Architecture Conformance Checking with Description Logics

Sandra Schroder and Matthias Riebisch
Universitait Hamburg, Department Informatics
Vogt-Kolln-Strafle 30
Hamburg, Germany
{schroeder,riebisch}@informatik.uni-hamburg.de

ABSTRACT

Today, a lot of commercial and open source tools exist allowing
to describe the intended architecture and to check architecture
conformance automatically in order to detect and eventually mini-
mize erosion. Unfortunately, those tools are restricted in terms of
which architecture concepts can be used in order to describe the
intended architecture. Additionally, those approaches lack an ap-
propriate formal foundation in terms of a well-defined syntax and
semantic. Nevertheless, this is a crucial requirement for automatic
support in architecture conformance checking. In this paper, we
propose a formal approach enabling a) the definition of an architec-
ture concept language that allows to capture the most important
architecture concepts and their related architecture rules, b) the
validation of the consistency of this language, c) the mapping of
architecture concepts to source code and capturing this mapping in
an explicit language in order to d) check architecture conformance.
We also present an evaluation of the approach using the Common
Component Modeling Example (CoCoME) case study in order to
demonstrate the applicability.

CCS CONCEPTS

« Software and its engineering — Software architectures; Sofi-
ware evolution;

KEYWORDS

software architecture, architecture erosion, description logics, on-
tologies, architecture conformance checking

ACM Reference format:

Sandra Schroder and Matthias Riebisch. 2017. Architecture Conformance
Checking with Description Logics. In Proceedings of ECSA °17, Canterbury,
United Kingdom, September 11-15, 2017, 7 pages.

DOI: 10.1145/3129790.3129812

1 INTRODUCTION

Architecture conformance checking [11] has been recognized as an
important mean to detect and control software architecture erosion
[14]. Due to the inherent complexity of software systems, the man-
ual validation of architecture rules is not feasible at least for larger
systems. Consequently, this process must be supported by auto-
matic methods. A lot of approaches and tools have been developed

Attribution-NonCommercial-ShareAlike International 4.0 License.

ECSA 17, Canterbury, United Kingdom
© 2017 Copyright held by the owner/author(s). 978-1-4503-5217-8/17/09...$15.00
DOI: 10.1145/3129790.3129812

in order to support this process such as Sonargraph [4], HUSACCT
[15], or DCL [19]. Nevertheless, we only found one approach that
uses a formalism, namely first-order logic, to formalize and validate
architecture rules [8, 10]. We think it is a promising and necessary
approach and we wonder what could be the reasons why it was not
pursued by the software architecture community. On the one hand,
a major reason could be that the formalism might be too complex
for architecture rule definition and is therefore not really usable
in practice. On the other hand, its undecidability might make the
checking of those rules once defined inefficient in terms of com-
putational costs. This is also a crucial criterion for applicability in
practice.

Other available approaches might provide a more usable archi-
tecture rule definition. However, they are mostly not expressive
enough for flexible and rich architecture rule definition and check-
ing. However, we think that such an approach based on well-defined
syntax and semantics is necessary to support architecture confor-
mance checking efficiently. We therefore aim to develop a practi-
cally usable conformance checking approach providing flexible and
richer architecture rule definition and checking. As a first step, we
provide in this paper a formal foundation of this approach.

We recognized that description logics [5] provide a suitable formal-
ism for architecture rule definition and their validation that may
provide additional advantages and may overcome the limitations
of other approaches. We conducted a feasibility analysis of this
approach and present preliminary results of our study at hand.
The paper is structured as follows: In Section 2 we provide a for-
mal foundation about description logic and present an overview of
our approach. Next, in Section 3, we present a feasibility study of
this approach based on selected architecture rules from the Com-
mon Component Modeling Example (CoCoME). Simultaneously,
we provide challenges for further development and evaluation of
the approach. Section 5 concludes the paper.

2 APPROACH

2.1 Background on Description Logics

Before presenting our approach, we introduce the basics and core
elements of the most common description logic language SROJ Q.
It constitutes the most expressive description logic with the advan-
tage that reasoning is decidable. Description logics are a family of
the logic based knowledge presentation formalisms. They have a
formally defined syntax and semantics and therefore allow for a
precise specification of concepts and their properties in a domain
of interests. In description logics, the terminology of the applica-
tion domain is formalized using concepts, roles, and individuals. In
the following, N¢, Ng, and N denote the disjoint set of concept

rodkin
Typewritten Text
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

ECSA ’17, September 11-15, 2017, Canterbury, United Kingdom

names, role names, and individual names respectively. The triple
(Nc, Nr, Ny) is called the signature (or also the vocabulary):

e Concepts are the central entities in this formalism. They
represent sets of objects, classes of entities, or categories
characterized by common properties. They roughly corre-
spond to unary predicates.

e Roles are relations between concepts. They can be thought
of as binary predicates.

e The set Ny contains all names used to denote singular
entities. They represent constants in the formalism.

