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ABSTRACT
Architecture conformance checking is an important activity of
architecture enforcement where the architect ensures that all ar-
chitecture concepts are implemented correctly in the source code.
In order to support the architect, a lot of tools for conformance
checking are available that allow to formalize the architecture in
order to perform an automated verification. Typically, the formal-
ization uses a rigid, tool-specific architecture concept language that
may strongly deviate from the project-specific architecture concept
language. In addition, a high level of formal expertise is required
in order to comprehend the created formalization. We present an
approach that uses a controlled natural language for the formal-
ization of architecture concepts. This language allows to flexibly
express architecture rules directly with project-specific concepts.
Consequently, the resulting formalization is easy to understand and
might also be used as an architecture documentation at the same
time. Nevertheless, the documentation can be automatically veri-
fied, since the approach is based on powerful means of the semantic
web, i.e., ontologies and description logics. For the evaluation of the
approach, we use the real-world software system TEAMMATES and
show that architecture rules and concepts can be flexibly designed
and checked for conformance in order to detect crucial architecture
violations.

KEYWORDS
architecture erosion, description logics, ontologies, architecture
documentation, architecture conformance checking
ACM Reference Format:
Sandra Schröder and Matthias Riebisch. 2018. An Ontology-Based Approach
for Documenting and Validating Architecture Rules. In 12th European Con-
ference on Software Architecture: Companion Proceedings (ECSA ’18), Sep-
tember 24–28, 2018, Madrid, Spain. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3241403.3241457

1 INTRODUCTION
Architecture enforcement is a challenging responsibility of the soft-
ware architect [12]. During enforcement, the software architect
is concerned with ensuring that architecture design decisions are
implemented correctly in the source code. He performs architecture
conformance checking in order to reveal inconsistencies between
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the implementation and the intended software architecture [5]. For
this, the software architect defines so-called architecture rules [3]
that should continually be checked against the source code in order
to detect architecture violations [16] and to eventually minimize
architecture erosion [9].
A lot of tools and approaches have been developed, in order to
support rule-based conformance checking, e.g. [3], [10], [16], or
[4]. Each of them provide a so-called architecture concept language
the intended software architecture is described with. However, we
identify two issues that arise when using those tools:
I1: Lacking Flexibility of Architecture Concept Languages.
Tools typically use a language that is fixed in terms of the architec-
ture concepts the intended architecture and the architecture rules
can be described with. That is why, the architect cannot extend
the language by new concepts that are needed in the project. He
is forced to reformulate the project-specific architecture concepts
using the available architecture concepts of the tool, e.g. module,
component, or layer. Consequently, the original intentions of the
architecture rules are prone to get lost during the formalization.
I2: Inappropriate Architecture Rule Documentation.As men-
tioned in [1] and [8] there is still a lack of approaches that provide
usable and readable architecture formalizations. Moreover, those
approaches typically do not integrate well in the toolchain used
by developers, e.g. such as plain text documentation in asciidoc
or markdown format. Therefore, architecture rules cannot be ap-
propriately preserved and documented. In case architecture rules
are documented, only natural language descriptions are used or
formal descriptions are supported with natural language explana-
tions. However, since the natural language is informal, it does not
provide the unambiguity of the formalization. Consequently, the
formalization and the informal description are prone to deviate
from each other.

