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Abstract: Today, security is still poorly considered in early phases of software engineering. Architects and software
engineers still lack knowledge about architectural security design as well as implementing it compliantly.
However, a software system that is not designed for security or does not adhere to this design can hardly meet
its security requirements. In this paper, we present an approach we are working on. The approach consists of
two parts: Firstly, we improve the architecture’s security level through model transformation. Secondly, we
derive rules and constraints from the secured architecture in order to check the implementation’s conformance.
Through these activities we aim to support architects and software developers in building a secure software
system. We plan to evaluate our approach in industrial case studies.

1 Introduction

Designing and implementing a secure software
system is a highly complex task that can hardly be
done by a non-security expert today. However, it is
essential to consider security as early as possible.

Software architects as well as software develop-
ers usually are no security experts. Hence, designing
secure architectures and implementing a system in a
secure way in compliance with architectural rules and
constraints is a challenging task to most software en-
gineers.

While security solutions such as patterns or tactics
are thought of as encapsulated security expert knowl-
edge, applying them correctly is still difficult. Sup-
posing a solution has been applied correctly, several
difficulties arrive afterwards: First, there are uncer-
tainties of the solutions’ interplay and how they im-
pact each other. Second, the security related con-
straints or rules specified by the software architecture
often remain ambiguous.

The first issue is related to the design phase: It is
a complex task to define an architecture that is secure
as a whole. I. e. a software architecture that uses a

number of security solutions (e. g. patterns or tactics).
These solutions aim at solving different problems and
have to interact in such a manner that the system as a
whole is secure.

The second issue is related to both, the design and
the implementation phase: the defined architecture
actually describes the architects intention. Hence, it
could be named as ”intended architecture” or ”should-
be architecture” (de Silva, 2014). This intended ar-
chitecture defines rules and constraints that apply for
the software system’s implementation: Software de-
velopers have to implement the software system in
compliance with these rules and constraints in or-
der to avoid vulnerabilities. However, it is likely
that software developers introduce violations of these
constraints while implementing a system. The rea-
son for these violations is commonly (Knodel and
Naab, 2016; de Silva and Balasubramaniam, 2012) at-
tributed to the lack of knowledge about or acceptance
of the software’s architecture, time pressure during
development and out-dated or inadequate documen-
tation.

To keep it’s value, the intended architecture has to
be implemented correctly, i. e. compliantly. Other-



wise, reasoning about fundamental properties of the
system is based on false assumptions about the sys-
tem’s actual architecture. Compliance checking ap-
proaches are used to ensure the system’s adherence to
the rules and constraints. As per (Knodel and Naab,
2016), conformance checking approaches should be
automated to a large extend to deal with time and re-
source constraints.

Both issues – designing a secure architecture and
implementing the software system in compliance with
that architecture – are hard to solve. In this paper,
we will highlight the mismatch between today’s (in-
tended) architecture models and architectural rules
and constraints or information needed for performing
compliance checks, respectively.

Our approach aims to support software architects
and developers in performing those tasks by revising
an architects’ architecture to make it secure, enrich-
ing the intended architecture model with information
needed to derive architectural rules and constraints
and checking the implementation’s compliance with
it. We also examine the information and artefacts
needed to extract the implemented architecture in or-
der to reflect the architectural compliance rules.

Basic Concepts

Basic concepts of this paper are:
Software security. A software system is called

secure if it works correctly even if it is under mali-
cious attack. Software security is achieved by secu-
rity engineering. Security engineering is about con-
structively developing a secure software system, i. e.
considering security concerns from the early phases
of the software development process.

Secure design. An architecture or design is called
secure if it does not have any security flaws, i. e. se-
curity requirements and design principles have been
respected and there are no fundamental vulnerabili-
ties caused at the design level.

Architectural rules and constraints. A software
architecture constrains the implementation of the sys-
tem: Those rules and constraints must be respected in
order to gain the quality level enabled by the intended
software architecture.

Architectural compliance. If an actually imple-
mented software system is conform with it’s intended
architecture, it adheres to all rules and constraints de-
fined by this intended architecture. The term ”archi-
tectural conformance” is used synonymously by some
authors (de Silva and Balasubramaniam, 2012).

Architecture divergences and violations. Dif-
ferences between the implemented architecture and
the intended architecture are called divergences. They

can be differentiated in missing or inadequate adap-
tions of the intended architecture during software evo-
lution and architecture violations. Architecture viola-
tions are divergences that are caused in the implemen-
tation, i. e. the intended architecture is correct and up-
to-date but not implemented compliantly.

