858 270617

Table 5. Evaluation results without smart replacement (25000 objective
evaluations)

Answering RQ4 (compare Table 4 and Table 5): The result of
the experiment is “glamorized” with smart replacement. Although



SATIBEA was not able to find any valid solutions for complex FMs
(eCos, FreeBSD and Linux) without using smart replacement (Table
5), a couple of valid configurations could be found by using it (Table
4). A main reason is that more conflicting features can be adapted by
the SAT-solver in consideration of connected features. In addition, no
big difference in terms of HV can be seen by using smart replacement
(Table 4). It is obvious that the result has been drastically affected by
using smart replacement, because this operation adds valid solutions
to the population periodically. Thus, we treated the result in Table 4
as “invalid” and only used the results of Table 5 for further analysis.
Answering RQ1 (compare column 3 with 5 in Table 5): SATI-

BEA+ outperforms SATIBEA in terms of HV and PFS significantly,
particularly for the middle-complex (eCos and FreeBSD) and high-
complex FMs (Linux X86). For the simple FM (Web Portal), the dif-
ference is less notable. In addition, it is notable that for the complex
FMs (eCos, FreeBSD and Linux), no valid configurations could be
found by using SATIBEA. In contrast, SATIBEA+ could find many
valid configurations for them.
Answering RQ2 (compare column 3 with 4 in Table 5): Filtered
SATIBEA+ outperforms SATIBEA in terms of HV and PFS signif-
icantly, particularly for the middle-complex and high-complex FMs.
For the simple FM, the difference is less notable. Fitlered SATIBEA+
found also valid configurations for the complex FMs by using the en-
hanced smart mutation.
Answering RQ3 (compare column 4 with 5 in Table 5): SATI-

BEA+ outperforms filtered SATIBEA+ in terms of PFS significantly,
particularly for the middle-complex and high-complex FM (except
for the FM of FreeBSD). For the simple FM, the difference is less
notable. In addition, there is no remarkable performance improve-
ment in terms of HV by using smart crossover.
Answering RQ5 (compare ETs in Table 5): For each feature

model, there is no significant differences in terms of ET. The exe-
cution time of all algorithms are in a comparable range.
Other findings: For the simple feature model, there is no notable

differences between SATIBEA, filtered SATIBEA+ and SATIBEA+
for all performance indicators. Thus, this feature model was not con-
sidered in further experiments.

6.2 Further Runs
In order to analyze the development of performance metrics by in-
creased objective evaluations (also by increased execution times), we
performed further runs with 12500 and 50000 objective evaluations
on the 4 FMs separately. Because smart replacement changed the re-
sults too radically, it was not applied by the further executions. Con-
sidering the results in Table 5 and Table 6, we make the following
observations:

• PFSs get improved significantly by the increased times of objec-
tive evaluations. One exception is the feature model FreeBSD. It
generates less valid solutions with more objective evaluations.

• HVs also get improved by the increased times of objective evalu-
ations, but slightly.

• ETs are proportional to the times of objective evaluations.
• For the feature model eCos, SATIBEA+ performs a little bit worse

in terms of PFS than filtered SATIBEA+.

7 DISCUSSION
Comparison of SATIBEA+, filtered SATIBEA+, and SATIBEA

In this section, we reason about our findings and discuss their im-

Model

Objec-
tive

evalua-
tions

Perfor-
mance

indicators

SATI-
BEA

Filtered
SATI-
BEA+

SATI-
BEA+

eCos

HV 0 0.200 0.199
12500 PFS 0 158 141

ET (ms) 8113 8393 8358
HV 0 0.231 0.194

50000 PFS 0 228 209
ET (ms) 32281 31768 31894

FreeBSD

HV 0 0.248 0.248

12500 PFS 0 83 135
ET (ms) 34887 36768 41682

HV 0 0.260 0.267
50000 PFS 0 28 135

ET (ms) 132204 134914 134129

Linux X86

HV 0 0.242 0.241

12500 PFS 0 122 126
ET (ms) 116686 144918 145726

HV 0 0.247 0.244
50000 PFS 0 138 183

ET (ms) 457070 492015 451761

Table 6. Evaluation results without smart replacement (12500 and 50000
objective evaluations)