We propose an ontology-based approach in order to address
the issues described above. An ontology defines a vocabulary that
describes concepts and relations that are representational for a
domain. In the context of architecture conformance checking, an
ontology provides a flexible architecture concept language with
which the software architect can describe the software architec-
ture and corresponding architecture rules. Since ontologies are not
restricted to specific concepts and relations, the architect can de-
fine architecture concepts and relations as they are needed for the
project. Additionally, description logics [2] are the formal basis for
ontology languages. That is why, mature and efficient reasoning
services can be exploited in order to check the architecture concept
language for inconsistencies and to validate whether architecture
rules are violated. This addresses issue I1. In order to address I2,
we design a controlled natural language (CNL). CNLs are a subset
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of natural languages that use a restricted vocabulary and gram-
mar [7]. They aim to bridge the gap between natural and formal
languages by increasing understandability and unambiguity. As
they are very similar to natural languages and use a well-defined
syntax and semantics, they are understandable for humans and
can be processed by machines at the same time. CNLs integrate
well with the description logic formalism and ontologies, so that
they are frequently applied as knowledge representation languages,
as in [13]. However, to the best of our knowledge, there are no
approaches that apply CNLs for architecture rule formalization.
With the CNL, architecture rules can be read as natural language
sentences that are widely comprehensible with an unambiguous
meaning and that are also verifiable at the same time. The CNL
can simply be integrated in plain text files that can additionally
be stored in version control systems along with the source code.
Therefore, our approach facilitates an readable and verifiable archi-
tecture documentation.
The contributions of this paper are twofold: Firstly, we develop an
approach based on description logics and ontologies that supports a
more flexible way to define architecture concepts and relations spe-
cific to the respective project (Section 3). Secondly, we design a CNL
that enables a more comprehensible and readable formalization of
architecture rules, and that also provides a basis for architecture
documentation (Section 3.2). We evaluate our approach using a
real-world software system and show how its architecture rules
can be flexibly and unambiguously formalized with the CNL. We
additionally show that the approach is suitable to detect crucial
architecture violations (Section 4).

2 BACKGROUND ON DESCRIPTION LOGICS,
ONTOLOGIES, AND SEMANTIC WEB
TECHNOLOGIES

Description logics (DL) are a family of logic-based knowledge-
presentation formalisms [2]. They are used to represent the knowl-
edge of a domain in a structured and formal way. In DL, the do-
main is formalized using concepts, roles, and individuals based on
a formally defined syntax and semantics. Concepts represent sets
of individuals characterized by common properties. Roles define
binary associations (or relations) between concepts of a domain. In-
dividuals describe concrete instances of concepts. Concepts can be
flexibly defined using concept descriptions. Those are expressions
built from atomic concepts and atomic roles using the constructors
for concepts and roles provided by description logics. Those con-
structors are for example the universal restriction (∀R.C), the exis-
tential restriction (∃R.C), the qualified number restrictions (≥ nR.C ,
≤ nR.C , = nR.C), the intersection (C ⊓ D), and the union (C ⊔ D)1.
In addition, there are general concept inclusions (GCI) of the form
C ⊑ D. These are axioms describing a is-a relationship of two
concept descriptions C and D, where individuals of C must satisfy
the properties of D in order to be consistent. For example, we can
describe that an architectural component needs to provide at least
two interfaces with the GCI Component ⊑≥ 2provide .Inter f ace .
Those types of axioms are contained in the so-called terminological
box (TBox). As we will see later in Section 3 and 4, we use the

1C and D are atomic concepts or concept descriptions; R is an atomic role or a role
description; n is a non-negative natural number.

TBox to describe architecture concepts and relations and especially
use GCIs in order to formalize architecture rules based on those
concepts and relations. We can further assert facts about concrete
instances of the concepts contained in the TBox. Those facts are
part of the assertional box (ABox). ABox axioms capture knowledge
about named individuals by stating to which concepts they belong
(i.e. concept assertions) and how they are related with each other
(i.e. role assertions). With respect to the above example, we can
add the statements Component(c1), Inter f ace(i1), Inter f ace(i2),
provide(c1, i1), provide(c1, i2) to the ABox in order to describe that
there exists one concrete component (the named individual c1)
and two interfaces (individuals i1 and i2) that are provided by this
component. Together, the TBox and the ABox constitute a so-called
knowledge base [2, 6].

3 FLEXIBLE ARCHITECTURE
CONFORMANCE CHECKING

In order to check the implementation for violations, the following
inputs are necessary [11]:

(1) architecture concepts, relations, and rules that together con-
stitute the architecture concept language,

(2) the source code represented as an ontology (e.g. Java source
code),

(3) an architecture-to-code-mapping in order to identify archi-
tecture concepts in the source code.