Running Example

Throughout this paper, we use a running example to
illustrate our approach:

Our exemplary software system provides func-
tionality for small and medium-sized enterprises. To
allow flexibility and customization, the system can
be extend by plugins which lead to a diverse code
base. As the plugins’ sources are mainly unknown
they are not trust worthy and, therefore, are assumed
malicious.

In order to protect the system while running un-
trusted code, the architect decides to use a sand-
box pattern (naming inspired by Google’s chromium
project (Google Chromium Project, 2017)). It is ap-
plied to ensure that code from untrusted sources can
be executed securely: Such code must not access con-
fidential information or make persistent changes ille-
gally. The sandbox pattern follows the secure design
principles of least privilege and assumes that the sand-
boxed code is malicious. Figure 1 illustrates the sand-
box pattern’s structure.

Figure 1: Running example: the sandbox pattern

There are at least two processes needed: the bro-
ker is a privileged controller which manages one or
more target processes:
A target hosts the client-side sandbox infrastructure
and the sandboxed code. The infrastructure code in-
cludes so called interceptions or hooks. Interceptions
are then forwarded to the broker.
The broker manages and controls the target processes.
It defines a policy per target process. This policy is
used to evaluate interceptions of the targets’ action
requests. The broker uses an interception manager to
forward certain API calls to the broker. If an action is
allowed due to the policy, the broker process performs
it on the target’s behalf.



2 Our Approach

Figure 2: Proposed approach.

Figure 2 shows the proposed approach towards
bringing security constraints in an architecture-centric
software development process. In the design phase
the Data-Flow Diagram (DFD) is commonly included
in the creation of several architectural views. The ar-
chitectural representation is then used to perform a
threat analysis of the (as designed) system. By means
of pattern-based model refactoring, the intended ar-
chitecture is obtained. In this work, we refer to the
intended architecture as the result of the model refac-
toring, including the information gained from threat
analysis. Given the appropriate transformations, se-
curity compliance constraints can be derived from the
intended architecture. The proposed approach does
not envision the identification of constraint violations
in the intended architecture, but rather in the imple-
mented instance of the system. To this aim, the for-
malized constraints are used to identify compliance
violations in the extracted architecture.

2.1 Securing Software Architectures

In this section, we discuss the activities in the de-
sign stage of software engineering and focus on how
model refactoring can help identifying rules for com-
pliance.

Security-by-design is a practice within organiza-
tions which enables planning for security in early
phases of the product life-cycle. Designing for se-
curity begins with a disciplinary regard to best prac-
tices (such as threat analysis), security standards (ISO
15408:2009(E), 2009; ISO 27001:2005(E), 2005;
ISO 27000:2009(E), 2009; NIST 800-53, 2013) and
derived security policies. However, in practice prior-
ities are commonly shifted due to a lack of resources
required for thoroughly addressing security issues at
the design phase. As a result, semi-automated ap-
proaches aim to partially analyze and secure the archi-
tectural design. Several design notations encompass
security concepts (van den Berghe et al., 2015), some

of which have emerged in the model-driven develop-
ment domain. Security-design models can be used as
a basis for generating systems and their architectures.
If models are extended with security semantics, for-
mal signatures can be used to reason about security-
related properties of systems.

Our approach bases on a threat analysis of the
architect’s intended architecture that have to be per-
formed as a first step. We use the analysis results
as an indication for securing the software architecture
through model transformations:

Software-intensive systems continuously evolve
due to constantly changing requirements, generally
increasing the system’s complexity. In the domain
of model-driven software quality and evolution, mod-
els and their transformations have been studied in the
context of system maintenance (Ivkovic and Konto-
giannis, 2006; Mouheb et al., 2015b; Goulão et al.,
2016).

Model transformations have also been studied in
the context of model refactoring for security. The
term refactoring – originally introduced in the context
of object-oriented programming by Opdyke (Opdyke,
1992) – is commonly used to signify source code
modification for the purpose of strengthening the code
structure: ”the process of changing a software sys-
tem in such a way that it does not alter the external
behavior of the code, yet improves its internal struc-
ture” (Fowler and Beck, 1999). In the MDE domain,
refactoring is applied on a model level, eventually
leading to source code modification for the purpose
of strengthening a certain software quality character-
istic of the system, without changing its external be-
havior (Mens, 2006).

