Developing an Ontology for Architecture Knowledge
from Developer Communities

Mohamed Soliman*, Matthias Galster!, and Matthias Riebisch*
*Department of Informatics, University of Hamburg, Germany
Email: {soliman, riebisch}@informatik.uni-hamburg.de
f University of Canterbury, Christchurch, New Zealand
Email: mgalster@ieee.org

Abstract—Software architecting is a knowledge-intensive ac-
tivity. However, obtaining and evaluating the quality of relevant
and reusable knowledge (and ensuring that this knowledge is
up-to-date) requires significant effort. In this paper, we explore
how online developer communities (e.g., Stack Overflow), tradi-
tionally used by developers to solve coding problems, can help
solve architectural problems. We develop an ontology that covers
architectural knowledge concepts in Stack Overflow. The ontology
provides a description of architecture-relevant information to rep-
resent and structure architectural knowledge in Stack Overflow.
The ontology is empirically grounded through qualitative analyses
of different Stack Overflow posts, as well as inter-coder reliability
tests. Our results show that the architecture knowledge ontology
in Stack Overflow captures architecture-relevant information and
supports achieving practitioners’ requirements and concerns.

I. INTRODUCTION

In software architecture design, some design decisions
impact the whole system and are difficult to change. These
decisions are often referred to as Architecture Design Deci-
sions (ADDs) [1]. Knowledge and experience play a crucial
role for making good ADDs. Researchers proposed approaches
for managing and sharing Architectural Knowledge (AK).
For example, AK repositories (e.g., [2]) provide catalogs of
architectural solutions (e.g., patterns [3], technologies [4])
and AK concepts (e.g., ADD, design rational). However, due
to the complexity and effort required to collect and codify
AK, knowledge repositories tend to be incomplete. Moreover,
technologies evolve constantly, which demands significant
maintenance effort to keep repositories up-to-date.

Online developer communities (e.g., technology forums
like Stack Overflow) allow software developers to ask and
answer questions about software development problems. The
main success factors of such communities is that they provide
a “social motivation” to not only ask questions (i.e., to benefit
from the community), but also to help others by answering
questions (i.e., to contribute to the community). By con-
tributing to a community, users can build up their reputation.
Furthermore, these communities provide useful knowledge
management features, such as the assessment of the quality
of answers (through voting), and the continuous evolution of
knowledge when new questions and answers are added. The
benefits provided by developer communities could complement
existing AK repositories and AK management approaches.

However, developer communities have traditionally been
used by developers to solve coding-related problems [5]. These
problems are often not relevant to architects, because they

focus on lower level implementation details. Nevertheless,
architects may also benefit from developer communities to
solve architectural problems. In our previous work, we found
that useful AK is indeed available in Stack Overflow (SO) [6].
We classified architecture-relevant posts (ARPs) in SO and
evaluated them with practitioners to ensure that they are really
architecture-relevant. An example of such post is “What are
the benefits and trade-offs of using MSMQ over a SQL Table”
[380052]". SO showed to be particularly useful for solving de-
sign issues which involve technology decisions that architects
face after making higher-level conceptual decisions [2].

As a next step in this line of research, this paper investi-
gates the following research question: How can we represent
and structure architecture knowledge from architecture-
relevant Stack Overflow posts? Answering this question
is the first step towards understanding what AK concepts
actually exist in developer communities, and how are they
represented in text. This is needed to specify AK concepts
in developer communities and to search and capture (e.g., [7])
AK. Since the structure of knowledge is different in different
communities and to ensure practical relevance of this work, we
selected SO as an example: SO is the most popular community,
offers methods for evaluating the quality of contributions and
contributors and provides interfaces for downloading the posts
for processing and analysis. We randomly selected a sample
of ARPs from a corpus of SO posts created previously [6]. We
then performed qualitative content analysis to identify knowl-
edge concepts in these posts (see Sec. II). This resulted in an
empirically-grounded ontology for AK in SO (see Sec. III).
This ontology specifies how each AK concept in ARPs is
composed and bridges the gap between existing theoretical
AK concepts (e.g., [8]) and their textual representation in SO.