The architecture concept language and the architecture-to-code-
mapping are provided by the software architect, whereas the source
code is automatically transformed into an ontology. The software
architect defines a project-specific architecture ontology using the
CNL introduced later. Architecture conceptsmap to atomic concepts
of the description logic formalism, whereas relations between con-
cepts are modeled as atomic roles. Moreover, the architect defines
architecture rules based on the concepts. The CNL statements are
automatically converted into OWL integrity constraints [15]. Those
are then integrated into the knowledge base (Stardog2) that also
contains the source code ontology. The architecture concepts are
automatically extracted from the code driven by the architecture-
to-code-mapping that was provided by the architect. Thus, the
implemented architecture is extracted. The mapping can be imple-
mented in arbitrary ways in order to detect architecture concepts in
source code. In our case, we apply SWRL rules in order to describe
mapping rules. However, it is also possible to apply machine learn-
ing algorithms or other approaches in order to detect architecture
concepts in the code. Subsequently, the implemented architecture is
evaluated against the architecture rules using reasoning. Inconsis-
tencies detected in the knowledge base correspond to architecture
violations.

3.1 Specifying Architecture Rules as OWL
Integrity Constraints

As mentioned before, we use OWL integrity constraints - that
correspond to architecture rule types - to formalize architecture

2https://www.stardog.com/
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Figure 1: Overview of the conformance checking approach.

rules. In contrast to general OWL class axioms, integrity con-
straints realize the so-called closed-world assumption [15] that as-
sumes the ABox to be completely specified. Consequently, miss-
ing assertions are able to create violations. For example, the rule
Repository ⊑ ∃manaдe .Entity ("Each repository must manage an
entity") is violated if the assertionmanaдe(repo1, entity1) is missing
for existing entities Repository(repo1) and Entity(entity1). In the
following, we propose seven types of integrity constraints that are
fundamental for supporting architecture rule formalization. Note
that the given rule types can be easily extended with new ones,
as the description logic formalism supports a flexible definition
of concepts by using concept constructors. The semantics of each
rule type is defined by the semantics of description logics using
the closed-world assumption. Table 1 depicts the rule types in their
description logic representation and an example for each rule type.
The rule types have the following meaning:

(1) Sub-concept Rule type: An individual of an architecture con-
cept must also satisfy the properties of its parent architecture
concept.

(2) Domain-Range Rule type: An individual can only belong to a
specific architecture concept in order to have a relation to
an individual that belongs to another architecture concept.

(3) Existential Rule type: Every individual of a specific concept
must have a specific relation with an individual of another
architecture concept.

(4) Universal Rule type: Every individual of a specific concept can
only have a specific relation with an individual of a specific
architecture concept.

(5) Cardinality Rule type: Every individual of a specific architec-
ture concept must have (at-most, at-least, exactly) n relations
to an individual of another architecture concept, where n is
a non-negative natural number.

(6) Conditional Rule type: An individual of a specific concept can
only have a relation with an individual of another architec-
ture concept, if there already exists another type of relation
between them that is specified in the rule.

(7) Negation Rule type: An individual of a specific concept is not
allowed to be related with an individual of another architec-
ture concept.

To the best of our knowledge, this set of types of architecture
rules covers more rule examples than all other existing approaches
combined. For example, the DCL language [16] only implements

⟨sentence⟩ ::= (⟨subject ⟩ [‘must’|‘can’] ⟨roleExpression⟩ ⟨object ⟩‘.’)
| (‘If’ ⟨conceptID⟩ ⟨role⟩ ‘a’ ⟨object ⟩ [‘then’ | ‘,’] ‘it’ ‘must’ ⟨role⟩ ‘this’

⟨object ⟩‘.’)