plications. First of all, we ask why SATIBEA+ performs much bet-
ter than SATIBEA? The performance improvement is essentially
achieved by the smart+ operators used by SATIBEA+. Firstly, the
smart+ mutation beats the native smart mutation in repairing an in-
valid configuration. The reason for that is that we “relax” the scope of
the mutation. In SATIBEA+, a feature and its related (by constraints)
features will be considered as a whole mutable-able unit. Thus, the
SAT-solver searches for a valid solution in an expended range. Sec-
ondly, the smart+ crossover repairs an invalid configuration much
better than the standard 1-point crossover, because it follows the mot-
to “learn from the best”. In SATIBEA+, a configuration will get re-
paired (at least partly) by learning “good” feature assignments from a
valid configuration. Thus, the number of feature violations of a con-
figuration will be reduced and finally more valid configurations will
be produced. To sum up, we embed the specific problem informa-
tion (feature configuration) into an evolutionary algorithm, together
with a problem-dependent local search method (with smart+ opera-
tors); therefore, the performance of the algorithm will be improved
according to the No Free Lunch theorem [18].

The results of experiments reveals also some abnormality. One is
for the feature model eCos, less valid configurations could be found
by SATIBEA+ than by filtered SATIBEA+. The other is for the fea-
ture model FreeBSD, the performance indicator PFS could not get
converged with increased number of runs. It indicates that the per-
formance is sensible to the characteristics of a feature model (such
as the number of cross-tree constraints). We are planing to investigate
this phenomena in the future work.

Threats to Validity A prerequisite for applying optimization tech-
nologies, such as SATIBEA+ is that the objectives have to be calcu-
lated from the feature attributes. For attributes such as cost this is
given by the trivial sum, however, other attributes might be more
complex to evaluate. The test set for the Web-Portal is a theoretical
one, i.e., the attributes and their values are set randomly, however,
this will not influence our experimental results. Moreover, the exe-
cution time of our experiments are limited to 10 minutes, because
SATIBEA+ could already outperform the original algorithm SATI-
BEA during this short time.

More interesting is the choice of the connected features (see Sec-



tion 3). In our case, we only select the directly connected features
(i.e., depth 1). Hence, in very complex domains it might be the case
that no solution will be found. In future work, we will investigate in
features connected indirectly through multiple constraints.

8 RELATED WORK
A key challenge in the Software Product Line community is to deter-
mine how to select a set of features from a feature model, which not
only satisfies feature constraints but also optimize the different objec-
tives of customers. [17] uses Filtered Cartesian Flattening to calcu-
late the optimal feature sets subject to the given resource constraints.
They transform a feature selection problem as a Multi-Dimensional,
Multiple-Choice (MDMC) knapsack problem and introduce a heuris-
tic to filter choices.

Using the task planning technique HTN (Hierarchical Task Net-
work), [13] proposes a framework to select suitable features that sat-
isfy both the stakeholders’ functional requirements (FRs) and non-
functional requirements (NFRs). For optimization, they aggregate
qualitative and quantitative properties into a single object value. [4]
presents a genetic algorithm GAFES to optimize feature selections
in the face of resource constraints. In the fitness function, they use
weighting to reflect the different importance of resources. However,
it is not trivial to find a proper utility function to change a multi-
criteria problem to a single-criterion problem. Moreover, only one
“best” solution will be calculated, while a set of solutions (Pareto
set) is expected for multi-criteria problems.

[12] shows that Indicator-Based Evolutionary Algorithm (IBEA)
works better than other dominance-based EAs in solving feature se-
lection problems for large models and many optimization objectives.
[9] propose a multi-objective evolutionary algorithm IVEA to opti-
mize the selection of features with FRs and NFRs. They treat con-
straint violations in a feature model as a separated dimension besides
the optimization of NFRs. They define a violation-dominance func-
tion to guide the environment selection and mating selection. How-
ever, only the standard crossover and mutation operators are applied
in these approaches and therefore the performance improvements are
limited.

[15] incorporate feedback-directed mechanism into the EA for
multi-objective feature selection problem. Similar as the smart
crossover of SATIBEA+, an invalid configuration gets repaired by
copying all of the non-error features from an another configuration.
The difference is that our approach is mini-invasive which copies on-
ly a minimal set of feature assignments (only for “bad” features). For
configuration optimization, [10] propose a two tasks approach. First-
ly, a rough approximation of Pareto front is searched and presented to
the user. Then the user indicates the areas which he interested in. In
[6], optimal products are chosen from a feature model by using SIP,
a two steps multi-objective evolutionary algorithm. They concentrate
primarly on the number of constraints that hold and then on the other
objectives.