Using the SROTZ Q formalism, knowledge bases can be created
using three building blocks, namely the so-called TBox and ABox.
In the following, we will describe the main characteristics of the
TBox and ABox blocks briefly.

SROIQ allows to specify concept descriptions such as basic con-
cept descriptions, universal restriction, existential quantification,
and qualified number restrictions. Concept expressions are induc-
tively defined as follows:

e Basic concepts descriptions can be formed according to
the following syntactical rules: T and L are concept ex-
pressions, called the top concept and the bottom concept
respectively. Every A € N is an atomic concept. If C and
D are concepts, then so are —C (negation), C M D (intersec-
tion), and C U D (union).

e Let R € Ng be a role, 3R.C (existential restriction) is a
concept, and YR.C (universal restriction) is also a concept.

e Given n € N, then 3R.Self (self restriction), > nR.C (at-
least restriction), and < nR.C (at-most restriction) are also
concepts.

SROIQ allows for the definition of general concept inclusion
(GCI) axioms (also called subsumption axioms). Those have the
form C C D where C and D are concepts. This axiom type can be
thought as a is-a relationship implying a hierarchical relationship
between concepts. A finite set of GClIs is the so-called terminologi-
cal box (TBox) of the SROT Q knowledge base. The assertional box
of the knowledge base (ABox), contains information about single
individuals of a domain. An individual assertion can have the form
C(a) (concept assertion) or r(a, b) (role assertion) where a, b, € Ny
are individual names, C is a concept expression and r is a role.
Description logics provide decidable reasoning services. Highly op-
timized reasoning algorithms have been developed and have shown
that tableaux algorithms, even for highly expressive description
logics, lead to a good performance even on large knowledge bases
[5]. Our approach could benefit greatly from those efficient reason-
ing algorithms in terms of computational costs since we apply them
for the validation of architecture rules. This allows for architecture
conformance checking even in complex software systems.
Description logics are well-supported by tools and standards, as
they are the formal foundation for ontology languages and the
semantic web, respectively. For the semantic web a lot of mature
standards such as the Web Ontology Language (OWL) [2] or the
Semantic Web Rule Language (SWRL) [1] have been developed in
order to support the definition of ontologies. That is why, there
is appropriate tool support for ontology creation and reasoning
available that can be used out-of-the-box for implementing our
proposed solution.

Sandra Schroder and Matthias Riebisch

AN L] | \
—
Architecture rules Intended
+concepts Architecture (C) source code
\ | @
/ Mapping ()
Ontology
—TBox ABOX
- swrl rules
DL-safe
(A)

Architecture knowledge base (*) | - mapping
- architecture ontology (TBox) concepts
- architecture model (ABox)

(D) (***)
instance-of reasoning

Y

Code knowledge base (**)
- code ontology (TBox)
- code model (ABox)

TBox

Implemented Architecture

P» consistency reasoning
¥

(G)

B =

architecture violations

architecture conformance checking

(*) Section 3.2
(**) Section 3.3
(***) Section 3.4

Figure 1: Overview of the architecture conformance check-
ing process based on description logics.

Ontologies based on the description logic formalism can be de-
fined in modules. Each module is related to a specific type of soft-
ware system containing a set of architecture concepts and related
architecture rules. For example, we can define an ontology for
component-based software architectures and another ontology for
event-based software architectures. A software system can then be
checked separately against each module. In this way, it is possible
to validate which types of rules are violated from which type of
system, e.g. we can make statements like: the system violates a
lot of rules defined for event-based architectures, but it conforms
to the rules of component-based software architectures. Another
advantage of this modularization is that an ontology can import
concepts from another ontology. This allows for reuse and refine-
ment of concepts from an existing ontology. The software architect
can define a new concept, that inherits the properties and rules of
the existing concepts, but maybe has additional rules.

Architecture Conformance Checking with Description Logics

2.2 Overview of the Approach

Using description logic, we are able to define a so-called ontology
for the description and development of software architectures in a
formal and machine processable way. The ontology is the basis for
an architecture concept language, with which the software architect
describes the software architecture model in terms of so-called
architecture concepts. In Figure 1 an overview of the approach and
its main building blocks is given. In this process, three important
artifacts need to be created by the architect:

(1) the architecture concept language capturing the most im-
portant architecture concepts and rules by which

(2) the concrete software architecture model can be described
and

(3) an architecture-code-mapping describing how architecture
concepts correspond to source code elements.