⟨subject ⟩ ::= ‘No’ ⟨conceptID⟩ | (‘Every’|‘Each’)? ⟨conceptID⟩

⟨roleExpression⟩ ::= ‘only’ ⟨role⟩ (‘a’|‘an’)?
| ‘be’ (‘a’|‘an’)
| ⟨role⟩ (‘at-most’|‘at-least’|‘exactly’) ⟨count ⟩
| ⟨role⟩ (‘a’|‘an’)?

⟨object ⟩ ::= ⟨conceptID⟩ (‘or’ ⟨conceptID⟩)*

⟨conceptID⟩ ::= ((’a’..’z’)|(’A’..’Z’))+((’A’..’Z’)|(’a’..’z’))*

Grammar 1: Grammar of the controlled natural language in
EBNF.

the Domain-Range Rule type, the Negation Rule type, and the
Existential Rule type. Dicto [3] additionally supports the Universal
Rule type. The Sub-concept, Cardinality, and Conditional Rule types
are not supported by those approaches. However, they are necessary
to formalize common architecture rules as we will show in the
evaluation (Section 4). In the subsequent part of this section, we
illustrate how a CNL can be used to express the above rule types in
a more comprehensible way.

3.2 Controlled Natural Language
We designed a CNL that aims to provide a more readable and under-
standable architecture specification. The goal of the design of the
CNL is to support at least the classified rule types depicted in Table
1. That is why, we need to define a suitable grammar that prescribes
the sentence structure and keywords that allow for the construction
of the sentences. We base the design of our CNL on existing ones
that aim to integrate a natural language layer for ontology author-
ing such as Rabbit or ACE [14]. In contrast to those languages, we
also support keywords that reflect the closed-world assumption, e.g.
by adding modal words like must or can. Grammar 1 depicts the
grammar of the CNL in EBNF notation. The vocabulary consists of
content words that describe concepts and roles, and of predefined
keywords. The content words represent names for architecture con-
cepts (conceptID in Grammar 1) and relations (role in Grammar 1)
that can be arbitrarily chosen by the architect. Each concept identi-
fier is represented as a noun that can be written as a sequence of
words in camel case notation, whereas each role is represented by
a verb.
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Table 1: Supported rule types of the formalism with exemplary rules in their DL and CNL representation. A and B are atomic
concepts or concept description, R is an atomic role, and n is a non-negative natural number.

Rule Type Description Logic CNL expression Example

Sub-concept Rule A ⊑ B (Each/Every) A must be a/an B . Every AggregateRoot must be an
entity.

Domain-Range Rule ∃R .⊤ ⊑ A,
⊤ ⊑ ∀R .B Only a/an A can R a/an B . Only a ServiceComponent can use

a DAOs.

Existential Rule A ⊑ ∃R .B (Each/Every) A must R a/an B . Every Repository must manage an
Entity.

Universal Rule A ⊑ ∀R .B (Each/Every) A can only R a/an B Every LogicType can only access a
StorageApi.

Cardinality Rule
A ⊑= nR .B
A ⊑≤ nR .B
A ⊑≥ nR .B

(Each/Every) A R
exactly/at-most/at-least n B .

Every Host contains (exactly, at
most, at least) two
ServiceInstances.

Conditional Rule R ⊑ S If A R a/an B , then it must S this B . If a LogicType uses a DBType, it
must manage this DBType.

Negation Rule A ⊑ ¬(∃R .B) No A can R a/an B . No DAO can use a
BusinessLogicComponent.