II. RESEARCH PROCESS TO DEFINE ONTOLOGY
A. Data Gathering

To make the analysis of SO posts practically feasible, we
focused on ARPs in a single domain to explore questions on
SO of different purposes and with different solutions. In our
previous work, we created a corpus of posts for the middleware
domain [6]. Middleware was selected since it is an established
topic in software architecture [3]. The corpus® includes 858
ARPs and 1,653 programming posts (i.e., posts which address

ITo access full posts mentioned in this paper, concatenate
http://stackoverflow.com/questions/ with the provided post number.
Zhttps://swk-www.informatik.uni-hamburg.de/~soliman/ICSA2017.zip

If performance is your main criteria,
you should definitely look at ZeroMQ

Performance
Requirement

performance is your
main criteria

Quality
Attribute

performance

criteria

Recommended you should definitely

ADD look at ZeroMQ
— Use Look at
i Verb
Technol
e no. o8y ZeroMQ
Solution
©C0mpositeAK |:| Simple AK Lexical
Concept Concept S ' Trigger

Fig. 1: An example for an annotated statement in ARP

a programming rather than an architectural problem) as clas-
sified by practitioners. As a sample to define the ontology we
randomly selected 105 ARPs from the 858 ARPs. To better
represent the population of ARPs, we selected ARPs using
stratified random sampling [9], where ARPs have questions
with different purposes and different types of solutions.

B. Data Analysis

We applied qualitative content analysis [10]. We used
Atlas.ti, a qualitative data analysis software®. It helps human
annotators annotate text segments within their context, and to
assign them to categories. We annotated selected segments of
text from our sample of ARPs. Each annotation is a tuple (s,c):
s is a segment of annotated text. This could be a word or a
clause or a sentence in a SO ARP question or answer. ¢ is an
ontology class. An ontology class is an “explicit specification
of a conceptualization” [11]. Our content analysis process
consists of two phases (Explication and Structuring) [10]:

Explication: Explication aims at interpreting and compre-
hending text segments in ARPs to obtain a concrete definition
for each ontology class. We started the annotation process
with a list of ontology classes from known AK concepts (e.g.,
Quality Attribute, ADD) in existing AK models (e.g., [8]).
However, it was unknown how AK concepts are represented
in ARPs. The first author annotated and analysed iteratively
sentences, clauses and words in 40 randomly selected ARPs.

During annotation, the representation of each ontology
class started to emerge. Some of the AK concepts are rep-
resented in text as single words (e.g., words related to concept
Quality Attribute), we called these ontology classes Simple AK
Concepts. On the other hand, we found AK concepts, which
are represented in text as statements or clauses rather than as
single words. We called them Composite AK Concepts. This
type of classes is composed of other ontology classes in order
to construct the semantics of statements or clauses. In addition
to existing AK concepts, we discovered an additional type of
classes, which are normal English words and not specifically

3http://atlasti.com/

related to a certain AK concept. Still, they deliver important
meanings for composite AK concepts. Words in this class are
further assigned to existing linguistic semantic categories (e.g.,
[12]). We called these ontology classes Lexical Trigger.

Fig. 1 shows an example of an annotated statement “If
performance is your main criteria, you should definitely look
at ZeroMQ” [17806977] and annotated clauses and words in a
hierarchical representation. Since the whole statement is an if-
statement, it was annotated as a Decision Rule (i.e., a Compos-
ite AK Concept), while the condition clause “performance is
your main criteria” has been annotated as a Requirement (i.e.,
a Composite AK Concept), and the result clause “you should
definitely look at ZeroMQ” as a Recommended ADD (i.e.,
a Composite AK Concept). Within these two clauses, words
with relevant semantics have been annotated. For example,
“performance” is annotated for being a Quality Attribute (i.e.,
a Simple AK Concept), and “Look at” is annotated as a Use
Verb (i.e., a Lexical Trigger).