The architecture concept language - i.e. the architecture ontology
- describes a platform independent formalization of the most im-
portant concepts and their corresponding rules needed to describe
the software architecture. Architecture concepts directly map to
atomic concepts (N¢). Relationships between architecture concepts
are modeled as roles (Ng). Concepts and roles are further formal-
ized using complex concept expressions (see Section 2.1) in order
to express architecture rules. Those descriptions form the TBox of
the architecture ontology. The concrete individuals, i.e. the ABox,
of the concepts form the concrete architecture model. Together,
the ontology and the software architecture model constitute the
architecture knowledge base (A). Another important artifact is the
code knowledge base (B) encompassing the ontology representing
concepts of the code (for example of the Java programming lan-
guage) and individuals of the code ontology representing the actual
source code, i.e. the code model. The mapping ontology constitutes
the core element of the architecture conformance checking process
(C). It contains logical statements describing how the architecture
concepts and the code concepts from the respective ontologies are
connected with each other. For this, it unites the axioms of architec-
ture concepts located in the TBox of the architecture ontology with
the TBox of the code ontology and the assertions corresponding
to the model of the actual source code (ABox) for which the con-
formance will be checked. The mapping ontology defines separate
mapping concepts and mapping rules. The mapping rules in our
approach are described as Horn-like logical rules using the syntax
of the Semantic Web Rule Language (SWRL rules) [1]. As we stated
in Section 2.1, we need to apply so-called DL-safe rules in order
to preserve decidability. The reasoner Pellet [18] applied in our
approach supports reasoning with DL-safe rules. In Section 3 we
show the general syntax of those rules in more detail and describe
concrete examples of mapping rules for the case study. Rules are
applied by invoking reasoning services. The instance-of relation
is calculated for the source code elements of the code model (D).
This has the effect that code elements are represented in terms of
architecture concepts, i.e. those concepts that are defined in the
TBox of the architecture ontology. This means, the implemented
architecture is extracted from the code (E). The implemented ar-
chitecture can then be checked against the axioms defined in the
TBox of the architecture ontology using the consistency reasoning
service (F). This is the actual architecture conformance checking

ECSA 17, September 11-15, 2017, Canterbury, United Kingdom

process. An inconsistency with respect to a TBox axiom in the
architecture ontology is considered an architecture violation (G).

3 EVALUATION

In this section, we demonstrate our approach using the Common
Component Modeling example (CoCoME) [9]. We have imple-
mented our approach using the Protégé tool [12], an editor for
creating and storing ontologies based on the Web Ontology Lan-
guage (OWL) [2] standard. SROZ Q provides the formal basis of
this language (see Section 2.1). The tool additionally integrates
different reasoners, such as Pellet [18] that we have used for the
reasoning tasks.

3.1 The Architecture Rules of CoCoME
We have applied the architecture rules as defined in [8].

o Rule 1: "The access from the GUI layer to the application
layer is limited to calls of methods defined in service com-
ponents; these are components providing at least one service
interface.”

e Rule 2: "A service interface is an interface defining service
methods only. These are methods using only transfer object
classes and primitive types for parameters and return value
types. Returned objects are always created during the call of
the service method."

o Rule 3: "Transfer objects refer only to other transfer objects
or data entities of primitive types."

In order to define the ontologies needed for the architecture
conformance checking process, we applied the process of ontology
design presented in [13]. There, five necessary steps are depicted.
For example, a process is described how to extract the relevant
concepts for the ontology which is a crucial step for designing our
architecture concept language. We do not present this process in
detail here, but refer to [13].

In the following we present an excerpt of the formalization.

3.2 Formalizing Architecture Concepts of
CoCoME

In Figure 2 we illustrate how the architecture rules described in
the previous section can be formalized. The left part of Figure 2
visualizes two ontologies. The ontology describing the concept of
service-oriented architectures is presented using the Manchester
OWL syntax [3] as it is used in the Protégé environment to describe
ontologies (see right part of Figure 2). In this syntax, mathematical
symbols such as V, 3 or - (for universal, existential restriction,
and negation, respectively) have been replaced by more intuitive
keywords like only, some, and not.

On the left part of Figure 2, the graph on the top shows a simple
and general ontology for component-based architectures. The main
concepts in those type of systems are components and interfaces.
That is why we added them to the TBox of this ontology, namely
as Component and Interface. The two roles provides and requires
formalize the binary relation between components and interfaces: a
component provides or requires an interface. Second, this ontology
is further extended by the ontology describing concepts for service-
oriented architectures necessary for formalizing the architecture

ECSA ’17, September 11-15, 2017, Canterbury, United Kingdom

[of -based ar ure

Sandra Schroder and Matthias Riebisch

provides

Component

defines

ServiceComponent Servicelnterface

hasReturnType

TransferObject
PrimitiveType

ServiceMethod

provides

hasType
ServiceMethodParameter

hasType

Service oriented architecture ontology

hasParameter

Class: ServiceComponent
SubClassOf: Component and provides min 1 ServiceInterface

DisjointWith: ServiceInterface, ServiceMethod,

Class: Servicelnterface
SubClassOf: Interface and defines only ServiceMethod
DisjointWith: ServiceComponent, ServiceMethod, ...