The CNL uses only a small set of predefined keywords reserved for
special purposes. For example, the keywords Each, Every, No,
and If are necessary to start a sentence. Each and Every can be used
interchangeably and are optional. For example, the sentences Every
AggregateRoot must be an Entity, Each AggregateRoot must
be an Entity, and AggregateRoot must be an Entity are
equivalent. The keyword No introduces a negation rule. Using the
keyword If starts a conditional sentence. We use the keywords
at-most, at-least, and exactly combined with a non-negative
natural number in order to allow the construction of cardinality
rules. We also support modal words like must and can that are
necessary for writing a sub-concept, domain-range, existential, con-
ditional or a universal rule. There is a bijective mapping between
the rule types and the CNL sentences that can be constructed ac-
cording to the grammar. Each rule type from Table 1 can be written
as a CNL sentence and each CNL sentence can be mapped to a rule
type. Therefore, the semantics of the CNL is given by the semantics
of the respective rule type. The rule types are constructed in CNL
as depicted in Table 1. Using the CNL, the architecture ontology
and the corresponding rules are generated automatically. The on-
tology is stored as an OWL file that is eventually imported into the
knowledge base, so that architecture conformance checking can be
performed.
Note that no additional statements for defining the architecture
concepts and relations are necessary. While writing architecture
rules as CNL sentences, the architecture concepts and relations
are automatically extracted from the sentences and stored as OWL
classes and properties (i.e. concepts and roles in DL terms). For
example, when writing Every Repository must use an Entity,
the classes Repository and Entity, and the property use are stored
in a OWL ontology without explicitly stating that they are archi-
tecture concepts and relations. Furthermore, the CNL sentence is
transformed into an OWL class axiom that connects the classes and
relation with each other.

3.3 Tool Support
A prototype for tool support has been implemented. Architecture
rules can be documented inside a plain text file. Currently, they

can be integrated in a text file that follows the asciidoc format3.
This has the advantage that the rules can be easily managed in a
version control system. Moreover, a lot of asciidoc and markdown
templates for architecture documentation exist, so that architecture
documentations can be enriched with architecture rule formaliza-
tions.
The architecture rule documentation is automatically converted
into integrity constraints. The tool prototype is also able to auto-
matically transform Java source code into the code ontology. Based
on the mapping rules specified by the architects or developers, the
implemented architecture is extracted by using a reasoner provided
by Apache Jena. The implemented architecture is imported to the
knowledge base (Stardog Knowledge Graph Platform) together with
the architecture rules (represented as OWL integrity constraints).
The tool prototype produces architecture violation reports that are
again documented in asciidoc. This report depicts the respective
violations for each architecture rule and an explanation why an ar-
chitecture rule has been violated by referencing the corresponding
part of the source code that violates the rule.

4 CASE STUDY
In the following, we present the evaluation of our approach. We
apply our approach to the open source project TEAMMATES4, a
web-based feedback management tool for education. We have cho-
sen this software system for evaluation purposes as it provides
an up-to-date comprehensive documentation of the architecture
design. In particular, the architecture rules are available. The goal
of this evaluation is to show a) that the approach finds crucial
architecture violations and b) that the approach allows a flexible
architecture rule definition. In order to evaluate the quality of the
violation detection of our approach, we use the detection results5
of the tool HUSACCT [10] that was applied during the Saerocon
Workshop6. The results are used as a ground truth in order to com-
pare themwith the architecture violations found with our approach.
Additionally, the violations were prioritized by the TEAMMATES

3http://asciidoc.org/
4https://github.com/TEAMMATES/teammates
5https://github.com/sebastianherold/SAEroConRepo/wiki/teammates-5.110-code-
mapping-husacct
6https://saerocon.wordpress.com/
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Figure 2: Architecture ontology of TEAMMATES .

architect. We use this prioritization in order to evaluate whether
our approach finds crucial violations. In order to show the flexibility,
we tailor an architecture concept language by defining architecture
concepts and relations as they are needed to specifically describe the
architecture of TEAMMATES and to formalize the corresponding
architecture rules. The TEAMMATES architecture defines architec-
ture rules typically found in architecture documentations [3]. We
show that the rule types from Section 3 are suitable to formalize all
architecture rules of TEAMMATES.