Based on this interpretation, the first author created an
initial description of each ontology class. This description was
the first version of our coding guide. Based on it, we conducted
two inter-coder reliability tests, where the first and second
author independently annotated randomly selected statements
and then both authors met to reconcile disagreements. As a
result of this phase, we obtained a mature coding guide? with
good agreement on the definition of each ontology class. This
coding guide was used in the structuring phase.

Structuring: The structuring phase extracted the structure
of the ontology. We followed three steps:

1) Complete annotation: Based on the coding guide, we
annotated the remaining 65 ARPs. In total, we created more
than 3,800 annotations.

2) Determine significant ontology classes: We faced two
challenges: a) We had more than 100 composite ontology
classes. To refine our ontology, we merged several composite
ontology classes based on their frequencies and semantics to
have 11 main composite ontology classes. b) We had more
than 200 simple ontology classes and lexical triggers, which
co-occured with the composite classes. To reach a concrete
definition for each composite ontology class, we applied
Pearson 2 significance test [13] between composite classes
and their co-occurring children/composing ontology classes.
For example, for the two ontology classes (REQ) Requirement
and (QA) Quality Attribute, we considered frequencies for the
following four situations: i) Text annotated as REQ intersect
with annotations for QA. ii) Text annotated as REQ intersect
with annotations other than QA. iii) Text annotated with
class other than REQ intersect with annotations for class QA.
iv) Text annotated with class other than REQ intersect with
annotations other than QA. We excluded co-occurrences with
X2 < 10 to ensure that all co-occurrences were statistically
significant at p < 0.05. Simple ontology classes and lexical
triggers that did not appear as statistically significantly co-
occurring with any composite ontology class have been either
merged or excluded from the ontology.

3) Final reliability test: We conducted the final inter-coder
reliability test to assess the agreement on the definition of
ontology classes. We focused on composite ontology classes,
because they are represented in sentences, which make it more

TABLE I: Significant Simple AK Concept ontology classes

Question
We have cloud-hosted (RackSpace cloud) Ruby and Java apps that will interact as follows:@

ID Ontology Class Name Examples of Words

TEC Technology Solution WCEF, EJB, Netty, RabbitMQ 1.[Ruby app sends a request to Java app. Request consists of map structure containing strings

PAT Architecture Pattern REST, messaging, layer, SOA integers, other maps, and lists (analogous to JSON).

QA Quality Attribute scalability, availability, throughput 2. Java app analyzes data and sends reply to Ruby App. CONE
COM Architecture Component server, backend, service, application

CON Architecture Connector read, send, write, communicate We are interested in evaluating both messaging formats (JSON, Buffer Protocols, Thrift, etc.) as
COME Component Element interface, operation, record, job, call well as message transmission channels/techniques (sockets, message queues, RPC, REST,
COND Connector Data message, payload, information, data SOAP, etc.) UR
PROB Software Problem SPQE, er'ror, Olzlt (?f memory Our criteria:

FT Feature Term serialization, binding, deployment

TABLE II: Significant Lexical Trigger ontology classes

ID Ontology Class Name Examples of Words

DIF Difficulty Adjectives lightweight, complex, overkill
ADV Advise Verbs recommend, suggest, propose
VAL Value Adjectives good, outperform, important
CONC Concern Nouns requirement, criteria, demand
REL Rely Verbs depend, implement, count on
WISH Wish Verbs need, require, want, demand, ask
SUPP Support Verbs offer, provide, supply, support
USE Use Verbs select, choose, use, prefer, go with
QUE Question Word which, what, when, how

VS Versus Preposition Versus, vs., against, contrast
DFF Difference Noun difference, distinction
SPED Speed Adjectives fast, slow, heavy, quick

challenging to reach agreement for them. The test involved
the first and the second author and 15% of the total annotated
statements. We calculated Cohen’s Kappa reliability coefficient
[14] of 0.844 (i.e., reliability and agreement beyond chance).