Class: ServiceMethod
SubClassOf: hasParameter only (hasType only (PrimitiveType
or TransferObject))
SubClassOf: hasReturnType only PrimitiveType
or TransferObject)
DisjointWith: ServiceComponent, ServiceInterface,

Figure 2: An excerpt from the description logic based formalization of the CoCoME case study. Left: Visualization of the
component-based architecture ontology and the service-oriented architecture. Right: Formalization of the service-oriented

ontology using the OWL Manchester syntax [3].

rules of CoCoME. In total, six concepts and five roles are defined in
this ontology. The necessary concepts are directly extracted from
the architecture rule description presented in the previous section.
Similarly, the roles between concepts are extracted and/or refined,
namely provides, defines, hasReturnType, hasType, hasParameter.
The keyword Class introduces a concept definition for the con-
cept ServiceComponent. This is also called a class axiom or class
definition in OWL. A class axiom corresponds to an architecture
rule. The concept ServiceComponent subclasses (general concept in-
clusion, keyword SubClassOf) a complex concept expression. The
expression Component and provides min 1 Servicelnterface
is an intersection (keyword and) of the concept Component and
another complex concept description limiting the provides role. It
describes a set of instances, that are namely a component and pro-
vide at least one interface. This means, that it reuses the concept
Component from the ontology for component-based software ar-
chitectures and defines additional rules. In the service-oriented
architecture ontology, those interface must be an instance of the
Servicelnterface concept. We use the at-least restriction (> nR.C,
keyword min <number>) to limit the provides role to this type of
interface, so that there must be at least one relationship between
an individual of a service component and a service interface. The
Servicelnterface concept is formalized analogously. In order to re-
strict the define role on individuals of the concept ServiceMethod
(corresponding to the rule: "A service interface is an interface defining
service methods only"), we make use of the universal restriction on
roles (V, keyword only). For the concept ServiceMethod two class
axioms are defined that relate to the corresponding architecture
rules. Three roles are important here and need to be limited in
order to implement the rules, namely hasParameter, hasType, and
hasReturnType. In the first axiom, we formalize the rule that ser-
vice methods are only allowed to have ServiceMethodParameter as
a parameter!. The second axiom ensures that only transfer objects
and primitive types are allowed as return types. It is important to
note that all those concepts need to be defined as disjoint concepts.
Otherwise, we get undesirable side effects during reasoning, e.g.

I To shorten the listing in Figure 2 for visualization, we use the compact definition
hasType only (PrimitiveType or TransferObject) and spare a separate definition
of the ServiceMethodParameter concept

an individual of the concept Servicelnterface is inferred to be also a
member of the concept ServiceComponent.

3.3 Formalizing the Code and the
Architecture-Code-Mapping

In order to formalize the code as an ontology, we use the FAMIX
meta model [6] as reference in order to derive essential concepts and
roles for the ontology. FAMIX provides a common source code meta
model in order to represent facts about a software under analysis in
a language-independent manner. It aims to provide a standardized
interexchange format for source code models. It is well-specified
and therefore has a suitable level of formality. We refer to [6] for a
deeper description of this meta model. The classes of the FAMIX
meta model can be mapped directly to concepts of the code ontol-
ogy as we will demonstrate in the following. Figure 3 a) shows a
code snippet from a service-oriented interface of CoCoME, Figure
3 b) an excerpt from the FAMIX meta model, and Figure 3 c) the
corresponding individuals (ABox) describing the code using con-
cepts from the FAMIX-based code ontology. In order to express this
snippet, we need the elements Class (note that we have named the
concept FamixClass in our ontology in order to avoid conflicts with
the internal Class concept of OWL), Method, Inheritance, Names-
pace, PrimitiveType, and Parameter from the FAMIX meta model.
In order to express that a method is contained in a class, the role
parentType is defined. In Figure 3 c) we express that the method
getStoreStockReport is contained in the interface IReporting
using the role parentType. According to the FAMIX model, we de-
fined inheritance between two classes explicitly as a concept and
not as a role. In order to express that a class extends another class
or interface, additional roles are defined, namely hasSuperClass and
hasSubClass as it is shown in Figure 3 c). The roles famixHasName,
famixHasModifier, and isInterface are so-called data properties that
link individuals to data values. The first two roles link individuals
to strings, whereas the latter links the individual to a boolean value.
We use famixHasName in order to assign a name to a code element.
Since interfaces are not modeled as an explicit element, but as a
property of the Class element in the meta model (see Figure 3 b)),
we use the isInterface role to denote a class as an interface.