In terms of subsequent architectural compliance
checking, it would be beneficial for the software ar-
chitects to introduce the notion of ‘checkpoints’ for
compliance already in the design phase. To this
aim we introduce such checkpoints for compliance
by means of architectural refactoring: Enriching the
model with this information aids the formalization of
compliance rules. Lano et al. (Lano and Kolahdouz-
Rahimi, 2014) consider patterns as forms of trans-
formations: “Patterns can in some cases be consid-
ered as forms of transformations: the application of
a pattern rewrites a software model or system with a
problematic structure into a model or system with an
improved structure.” In the domain of aspect oriented
modeling (Mouheb et al., 2015a), previous work has
introduced reusable aspect models with a refinement
process for specifying security design patterns on sev-
eral levels of abstraction, based on System of Security
design Patterns (SoSPA) (Nguyen, 2015).

Design patterns are commonly defined as a set



of problem specification, solution specification and
transformation rules (Kim et al., 2017). To this aim,
we specify the problem and the solution with a meta-
model and define the transformation rules to enable
refactoring as described in Section2.3.

2.2 Checking the Implementation’s
Architectural Compliance

Besides the planned architecture of a software sys-
tem that is designed by the system’s architect, there is
the actual architecture. It describes the architecture-
level structure and behavior that are actually imple-
mented. Usually, the actual architecture is not totally
compliant to the planned architecture, i e. the im-
plementation diverges from the planned architecture
to some degree and thereby violates the architectural
constraints. Architecture violations are important to
consider as they

(a) cause incorrect assumptions on the system’s ac-
tual architecture. Subsequently, violations lead to
a lack of comprehension and further architecture
violations.

(b) may cause the system’s failure to comply with it’s
non-functional requirements. In case of security-
related architectural rules and constraints, viola-
tions may introduce vulnerabilities.

In order to monitor and control architecture viola-
tions compliance checks are performed. When these
compliance checks are done, the planned architecture
is not questioned. It is thought of as ideal and defines
the rules or constraints that must be met by the imple-
mentation.

However, checking the implementations compli-
ance with these rules is a highly complex and exhaust-
ing task. Hence, automation is needed when applying
compliance checking to non-trivial software systems.
Our approach will provide tool-support for conduct-
ing compliance checks based on the revised security
architecture that results from the previous step.

Architectural Rules and Constraints

As a first step in performing architecture compliance
checks we need to define the rules and constraints that
have to be met. We use the secure design that is the
prior step’s output an input for this activity. To be
valuable, the design needs to specify the constraints
and rules that apply for the implementation in a way
that

(a) software engineers know which constraints and
rules they must respect while implementing the
system.

(b) those constraints can be used for automatic or at
least tool-supported conformance checking.

Hence, the constraints must be specified compre-
hensibly, so that software developers and architects
can be actively aware of them. However, the speci-
fication must be machine-readable, i. e. formal. As-
suming that the constraints are explicitly modeled that
point is achieved as the revised, secure architecture is
used as an input. However, an important task is to
formalize the architectural constraints regarding the
software systems structure as well as it’s behavior.

To determine a set of common architectural se-
curity constraints and rules, we derive architectural
security constraints from security solutions and best
practices, such as patterns, tactics, frameworks and
reference architectures.

Extracting the Actual Architecture

There are three components of source code analy-
sis: the parser, the internal representation and the
analysis of this representation (Binkley, 2007). The
classic examples of internal source code representa-
tions are control-flow graph (CFG), call graph, ab-
stract syntax tree (AST) and value dependence graph
(VDG). Other representations include trace files, dy-
namic call graphs, XML like files, other executable
files, etc. Code analysis techniques are typically cat-
egorized into static and dynamic analysis techniques.
Static code analysis techniques perform the analysis
’off-line’, e. g. based on a model instance or source
code, without taking the program input into account.
For instance, static techniques for information-flow
control mainly assign security labels to input data,
variables and APIs (Dennings’ approach (Denning
and Denning, 1977)), making it possible to separate
public and private computation. Hence, static analy-
sis can be performed on not executable artefacts such
as an intended architecture model or informal doc-
uments. Static analysis is applicable to all execu-
tions of the program, which inevitably forces approx-
imations. Consequently, such techniques suffer from
a high false-positive rate rejecting many secure pro-
grams. Other static code analysis techniques include
program logics (Banerjee et al., 2008), model check-
ing (Garcı́a-Ferreira et al., 2014; Marinescu et al.,
2014; Jensen et al., 2015; Zuliani et al., 2013) and the-
orem proving (Bernasconi et al., 2017; Darvas et al.,
2005; Guo et al., 2016). Dynamic code analysis tech-
niques take program input into account (typically a
single input). They use runtime program information
to perform the analysis. This allows greater precision
for the particular input, but causes lower result cor-
rectness guarantees for other program inputs.