9 CONCLUSION AND FUTURE WORK
In this work, we have demonstrated that our approach SATIBEA+,
for the multi-objective feature selection problem, outperforms the
state-of-the-art algorithm SATIBEA [5] in the quality and amoun-
t of found configurations. In addition, we have also show that our
approach scales to the complex feature models with thousands of
features and constraints. Still, the question may arise regarding the
effectiveness of SATIBEA+ in consideration of other characteristics

of feature models (such as number of cross-tree constraints, which
may be the subject of further investigation). Other directions for fu-
ture work regarding optimal feature selection problems could be:
1. Comparison of performance of constraint-based approaches and
constraint-first approaches [6].
2. Incorporate customer requirements during the search in all phases
of the optimization process.
3. Further experiments with complex feature models with real at-
tribute values.

REFERENCES
[1] Daniel Le Berre and Anne Parrain, ‘The sat4j library, release 2.2, sys-

tem description’, Journal on Satisfiability, Boolean Modeling and Com-
putation, 7(2010), 59–64, (2010).

[2] K. Czarnecki, S. Helsen, and U. Eisenecker, ‘Formalizing Cardinality-
based Feature Models and their Specialization’, Software Process: Im-
provement and Practice, 10(1), 7–29, (2005).

[3] Juan J Durillo and Antonio J Nebro, ‘jMetal: A Java framework
for multi-objective optimization’, Advances in Engineering Software,
42(10), 760–771, (October 2011).

[4] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang,
‘A genetic algorithm for optimized feature selection with resource con-
straints in software product lines’, Journal of Systems and Software,
84(12), 2208–2221, (December 2011).

[5] Christopher Henard and Mike Papadakis, ‘Combining multi-objective
search and constraint solving for configuring large software product
lines’, in ICSE’ 15 Proceedings of the 37th International Conference
on Software Engineering, pp. 517–528, (2015).

[6] Robert M Hierons, Miqing Li, Xiaohui Liu, Sergio Segura, and Wei
Zheng, ‘SIP: Optimal Product Selection from Feature Models Us-
ing Many-Objective Evolutionary Optimization’, ACM Transactions on
Software Engineering and Methodology, 25(2), 1–39, (April 2016).

[7] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, and
K. Wolter, ‘Configuration Knowledge Representation & Reasoning’,
in Knowledge-based Configuration – From Research to Business Cas-
es, eds., A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, chapter 6,
59–96, Morgan Kaufmann Publishers, (2013).

[8] K C Kang, J Lee, and P Donohoe, ‘Feature-Oriented Product Line En-
gineering’, IEEE Software, 19(4), 58–65, (2002).

[9] Xiaoli Lian and Li Zhang, ‘Optimized feature selection towards func-
tional and non-functional requirements in Software Product Lines’, in
2015 IEEE 22nd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), pp. 191–200. IEEE, (March 2015).

[10] Paul Pitiot, Michel Aldanondo, Elise Vareilles, Thierry Coudert, and
Paul Gaborit, ‘Improving configuration and planning optimization: To-
wards a two tasks approach ’, in 15th International Configuration
Workshop, eds., M. Aldanondo and A. Falkner, pp. 35–40, Vienna, Aus-
tria, (2013).

[11] Handbook of Constraint Programming, eds., F. Rossi, P. van Beek, and
T. Walsh, Elsevier, 2006.

[12] AS Sayyad, T Menzies, and H Ammar, ‘On the value of user prefer-
ences in search-based software engineering: a case study in software
product lines’, in ICSE ’13 Proceedings of the 2013 International Con-
ference on Software Engineering, pp. 492–501, (2013).

[13] Samaneh Soltani, Mohsen Asadi, and D Gašević, ‘Automated planning
for feature model configuration based on functional and non-functional
requirements’, in SPLC’12, pp. 56–65, (2012).

[14] El-Ghazali Talbi, Metaheuristics: From Design to Implementation,
John Wiley & Sons, Inc., Hoboken, NJ, USA, June 2009.

[15] Tian Huat Tan, Yinxing Xue, Manman Chen, Jun Sun, Yang Liu,
and Jin Song Dong, ‘Optimizing selection of competing features via
feedback-directed evolutionary algorithms’, in Proceedings of the 2015
International Symposium on Software Testing and Analysis - ISSTA
2015, pp. 246–256, New York, New York, USA, (2015). ACM Press.

[16] Edward Tsang, Foundations of Constraint Satisfaction, Academic
Press, London, San Diego, New York, 1993.

[17] Jules White, Brian Dougherty, and Douglas C. Schmidt, ‘Selecting
highly optimal architectural feature sets with Filtered Cartesian Flat-
tening’, Journal of Systems and Software, 82(8), 1268–1284, (August
2009).

[18] Xinjie Yu and Mitsuo Gen, Introduction to Evolutionary Algorithms,
Decision Engineering, Springer London, London, 2010.