Architecture Conformance Checking with Description Logics

ECSA 17, September 11-15, 2017, Canterbury, United Kingdom

Source Code

package org.cocome.tradingsystem.inventory. A
application.reporting;

public interface IReporting extends Remote {
public ReportTO getStoreStockReport(long storeld)
throws RemoteException;

ABox representing the code model
Namespace(ReportingNamespace), A
namespaceContains(ReportingNamespace, IReporting),
famixHasName (ReportingNamespace,
"org.cocome.tradingsystem...reporting"),

<)

FamixClass(IReporting),

famixHasName (IReporting, "IReporting"),
famixHasModifier(IReporting, "public"),
isInterface(IReporting, true),

Inheritance(RemoteInheritance),

y a)
Excerpt from the FAMIX Metamodel
Class subClass Inheritance
superClass *
*
Namespace
Method

b)

hasSuperClass(RemoteInheritance, RemoteInterface), B
hasSubClass(RemoteInheritance, IReporting),

Method(getStoreStockReport),

parentType(getStoreStockReport, IReporting),
famixHasModifier(getStoreStockReport, "public"),
hasDeclaredType(getStoreStockReport, ReportTOReturnType),
famixHasName(getStoreStockReport, “"getStoreStockReport"),
PrimitiveType(LongType),

Parameter(storeIdParameter), C
hasDeclaredType(storeIdParameter, LongType),
parentBehavioralEntity(storeIdParameter,getStoreStockReport)

Figure 3: Representing the code model as individuals of the code ontology based on the FAMIX metamodel. Left: A code snippet
from CoCoME. It implements the provided interface of the service component “Reporting” in the service-oriented layer. Right:

The individuals representing the code snippet.

In the next step, we need to express the architecture-code-map-
ping. The mapping is also described as a separate ontology which
imports the architecture and the code ontology. For each architec-
ture concept, a mapping concept needs to be specified. For that,
we define a separate concept and a corresponding rule using the
syntax of the Semantic Web Rule Language (SWRL) [1] that derives
the mapping concept based on existing knowledge about the archi-
tecture and the code. Rules consist of an implication between an
antecedent (body) and a consequent (head). Intuitively, such a rule
can be read as “whenever the conditions specified in the body are satis-
fied, then the conditions specified in the head must also hold”, written
asby,by,...,by — a. The body (by,b>, . ..,bn) and the head (a)
consist of atoms. The body is a conjunction of atoms. Atoms can
be of the form C(x) or P(x,y), where C is a concept (or class in
OWL language) and P is a role (or property in OWL language). x
and y are variables, individuals or data values. During reasoning,
values are bound to those variables and it is tested if an atom holds
for this value. An atom C(x) holds if x is an instance of the con-
cept C or P(x,y) holds if x is related to y by role P. Intuitively, in
our approach, a stands for the mapping concept that we want to
infer for a specific individual, whereas bq,b;, .. .,b, are atoms
corresponding to individuals from the architecture and the code
model that must hold in order to infer the mapping concept. We
exemplary show rules for the mapping of service components and
their provided interfaces to the code. In CoCoME each component
is mapped to a Java package where its identifier contains the name
of the corresponding component. For this, we define the concept
MappedComponentByPackageName. Using general concept inclu-
sion and concept equivalence, we can connect the concepts Mapped
ComponentByPackageName, ServiceComponent and Namespace as
follows:

1
@)

The corresponding SWRL rule for the mapping is formalized as
shown in Listing 1.

MappedComponent ByPackageName = ServiceComponent
MappedComponent ByPackageName E Namespace

Listing 1: A mapping rule in SWRL syntax for mapping ser-
vice components to Java packages.

Namespace(?namespace),

famixHasName(?namespace, ?nameOfNamespace),
ServiceComponent(?component),
hasName(?component, ?nameOfComponent),
swrl:contains(?nameOfNamespace,’nameOfComponent)
—> MappedComponentByPackageName(?namespace),
hasName(?namespace,’nameOfComponent)

Identifiers prefixed with ? are variables. This rule states the follow-
ing: There must be an individual ?namespace from the Namespace
concept, i.e. the atom Namespace (?namespace) must hold). This
individual must have the specific name ?nameOfNamespace. There
must be an individual ?component named ?nameOfComponent. This
name must be contained in the identifier of the namespace. For
this, SWRL provides built-ins. In this case, we use the built-in func-
tion for string comparison, namely swrl:contains. If individuals
can be found satisfying the rule body, then we can infer that the
individual ?namespace is also an individual of the class Mapped
ComponentByPackage. Since we stated that MappedComponentBy
PackageName and ServiceComponent are equivalent, the reasoner
infers that this individual is also an instance of the concept Service
Component additionally with the relation hasName, a role from the
architecture ontology relating a component with a string value
constituting the component’s name. In this way we can also infer
which specific individual of type ServiceComponent the Java pack-
age refers to. The mapping of the provided interface of the inferred
component instance is similarly formalized. For this, we define
another concept Mappedinterface with the corresponding rules in
order to infer the instances of this concept. The provided interface
is mapped to the public Java interface contained in the package that
we mapped before to the corresponding component. Additionally,
we need to lift the code-level relationships to architecture-level re-
lationships. For example, we map the contain relationship between
packages and classes/interfaces to the provide relationship from
the architecture ontology as shown in Listing 2.