In order to perform meaningful compliance
checks on the implemented architecture, our analysis
technique will include both dynamic and static ele-
ments: Static analysis techniques are used to extract
information on information and control flows, error
handling, the access control policy and the software
system’s structure by identifying code that runs more
concisely. We plan to apply dynamic analysis to find
information on the software system’s memory man-
agement as well as time-dependent constraints which
is mainly security-related behavior. This information
may be extracted by data mining approaches such as
sequential pattern discovery (Lo et al., 2007). In our
running example we could check, if the sandboxed
code is exclusively executed within the target.

2.3 Illustration on the Running
Example

Assuming a given DFD has been analyzed for threats
beforehand, we implemented a transformation to a
pattern-based DFD for a preliminary set of possible
DFDs. For illustration purposes, we have defined a
source meta-model of a regular DFD, a target meta-
model of the sandbox pattern and a set of M2M trans-
formation rules using Eclipse Ecore with ATL. When
run, the transformation will refactor the input model
(conforming to the source meta-model) to an output
model (conforming to the target meta-model). Due to
space limitations, we only show the first transforma-
tion rule below.

create OUT : SandboxDFD from IN : DFD;

rule DFD2SandboxDFD {
from s: DFD!DFD
to t: SandboxDFD!SandboxDFD (
outerdfdelements<-s.getOuterElements()

->collect (a|thisModule.
DFDEL2SANDEL(a)),

broker<-s.element->select (el|el.
oclIsTypeOf(DFD!PN))->select (e|e.
Type=#BROKER)->collect(a|thisModule
.PN2Broker(a)),

target<-s.element->select (el|el.
oclIsTypeOf(DFD!PN))->select (e|e.
Type=#TARGET)->collect(a|thisModule
.PN2Target(a)))

}

When run on a simple DFD, the transformation im-
poses restrictions in the design by requiring a sepa-
ration of broker, target and outer elements in the di-
agram. Moreover, the broker process is required to
have been initialized before the target process. Upon
executing the transformation rules for the broker and
target, the transformed processes include a reference

to the Inter-Process Communication (IPC) service and
client, respectively.

In our running example, the following architec-
tural rules can be defined for the sandbox pattern:

• At least two components must be involved in a
sandbox pattern’s implementation.

• The control flow must neither start within that
sandbox (”target”) nor the controller process
(”broker”).

• The target must not (directly) access system re-
sources, keyboard or mouse events etc.

• The broker manages all targets’ rights by hosting
the policy engine.

• All control and data flow enters and leaves the tar-
get via the broker component. I. e. the broker in-
tercepts and handles all targets actions.

• All code to be sandboxed is executed only and
solely within the target.

• There may be separate processes for the broker
and each target

However, not all of these constraints can be de-
rived from today’s design models: for instance, time-
dependent constrains can hardly be derived from com-
mon design models which are mostly DFD or UML
models.

An architect could define additional constraints,
e. g. regarding naming conventions that apply for the
actual project.

The constraints mentioned above can directly be
derived from the applied sandbox pattern in the soft-
ware’s architecture. However, there are further con-
straints such as constraints regarding secure error han-
dling: assuming the broker finds that an action re-
quested by a target is not allowed due to the policy.
The broker now may inform the target on this failed
execution. Such error messages must not reveal infor-
mation on the system beyond the broker or the bro-
ker’s implementation. To ensure this, the error types
and messages should be custom but not default.

2.4 Formalizing the Architecture

As we want to provide tool support for the confor-
mance checking as well as for the security archi-
tecture improvement we need to formalize the soft-
ware architecture and it’s constraints. This is done
rarely today (Caracciolo, 2016), for instance it is done
in (Pene et al., 2017). The formalization approach
must allow to describe all information needed for the
security analysis, structural as well as behavioral con-
straints. That includes the expression of temporal
characteristics. Due to these and further requirements



like a good documentation and community, we have
limited the eligible ADLs to Alloy (Jackson, 2011)
and π-ADL (Oquendo, 2008).