4.1 Defining the Architecture Concept
Language and Architecture Rules of
TEAMMATES

The TEAMMATES developers documented all the important ar-
chitecture rules that need to be followed by the implementation.
We use the documentation in order to formalize the rules with our
approach and check them against the ontology-based representa-
tion of the source code. In the following, we demonstrate how the
architecture rules are formalized using our approach by a) defining
an ontology of the main architecture concepts of TEAMMATES
(see Figure 2), b) formalizing the architecture rules based on the
concepts (see Table 2), and c) formalizing the architecture-to-code-
mapping between the architecture and the code concepts using
SWRL rules 7 so that we are able to perform the architecture con-
formance checking using reasoning services (see Figure 3). The
ontology, the mapping rules, the formalized architecture rules, and
the ontology of the source code of TEAMMATES are available as
supplementary material8.

4.1.1 Architecture Ontology and Rules of TEAMMATES. In or-
der to create the architecture ontology, we investigated the ar-
chitecture diagrams and documents provided in the repository of
TEAMMATES. The analysis lead us to the categorization of the
architecture concepts as presented in Figure 2. The leaf nodes are
the concepts as they are used in the architecture documentation of
TEAMMATES. For those concepts, architecture rules will be defined.
Note that this is a pure analysis of the architecture concepts, where
its result does not directly constitute to the knowledge base. The
architecture ontology is indirectly built by formalizing the architec-
ture rules for the concepts with the CNL. After having identified
the main architecture concepts, the architecture rules are defined
subsequently based on those concepts. Selected architecture rules
and their corresponding formalization in DL and CNL are listed
in Table 2. For the selected subset in Table 2 we applied the rule
types Conditional Rule, Universal Rule, and Domain-Range Rule.

7https: //www.w3.org/Submission/SWRL/
8https://swk-www.informatik.uni-hamburg.de/~saerocon2018-supplementary/

LogicType DBType
use

(A) LogicType Mapping

[isLogicType: (?class rdf:type code:JavaClass)(?class code:hasName ?name) 

regex(?name, '\\w*Logic') -> (?class rdf:type architecture:LogicType)]

(B) use Mapping

[useMapping: (?class rdf:type code:JavaClass) 

(?class rdf:type architecture:LogicType)

(?classDB rdf:type code:JavaClass)(?classDB rdf:type architecture:DBType) 

(?class code:dependsOn ?classDB)->(?class architecture:use ?classDB)]

Figure 3: Mapping the architecture concepts LogicType and
the architecture-leveluse relationship to Java code concepts.

The remaining rules are given in the supplementary information
on our website(formalized in CNL and the generated OWL file).

4.1.2 Architecture-to-Code-Mapping. The architecture-to-code-
mapping can be formalized based on several conventions, like class
or package names, meta data (e.g. java annotations), or package
structuring conventions. The developers of TEAMMATES use nam-
ing conventions in order to identify architecture concepts in the
source code. We show two mapping rules for the concept Logic-
Type and the architecture-level use relationship in Figure 3 that
are mapped by such a naming convention. The rules express the
following mappings:

• (A), LogicType Mapping: If something is a JavaClass and
has a name containing "Logic" as its suffix, then this class is
identified as a LogicType. For the DBType, the same mapping
is defined, but it applies the suffix "Db".

• (B), use Mapping: If a Java class is a LogicType and an-
other class is a DBType and there is a code-level depend-
sOn relationship (defined in the Java code ontology) from a
class implementing a LogicType to another class that imple-
ments a DBType, then the LogicType uses this DBType via
the architecture-level relationship use.

Each LogicType has a corresponding DBType. The developers use
the convention that the corresponding DBType needs to contain
the same prefix as the LogicType. For example, the class implement-
ing the LogicType “CourseLogic” has the corresponding DBType
“CourseDb” (they both contain the prefix “Course”). This conven-
tion is exploited in order to derive the architecture-level manage
relationship between LogicType and DBType individuals.
Having defined the architecture concepts, rules, and the mapping,
we import them to the knowledge base and applied the available
reasoning services. First, the mapping is executed in order to ex-
tract the implemented architecture. Then, the reasoning services
are used to find inconsistencies, i.e. architecture violations. The
conformance checking results for the rules in Table 2 are presented
in the following.