ECSA ’17, September 11-15, 2017, Canterbury, United Kingdom

Listing 2: A mapping rule in SWRL syntax for mapping the
contain relationship to the provides relationship.

MappedComponentByPackage(?mappedComponent),
FamixClass(?interface),isInterface(?interface, true),
famixHasName(?interface, ?name),
Servicelnterface(?servicelnterface),
has_name(?servicelnterface, ?interfaceName),
famixHasModifier(?interface, "public"),
namespaceContains(?mappedComponent, ?javalnterface)
—> provides(?mappedComponent, ?javalnterface)

© 0 00NN U

—_

Sandra Schroder and Matthias Riebisch

ServiceMethod SubClassOf hasReturnType only (PrimitiveType or TransferObject)
MappedServiceMethod(?m), hasDeclaredType(?m,?rt) —> hasReturnType(?m,?rt)
AComplexType Type FamixClass

DisjointClasses: ComplexType, PrimitiveType, ServiceComponent, TransferObject...
Reporting provides ReportingIf

Reportinglf defines getStoreStockReport

Servicelnterface SubClassOf defines only ServiceMethod

3.4 Performing Architecture Conformance
Checking

The implemented architecture can now be checked for architec-
ture conformance using reasoning algorithms. This means that the
architecture concepts extracted from the code are checked for con-
cept consistency. We use the reasoning process in order to check
if individuals fulfill the concept axioms stated in the architecture
ontology. In order to demonstrate this, we artificially added an
architecture violation to the code snippet presented in Figure 3.
We therefore changed the signature of the service method in the
service interface IReporting, so that it returns the code-level type
AComplexType that is a Java class. Thus, AComplexType is an in-
dividual belonging to the FamixClass concept. After invoking the
reasonet, this results in an inconsistency. Reasoners allow to list
explanations helping to find reasons for inconsistencies. In this way,
the architect not only has the information about which violations
occurred, but also why architecture rules are violated. We think
that this is a major advantage in contrast to existing approaches.
In those explanations, the concept axioms which are violated by
individuals are highlighted. An excerpt of such an explanation is
shown in Listing 3. Blue keywords depict OWL specific keywords,
whereas keywords highlighted in red are violated axioms. The re-
sult can be explained as follows: Methods in the code model are
mapped to the ServiceMethod concept, if they are contained in a
public java interface that was mapped to the Servicelnterface con-
cept before. For those methods, the code-level role hasDeclaredType
is mapped to the architecture-level role hasReturnType (line 5). The
declared type of the code-level method getStoreStockReport is
AComplexType (line 2) which is mapped to the architecture-level
concept ComplexType (line 3). We denote this individual as complex
Typel. However, this violates the axiom in line 4. The only way to re-
solve this inconsistency, the reasoner could infer that complexType1l
is a subtype of TransferObject or PrimitiveType or is equivalent with
them. But this is not possible, since we stated that ComplexType,

TransferObject, and PrimitiveType are disjoint with each other (line
7), an inconsistency is detected by the reasoner. This corresponds
to an architecture violation. This violation has also consequences
for other axioms. Since the method does not satisfy the rules of a
service method and is then, by definition, not a service method any-
more, the rules regarding service interfaces (line 9-10) are violated.
A service interface is required to only define service method, but
there is a method that does not satisfy this rule. Consequently the
service interface cannot satisfy its rules.

Listing 3: Output of the reasoning process

3.5 Challenges and Further Evaluation of the
Approach

During the formalization and validation of the rules, we encounter
some challenges, especially regarding Rule 1. If a service compo-
nent is missing to provide a service interface, the reasoner would
not infer an inconsistency. This is because description logics are
based on the so-called open-world assumption [5]. The open-world
assumption intuitively states that anything not explicitly expressed
is unknown. This means, that ontologies use a form of under-
specification as a means of abstraction. A reasoner will then simply
add an individual to the existing assertions and proceed with mak-
ing inferences. We solve this conflict by limiting the universe to
the known individuals from the ABox of the architecture and code
knowledge base, respectively. This hinders the reasoner to add
anonymous individuals during the inferencing process. It needs to
be further investigated how suitable this work-around is especially
with regards to software systems containing numerous components
and interfaces. Another important point is the comprehensibility
of the explanations given by the reasoners (see Listing 3). In order
to make them valuable for software architects, postprocessing of
the explanations in case of inconsistencies is necessary. We need
to find an appropriate way to present the explanation to the soft-
ware architect in a more comprehensible way, so that architecture
violations can be easily extracted from them.