In our approach, we use Alloy to describe the
rules and constraints of a secure software architecture.
It is a description language for expression structural
and behavioral constraints which allows to explic-
itly model time-dependencies. There is tool-support
available for analyzing and visualizing Alloy models
to identify over- and underspecification.

As modeling a complete architecture including all
information needed for security compliance checking
in Alloy is a rather complex task, we plan develop an
export and import mechanism to common UML and
DFD tools in order to ease it’s usage. These tools will
then by extended for our approach, i. e. for provid-
ing the security revision functionality, extending the
models by information needed for deriving architec-
tural constraints from that architecture and specifying
these constraints.

2.5 Evaluation Plan

While we present work in progress in this paper, we
want to outline how we intend to show our approach’s
feasibility:

First, we will apply our approach to two industrial
case studies of different domains. One project is a dis-
tributed system in the context of energy network con-
trols, i. e. critical infrastructures with high demands
on it’s security and safety level. The other project is
on a software that automatically archives enterprise
documents by analyzing their content. Hence, this
software greatly deals with sensitive enterprise data
and requires a high security and privacy level. For
both projects reasonable documentation and an in-
tended architecture are available.

If needed, we will perform additional case stud-
ies using open source projects with security re-
quirements. This could for instance be the Google
Chromium Project or the Apache WildFly Project.

3 Related Work

We address the colliding body of knowledge on
securing software architectures and architectural con-
formance checking.

Secure design automation. Threat analysis is
a method for identifying, analyzing and prioritiz-
ing threats of early software architectural models.
STRIDE is most commonly used to this aim. This
method’s systematicity and repetitiveness results in a

so called threat explosion, where too many unimpor-
tant threats are identified and analyzed (Scandariato
et al., 2015). Apart from existing tools – e. g. (tmt,
2016) –, only few attempts at automating STRIDE
were made (Schaad and Borozdin, 2012). Yet, au-
tomation is a promising approach to prevent human
flaws occurring downstream the software production
line (Yskout et al., 2008).

Apart from the software-oriented STRIDE there
are other methods used to perform threat analysis:
CORAS (Lund et al., 2011), PASTA (UcedaVelez
and Morana, 2015), attack trees (Mauw and Oost-
dijk, 2005), Trike (Saitta et al., 2005), to name a
few. J. Berger et al. (Berger et al., 2016) have pro-
posed an approach for a semi-automated architectural
risk analysis. They provide a a tool which automati-
cally extracts architectural vulnerabilities based on an
extended DFD notation and proposes known mitiga-
tions. To create the threat model, formalized rules are
build based on information obtained from lowering
EDFDs to simple graphs. The authors recognize the
need to limit the time spent by security experts and
therefore separate the responsibilities to include the
expert only when needed. However, the knowledge
base rules are used to discover only cataloged vul-
nerabilities, as opposed to finding all possible threats.
Furthermore, Almorsy et al. (Almorsy et al., 2013)
have introduced an approach for a security risk anal-
ysis by means of formalized signatures of scenarios
and metrics. The authors developed a prototype tool,
which takes as input a (sub)set of design, architecture
and code level artifacts. Using formalized signatures
of attack scenarios and security metrics (with OCL),
the tool is able to identify signature matches in the
incrementally built architectural model.

Closely related to goal-oriented requirements en-
gineering methods, architectural analysis has been
studied in the context of automating the genera-
tion of attack trees (Li et al., 2016; Birkholz et al.,
2010), attack graphs (Sheyner et al., 2002) and at-
tack paths (Chen et al., 2007). Aforementioned ap-
proaches aim toward a static architectural analysis,
where the implemented solution is not the main focus.
For a more complete list of attack and defense mod-
eling methods, we refer the reader to the work of Ko-
rdy et al. (Kordy et al., 2014). Complementary to ar-
chitectural security patterns (Yskout et al., 2012), the
so called problem frames (Beckers et al., 2013) and
treat patterns have emerged. Abe et al. (Abe et al.,
2013) proposed to model negative scenarios (as de-
fined by the CC standard (ISO 15408:2009(E), 2009))
in a semi-automated way with threat patterns and use
them during business process modeling.