4.2 Architecture Conformance Checking
Results

We checked the architecture rules against version 5.110 of TEAM-
MATES. This is the same version that was also used to create the
HUSACCT results that constitute the ground truth for the eval-
uation. We found violations of the rules depicted in Table 2. All
relevant violations have been found. Some of them, especially the
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Table 2: A subset of the architecture rules of TEAMMATES specified in different notations, namely natural language (NL), in
Description Logic (DL), and in Controlled Natural Language (CNL).

R1
NL Each LogicType can only use its corresponding DBType.
DL use ⊑manaдe
CNL If LogicType uses a DBType, it must manage this DBType.

R2
NL Logic classes can only access classes from the storage API.
DL LoдicType ⊑ ∀access .(StoraдeAP I ⊔Common ⊔ ExternalComponent ⊔ Loдic)
CNL Logic can only access StorageAPI or Common or ExternalComponent or Logic.

R3
NL Common should not have access to any packages, except storage::entity.
DL Common ⊑ ∀access .(Common ⊔ StoraдeEntityPackaдe)
CNL Common can only access Common or StorageEntityPackage.

R4
NL Only *Action can touch logic api.
DL ∃touch .⊤ ⊑ ActionClass , ⊤ ⊑ ∀touch .LoдicAP I
CNL Only ActionClass can touch LogicAPI.

dependency between the classes FeedbackResponsesLogic and
FeedbackResponse (implementing the StorageEntityPackage con-
cept) have been described as "severe and should be fixed" by the
architect of TEAMMATES during the workshop discussion. R1 is
violated ten times by the class BackDoorLogic, since it uses classes
that implement the DBType concept but it does not manage those
DBTypes (BackDoorDb does not exist). Those are real violations
found by our approach that cannot be found with the HUSACCT
formalism, since it simply does not support the conditional rule type
(see Table 1). Consequently, the violations have to be regarded true
violations. For ruleR4we also found several violations whereas five
of them were not detected by HUSACCT. Four of them are attrib-
uted to so-called servlet classes that touch the LogicAPI, although
they are not classified to be individuals of the ActionClass concept.
The remaining one stems from the BackDoorLogic class that also
touches LogicAPI without being an ActionClass. The HUSACCT for-
malism did not find those violations since neither of the classes have
been included in the formalization. Consequently, we regard the
violations as true violations. In summary, the approach can be used
to detect crucial architecture violations. Note that the detection
quality greatly depends on how the mapping and the architecture
rules are defined. This is a common challenge in architecture con-
formance checking.

4.3 Discussion
Flexibility of the architecture concept language.As illustrated
in the paragraphs before, the approach allows us to define different
types of architecture concepts and relations. Therefore, it allows us
to flexibly define the architecture concept language as needed for
rule formalization. For example, we are not restricted to concepts
like module or component. Other concepts like TeammatesType can
be defined that work on a lower level of abstraction of architecture
that, nevertheless, entail crucial architecture rules. The architecture
concept language can be extended with new concepts as needed,
e.g. new sub-concepts for TeammatesType. This is not possible in
approaches like [16]. We think that those approaches could greatly
benefit from such an ontology-based approach.
Reducing ambiguities. The TEAMMATES developers formalize
the architecture rules in an XML file9 that is checked with the

9https://github.com/TEAMMATES/teammates/blob/master/static-
analysis/teammates-macker.xml