III. ARCHITECTURE KNOWLEDGE ONTOLOGY
IN STACK OVERFLOW

By combining the hierarchical relationships between the
referenced ontology classes across all annotations, we formed
a natural language ontology. Our final ontology consists of
54 ontology classes (11 composite AK, 14 simple AK, 29
lexical triggers). In this section, we will present the significant
ontology classes and how they are represented and distributed
among ARPs. A complete description for the ontology is part
of the coding guide®. Table I and II show examples of words
from our analysis sample for the most significant Simple AK
Concept and Lexical Trigger ontology classes, while Table III
presents the main “composite AK concept” ontology classes.
In Table III, each composite AK ontology class is briefly
described and supported with examples of annotated clauses or
statements. In column “Composing Classes”, we also provide
the significance x? value for each composing class from which
the composite ontology class is constructed.

Fig. 2 shows an example for an annotated ARP (additional
examples for ARPs are available online?). The annotations
use the IDs of the composite ontology classes in Table III.
The question in the ARP stated a design issue (ontology class
DI). The design consists of two applications communicating
in a cloud environment (ontology class CONF). The user then
described the need to evaluate possible messaging technologies
to decide on the communication between both applications
(ontology class UR), considering prioritized quality attribute
requirements (ontology class REQ). One user (Answer 2)
shared a success story (ontology class CASE) for a well-known
system, which solves a similar problem. At the end of the
discussion, the user who posted the question posted an answer

. Short round-trip time.

Low round-trip-time standard deviation. (We understand that garbage collection pauses and
network usage spikes can affect this value).

High availability.

Scalability (we may want to have multiple instances of Ruby and Java app exchanging point-
to-point messages in the future).

N =

How

. Ease of debugging and profiling.

. Good documentation and community support.

5
6
7. Bonus points for Clojure support.
8. Good dynamic language support.

Mhat combination of message format and transmission method would you recomme&?)J
Why? UR

ADD Answer 1
ave decided to go with BSON over RabbitMQ]

We like |BSON‘s support for heterogeneous coIIection@e lack of the need to specify the
format of messages up-front. We don't mind that it has poor space usage characteristics and likely
poorer serialization performance than other message formats [since the messaging portion of our

- Tt doesntlook like a nice Clojure interface has

) ritten to let you directly manipulate BSON objects, but hopefully that won't be an issue. | will
revise this entry if we decide that BSON won't work out for us.

We chose RabbitMQ mainly because we already have experience with it and are using it in a
system that demands high throughput and availability.

If messaging does become a bottleneck, we will look first to BERT (we rejected it because it (DR
currently does not appear to have Java support), then to MessagePack (rejected because it
appears there isn't a large community of Java developers using it),|then to Avro (rejected

ires you to define your message format up-front), then Protocol Buffers (rejected
because of the extra code generation step and lack of heterogeneous collections) and then Thrift
(rejected for the reasons mentioned for Protocol Buffers).

Answer 2
| can't speak from personal experience, but | know that Flightcaster is using JSON messaging to
link their back-end clojure analytics engine to a front-end Rails app and it seems to be working for
them. Here's the article (appears near the end):

CASE

Clojure and Rails - the Secret Sauce Behind FlightCaster

Fig. 2: An example for an annotated ARP [4473567]

(Answer 1) to describe the taken (ontology class ADD) “go
with BSON over RabbitMQ”, including the rationale for taking
this decision, which include technology features (ontology
class FEAT), their benefits and drawbacks (ontology class
ASTA), and the logic behind choosing the technology among
other alternatives (ontology class DR).