Architecture compliance checking. A secure de-



sign does not automatically result in a secure soft-
ware system: it must be implemented correctly. Most
approaches for identifying violations of architectural
constraints concentrate on constraints regarding the
static structure of the system, e. g. identifying the al-
lowed and forbidden dependencies between compo-
nents or layers on the architectural level. Such ap-
proaches are usually based on reflexion models in-
troduced in (Murphy et al., 2001), dependency struc-
ture matrices or relation conformance rules. This is
mainly related to the software system’s maintainabil-
ity, which is commonly addressed in the related work
(e. g. (Knodel and Naab, 2016), (Berger et al.,
2013)), whereas other quality attributes such as se-
curity are poorly understood today.

There have also been a few approaches that dy-
namically check the conformance at runtime: (Nico-
laescu and Lichter, 2016; de Silva, 2014). Yet, none
of these works consider security constraints. Other
authors use aspect-orientation to dynamically enforce
architecture conformance: (Merson, 2007; Gane-
san et al., 2008; Wang et al., 2007). Another ap-
proach that intends runtime compliance checking is
the SECORIA-approach (Abi-Antoun and Barnes,
2010). Abi-Antoun and Barnes define some security-
specific constraints which define permitted, and pro-
hibited connections based on security requirements.
The authors do not consider changes over time in the
system’s behavior and structure.

4 Conclusion: Discussion and
Future Work

In this paper we present our work towards an ap-
proach for developing secure software systems. The
approach focuses on the constructive phases of the de-
velopment process, i. e. the design phase, the imple-
mentation phase and the transition between them.

The first step in securing the design is to an-
alyze the architectural model for potential security
threats. This non-trivial task raises questions about
threat granularity (when to stop detailing threats),
stopping conditions of analysis, quality assurance of
analysis results, to name a few. To this aim, our future
work will include semi-automated approaches reduc-
ing manual intervention and helping the exploration
of the problem space in a computerized fashion.

The presented approach extracts compliance con-
straints from the resulting secure design as a result
of threat analysis. Therefore, the soundness of the
secured architecture is of utter importance. In order
to complement the security requirements refinement
during threat analysis, we plan to explore the potential

of design flaw detection. We plan to realize this de-
tection by mining documented design flaws by using
techniques such as graph pattern matching. We will
analyze design flaw and issue catalogs (e. g. OWASP)
to find flaws and issues or identification criteria in or-
der to find them in an input architecture model.

Regarding the pattern-based model transformation
presented in this approach, we are interested in how
to maintain the conflicts introduced by several non-
functional concerns. For example, security require-
ments commonly effect safety requirements. Further,
changes in the design model due to the transforma-
tions must not obstruct or corrupt solutions which
have been applied to the input design models to en-
able other non-functional quality characteristics.

Besides our future work on secure design trans-
formation, more work has to be done on checking the
implementations compliance with the resulting secure
design: Architectural design needs to be good to en-
able sound compliance checking as architectural rules
depend on the amount of information provided. I. e.
the design model needs to comprehensibly present the
constraints that apply to the implementation. An es-
sential challenge related to today’s architectural mod-
els is their lack of information about security solu-
tions: an adequate notation for architecture models is
needed. To preserve compatibility and comprehensi-
bility common notations such as DFD or UML mod-
els should be enriched with more security semantics.
Architectural constraints will be derived from these
enhanced architecture models. To perform the confor-
mance checking, the constraints must be specified in
a formal way. To further support software engineers
in applying our approach we will provide a catalog
of frequently used transformations as a result of the
common solutions’ analysis (e. g. common flaws, pat-
terns). This catalog will also comprise frequent con-
straints and rules derived of such security solutions.

As previously mentioned, we will apply a hybrid
approach to extract the actual architecture from the
system, i. e. we will combine static and dynamic anal-
ysis techniques. To enable checking for compliance
of the implemented architecture, our techniques need
to be able to extract the required information for re-
flecting compliance rules. For example, information
gained from control and data flow analysis, as well
as information about behavioral aspect of the system.
Further investigations about the required information
for extraction, as well as the source of this infor-
mation in the implemented architecture (e. g. source
code, AST, CFG, executable files, etc.) is needed.

Another challenge related to security architecture
compliance checking is to display architecture viola-
tions clearly and comprehensibly. This is an essential



usability requirement of our approach as we need to
give adequate feedback on software system’s compli-
ance with it’s intended architecture.
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