As stated in the introduction, an architecture concept language
should be usable to some extent in order to be applicable in practice.
In the next steps, we plan to investigate, how the approach can
be adapted in order to make it more usable. For this, we consider
controlled natural languages integrating well with description log-
ics [17]. In this way, rules can be expressed in a more natural way.
However, there might be a trade-off between usability of the speci-
fication language and its expressiveness concerning the variety of
concepts and rules that can be defined. This trade-off additionally
needs to be investigated in the future. This should especially be
validated in industry. There, it should be tested how easily devel-
opers and architects can apply the approach in order to define the
necessary rules and whether all important architecture concepts
and rules can be expressed with the formalism.

Another interesting aspect that needs to be considered is the per-
formance of the approach. In order to enable its applicability in
practice, the approach needs to be able to check rules even on large
code bases. We plan to investigate if decidable reasoning services
give a benefit in terms of performance as stated in Section 2.

4 RELATED WORK

Several tools and approaches have been developed enabling archi-
tecture conformance checking such as [4, 7, 15, 19]. However, the

1 | AComplexType famixHasName "AComplexType"
2 | getStoreStockReport hasDeclaredType AComplexType
3 | FamixClass(?c), famixHasName(?c," AComplexType") —> ComplexType(?c)

existing tools restrict the architect in the way how the intended
architecture can be specified and which types of architecture rules

Architecture Conformance Checking with Description Logics

can be defined and validated. This means that the architect has to
use an architecture specification language which is fixed in terms of
the architecture concepts it provides and is not able to extend this
language with new or refined concepts that better fit the current
requirements. That is why, the architect is forced to translate his
concepts to the provided concepts of the language. We discuss this
using the tool Sonargraph, since it is mostly used in industry for
formalizing architecture rules as we found out in our recent study
[16]. The tool provides concepts like layers, layer groups, vertical
slices, vertical slices groups and subsystems in order to describe
the intended architecture. In the case of Rule 1 the layer concept
provided by Sonargraph is sufficient in order to model the layer
constraints (“The access from the GUI layer to the application layer
is limited to calls of methods defined in service components”). How-
ever, we cannot directly define specific architecture concepts, such
as service components and service methods with their respective
rules (as it is necessary for the second part of Rule 1, for Rule 2
and Rule 3). For example, the rule that service methods are only
allowed to return primitive types or transfer object cannot be eas-
ily expressed with Sonargraph. This can at most be formalized by
defining dependency rules between methods and the specific types.
Consequently, the original concepts defined by the architect and
their respective rules are not directly visible in the tool and some
of them cannot be mapped at all. That is why, the design intent of
the software architecture gets lost and which type of architecture
concept and its respective rule is violated is hardly comprehensible.
Our approach allows to directly express the intended architecture
in terms of the necessary and most important concepts and their
corresponding rules. Moreover, in order to extend the language
with new concepts, the whole tool infrastructure would have to be
changed in order to support new concepts in existing approaches.
In our approach, this change is much more lightweight due to the
use of ontologies.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that allows to flexibly
define a concept language for describing the intended software ar-
chitecture. The approach has the advantage of explicitly capturing
the concepts a software architecture consists of and is not restricted
to concepts given by a fixed architecture description language. Ad-
ditionally, it allows for the definition of concept related rules, i.e.
architecture rules, against which the source code can be checked
in order to detect architecture erosion. We evaluated the feasibility
of the approach using the CoCoME case study.

Some aspects of our approach have to be investigated further. For
example, we only formalized a small part of CoOCoME and further
need to evaluate if the expressiveness of description logics really
suffices for formalizing architecture rules. For this, we plan to for-
malize architecture rules from other software systems. We also
need to think about how to handle the open-world behavior of
description logics. In some situations, as explained in Section 3,
the reasoner does not find an inconsistency, when information is
missing in the architecture and code models.

However, we have shown that it is possible to formalize and vali-
date architecture rules using description logics. We claim that the
concepts driven by architecture decisions and their mapping to the

ECSA 17, September 11-15, 2017, Canterbury, United Kingdom

source code should explicitly be captured and clarified as an inte-
gral part of the software architecture design process. This supports
the clear communication of the architectural concepts between
the architect and development team and additionally the preserva-
tion of the knowledge about those concepts and the corresponding
rules over time in order to support software evolution. That is why,
further elaboration regarding the realization of the approach and
addressing the remaining challenges is promising. We conclude that
description logics provide a suitable formalism and that existing
and future approaches could benefit from integrating this work.

REFERENCES

[1] 2004. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
(May 2004). https://www.w3.org/Submission/SWRL/

[2] 2012. OWL 2 Web Ontology Language Document Overview (Second Edition).
(December 2012). https://www.w3.org/TR/owl2-overview/

[3] 2012. OWL 2 Web Ontology Language Manchester Syntax (Second Edition).
(December 2012). https://www.w3.org/TR/owl2-manchester-syntax/

[4] 2017. Sonargraph-Architect. (2017). https://www.hello2morrow.com/products/
sonargraph/architect9

[5] Franz Baader. 2003. The description logic handbook: Theory, implementation and
applications. Cambridge university press.