IV. LIMITATIONS AND THREATS TO VALIDITY

One limitation of our work is related to the number of posts
used to develop the ontology from a single domain “middle-
ware”. This is caused by the nature of our work, because before
posts could be used in our research, we needed to get feedback
from practitioners about the architectural relevance of posts.
This manual classification requires experienced practitioners
rather than novice or less experienced practitioners. Also,
manually classifying posts is very time-consuming: It took
practitioners around four hours to classify 100 posts (details are
provided in [6]). However, we tried to ensure that the annotated
ARPs cover different ARPs through a stratified sampling. All
in all, we believe our results provide an initial hypothesis for
other future studies on AK in developers community.

TABLE III: Significant Composite AK Concept classes: description, examples and structure

(ID) Name and Description

Examples

Composing Classes
(6%)

(CONF) Architecture Configuration: represents part of an architectural model, which
consists of one or more component names associated with an architecture connector
verb or name.

“Pushing data from the server to the client
[12783677], "Rubby app sends a request to Java
app” [4473567]

CON@414), COM(326),
COND(193.9), COME(41.7)

(CB) Component Behavior: describes the behavior of an architecture component. It
gives an overview about the type of implemented logic and complexity. Sometimes
internal operations are mentioned during the description.

“service can be viewed as the business layer
of the application”[1582952], “process will run
asynchronously”’[380052]

COM(35.7), COME(64.6)

(EX) Existing System: describe part of an architecture of an existing software system. ~ ”An existing process changes the status field of a ~ PROB(158), = COM(123.7),
It additionally describes the possible problems in the system. booking record in a table” [380052] CONF(42), CON(35.8)

(DI) Design Issue: users express their design problems through describing the I want to send a batch of 20k JMS messages to ~ CONF(110), EX(95.3),
architecture configurations of a planned design, or the architecture configuration a same queue. I'm splitting the task up using 10 CB(43), WISH(37.4),
design of an existing software system. threads.” [4741713] USE(14.7)

(REQ) Requirement and Constraint: two main types of requirements were found: 1) ”Our criteria (...) Short roundtrip time (...) High WISH(213.7), QA(108.7),

Quality attribute requirements, and 2) Technology features requirements. In addition,
we found three types of constraints: 1) Technical skills constraint. 2) Development
time constraint. 3) Solution constraint.

availability (...) Scalability (...) Ease of debugging
and profiling (...) Good documentation and com-
munity support” [4473567]

CONC(74.16), DIF(12.17)

(UR) User Request: exist in ARP question or title in a form of questions or needs.
It complements design issue, requirements and constraints by showing the type of
architecture activity (evaluation or synthesis).

“How do I choose between WCF, REST, POX and
RIA services for a new Silverlight application”
[1582952]

QUE(324.16), TEC(238.8),
USE(116), VS(42), DFF(37)

(FEAT) Technology Features: Two main types of technology features: 1) Develop-
ment features are expressed through certain programming activities (e.g. debugging)
or programming features and tools (e.g. code generation), 2) Behavioral features are
expressed through technology specific component and class names, as well as their
implemented architectural patterns or their relationship with other technologies.

(ASTA) Technology Benefits and Drawbacks: They are distinguished through the
extensive usage of adjectives and adverbs in combination with technology features
and quality attributes. The adjectives or adverbs are used to express the advantages
or disadvantages of certain technology solutions or features.

(CASE) Technology Use-Cases: These are either success or failure stories for the
usage of technology solutions at certain contexts. The stories could be coming
from personal experiences of users, or well-known examples for existing systems.
The context associated with stories could include domain description, architecture
configurations, infrastructure, and constraints.