[6] Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, Andre Cavalcante Hora,
Jannik Laval, and Tudor Girba. 2011. MSE and FAMIX 3.0: an Interexchange
Format and Source Code Model Family. Technical Report.

[7] S. Duszynski, J. Knodel, and M. Lindvall. 2009. SAVE: Software Architecture

Visualization and Evaluation. In 2009 13th European Conference on Software

Maintenance and Reengineering. 323-324. DOI:http://dx.doi.org/10.1109/CSMR.

2009.52

Sebastian Herold. 2011. Architectural Compliance in Component-Based Sys-

tems. Ph.D. Dissertation. Clausthal University of Technology. http://www.

dr.hut-verlag.de/978-3-8439-0109-3.html

Sebastian Herold, Holger Klus, Yannick Welsch, Constanze Deiters, Andreas

Rausch, Ralf Reussner, Klaus Krogmann, Heiko Koziolek, Raffaela Mirandola,

Benjamin Hummel, Michael Meisinger, and Christian Pfaller. 2008. The Common

Component Modeling Example. Springer-Verlag, Berlin, Heidelberg, Chapter

CoCoME - The Common Component Modeling Example, 16-53. DOI:http:

//dx.doi.org/10.1007/978-3-540-85289-6_3

S. Herold, M. Mair, A. Rausch, and I. Schindler. 2013. Checking Conformance

with Reference Architectures: A Case Study. In 2013 17th IEEE International

Enterprise Distributed Object Computing Conference. 71-80. DOI : http://dx.doi.

org/10.1109/EDOC.2013.17

[11] Jens Knodel and Matthias Naab. 2016. Pragmatic Evaluation of Software Architec-
tures (1st ed.). Springer Publishing Company, Incorporated.

[12] Mark A Musen. 2015. The Protégé project: A look back and a look forward. AT
matters 1, 4 (June 2015), 4-12.

[13] Natalya F Noy, Deborah L McGuinness, and others. 2001. Ontology development
101: A guide to creating your first ontology. (2001).

[14] Dewayne E. Perry and Alexander L. Wolf. 1992. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering Notes 17, 4 (Oct.
1992), 40-52.

[15] Leo J. Pruijt, Christian Koppe, Jan Martijn van der Werf, and Sjaak Brinkkemper.

2014. HUSACCT: Architecture Compliance Checking with Rich Sets of Module

and Rule Types. In Proceedings of the 29th ACM/IEEE International Conference on

Automated Software Engineering (ASE °14). ACM, New York, NY, USA, 851-854.

DOI : http://dx.doi.org/10.1145/2642937.2648624

Sandra Schroder, Matthias Riebisch, and Mohamed Soliman. 2016. Architecture

enforcement concerns and activities-an expert study. In Proceedings of the 10th

European Conference on Software Architecture (ECSA2016). Springer, 247-262.

[17] Rolf Schwitter and Marc Tilbrook. 2006. Let’s talk in description logic via
controlled natural language. In Proceedings of the 3rd Int. Workshop on Logic and
Engineering of Natural Language Semantics (LENLS 2006).

[18] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden

Katz. 2007. Pellet: A Practical OWL-DL Reasoner. Web Semant. 5, 2 (June 2007),

51-53. DOI:http://dx.doi.org/10.1016/j.websem.2007.03.004

Ricardo Terra and Marco Tulio Valente. 2009. A dependency constraint lan-

guage to manage object-oriented software architectures. Software: Practice and

Experience 39, 12 (2009), 1073-1094. DOI: http://dx.doi.org/10.1002/spe.931

8

[o

[10

[16

[19

https://www.w3.org/Submission/SWRL/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-manchester-syntax/
https://www.hello2morrow.com/products/sonargraph/architect9
https://www.hello2morrow.com/products/sonargraph/architect9
http://dx.doi.org/10.1109/CSMR.2009.52
http://dx.doi.org/10.1109/CSMR.2009.52
http://www.dr.hut-verlag.de/978-3-8439-0109-3.html
http://www.dr.hut-verlag.de/978-3-8439-0109-3.html
http://dx.doi.org/10.1007/978-3-540-85289-6_3
http://dx.doi.org/10.1007/978-3-540-85289-6_3
http://dx.doi.org/10.1109/EDOC.2013.17
http://dx.doi.org/10.1109/EDOC.2013.17
http://dx.doi.org/10.1145/2642937.2648624
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1002/spe.931

	Abstract
	1 Introduction
	2 Approach
	2.1 Background on Description Logics
	2.2 Overview of the Approach

	3 Evaluation
	3.1 The Architecture Rules of CoCoME
	3.2 Formalizing Architecture Concepts of CoCoME
	3.3 Formalizing the Code and the Architecture-Code-Mapping
	3.4 Performing Architecture Conformance Checking
	3.5 Challenges and Further Evaluation of the Approach

	4 Related Work
	5 Conclusion and Future Work
	References