“"EMS is centralized (hub and spoke) on a spe- TEC(90), PAT(74.8),
cific server(s) and can traverse subnets no prob- FT(44.1), REL(35.7),
lem”[1429318], "ActiveMQ is a widely used mes- ~ SUPP(13.6)

sage broker that offers FIFO queues” [10375137]

“It is much easier to debug Webservices (...) , VAL(130), DIF(102.7),
which can be easily captured via sniffing tools” QA(57.4), SPED(49.7),
[100993], "performance difference will be negligi- TEC(18.9)

ble and in many cases worse for NIO” [19758215]

”An application I'm working on has a similar CONE(106), CONC(48.7),
architecture, and I'm planning to use SignalR USE(45.8), ASTA(29.7),

to push updates to clients, using long polling
techniques (...) I have implemented this now, and
it works very well” [12783677]

REQ(15.5), ADD(13.3)

(ADD) Recommended Design Decisions: They are recommendation from users based
on their experience or opinion for certain architectural solutions.

”T would highly recommend using WCF; and
use the WCF Service Library project over the
Silverlight-enabled web service” [361491]

ADV(355), TEC(72),
USE(41), CONF(18.49)

(DR) Decision Rules: Conditional recommendation for architectural solutions. The
rule condition might involve other ontology classes such as requirements, constraints
and architectural configuration. recommendations involve recommended ADDs for
certain technology solution or architecture configuration.

”go with WCF only if you’re willing to take on
the learning curve.” [807692]

ADD(369.4), REQ(226.7),
CB(85), ASTA(60.7),

CONF(54.9), FT(12.65)

V. CONCLUSION AND FUTURE WORK

Finding effective methods for AK sharing and reuse is

important to make architects benefit from the power of existing
knowledge and experience during their design activities. In
this paper, we analyzed textual discussions in one example
of a developers community (SO) to explore the structure
of architecture knowledge from initially unstructured infor-
mation (posts in Stack Overflow). Based on our analysis,

we

operationalized the fuzzy concepts of AK into concrete

ontology. Our future work involve using and experimenting

the

developed ontology to implement knowledge capturing

functionality (e.g., information extraction and retrieval).

[1]

[2]

[3]

[4]

[5]

REFERENCES

A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in WICSA, 2005, pp. 109-120.

O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster,
“Managing architectural decision models with dependency relations,
integrity constraints, and production rules,” Journal of Systems and
Software, vol. 82, no. 8, pp. 1249-1267, 2009.

F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented

Software Architecture, Volume 4: A Pattern Language for Distributed
Computing. Chichester, UK: Wiley, 2007.

M. Soliman, M. Riebisch, and U. Zdun, “Enriching architecture knowl-
edge with technology design decisions,” in WICSA, May 2015, pp. 135—
144.

C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web? (nier track),” in Proceedings of the

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

33rd International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 804-807.

M. Soliman, M. Galster, A. R. Salama, and M. Riebisch, “Architectural
knowledge for technology decisions in developer communities: An
exploratory study with stackoverflow,” in IEEE/IFIP WICSA 2016, April
2016, pp. 128-133.

D. C. Wimalasuriya and D. Dou, “Ontology-based information extrac-
tion: An introduction and a survey of current approaches,” J. Inf. Sci.,
vol. 36, no. 3, pp. 306-323, Jun. 2010.

R. C. de Boer, R. Farenhorst, P. Lago, H. van Vliet, V. Clerc, and
A. Jansen, Architectural Knowledge: Getting to the Core. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 197-214.

R. Rosnow and R. Rosenthal, Beginning Behavioral Research: A
Conceptual Primer. Pearson/Prentice Hall, 2008.

P. Mayring, Qualitative Content Analysis. Theoretical Foundation, Basic
Procedures and Software Solution. Beltz, 2014.

T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowledge Acquisition, vol. 5, no. 2, pp. 199 — 220, 1993.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller,
“Wordnet: An on-line lexical database,” International Journal of Lexi-
cography, vol. 3, pp. 235-244, 1990.

K. Pearson, “On a criterion that a given system of deviations from the
probable in the case of correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling,” pp.
157-175, 1900.

J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educa-
tional and Psychological Measurement, vol. 20, no. 1, p. 37, 1960.