Macker tool10. In addition, each rule is supported by an informal,
natural language description in order to summarize the XML-based
formalization. We found that the XML and natural language de-
scription are not consistent in every case. For example, the natural
language description of rule R2 only allows architecture-level ac-
cess relationships to the StorageAPI. By this, it does not allow such
relationships to the Common component, the ExternalComponent,
and to the Logic component itself. By further investigating the XML
formalization of the rule, we found that this is not the actual in-
tention of the architecture rule. This means, the natural language
description is inconsistent with respect to the corresponding XML
formalization used in the architecture documentation (see Section
1, issue I2). Note that our rule formalization in CNL accounts for
the real intention of R2 and therefore deviates from the natural
language specification as given in the architecture documentation
of TEAMMATES (see Table 2). Without explicitly allowing the ac-
cess relationships to Common, ExternalComponent, and Logic, we
would have found 99 more violations of rule R2. After refining
the rule according to its real intention the number of violations
of rule R2 is reduced from 99 to one real violation, namely the
dependency between the classes FeedbackResponsesLogic and
FeedbackResponse. Another ambiguity can be observed for rule
R4. In contrast to the natural language specification, the XML for-
malization also allows several other classes than the ActionClasses
(e.g. the servlet classes) to touch the LogicAPI. Both aspects show,
how our approach mitigates the risk of ambiguous and inconsistent
architecture rule specifications, since the formalization is directly
given by the CNL description.
Formalization effort and maintenance of rules.We are aware
of challenges regarding the ontology-based approach. First, a cer-
tain amount of effort is needed in order to create the ontologies
and the architecture-to-code-mapping. However, we think that this
effort pays off in several ways. The architecture concept language
helps to create and preserve a common language and understanding
about the software architecture within the team. Additionally, since
the ontologies can be organized in modules, concepts and corre-
sponding rules can be refined and reused throughout other projects.
In this way, the effort for defining a new architecture concept lan-
guage can be reduced. Secondly, the maintenance and evolution
of the architecture concept language may be challenging. During
the evolution of the software system, there could be the need to

10https://innig.net/macker/
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add new architecture rules to be checked. It is necessary to make
sure no concepts are redundantly introduced that already exist in
the concept language with a different name. Decisions about new
concepts and rules need to be thoroughly discussed within the team
in order to mitigate this risk.

5 RELATEDWORK
Several approaches and tools for architecture conformance check-
ing have been developed. For example, the dependency constraint
language is a domain-specific language (DSL) allowing to specify
module dependency rules [16]. However, this language is restricted
in terms of the architecture concepts and relations that can be used
to define the intended architecture. It solely uses the architecture
concept module. Other concepts cannot be added.
Dicto [3] also uses a DSL to formalize architecture rules. The pro-
vided DSL is a wrapper language where each architecture rule
triggers a specific checking tool that validates the specific rule. In
order to be able to support more rule types to be checked, other tools
are needed and a wrapper needs to be implemented for this tool.
This makes the approach less flexible in terms of new architecture
concept definition. Additionally, there is no uniform representation
of architecture and code (and the mapping between both) as we
provide it by using ontologies.
The TEAMMATES developers use Macker for architecture confor-
mance checking. This tool uses an XML representation of architec-
ture rules. Such a rule specification can be very complex. Therefore,
it is supported by a natural language description. In our approach,
there is no need for additional natural language descriptions as
the architecture rule formalization is self-explanatory. In addition,
there is no guarantee that the natural language description is con-
sistent with the actual formalization. This risk is mitigated in our
approach as discussed in Section 4.
Source code query languages such as Semmle QL11 allow for com-
plex queries over the source code structure. Those languages can
also be used for architecture conformance checking. However, by
definition, architecture concepts and rules can only be modeled
implicitly using queries.
Tools like Sonargraph 12, Lattix 13, Structure10114, and HUSACCT
[10] aim to formalize the intended architecture with graphical mod-
els. For example, Sonargraph allows to specify the architecture
using the concepts layers, slices, and subsystems. Although the
graphical representation helps to comprehend the intended archi-
tecture, this graphical language can not be extended with additional
architecture concepts, relations, and rule types.

6 CONCLUSION AND FUTUREWORK
We presented an ontology-based approach for formalizing and ver-
ifying architecture rules that is based on ontologies, description
logics, and a controlled natural language. Due to the flexibility
of ontologies, the architect can freely define his own architecture
concept language and is not bound to use the concept language

11https://semmle.com/products/semmle-ql/
12https://www.hello2morrow.com/products/sonargraph
13http://lattix.com/
14http://structure101.com/

provided by a specific tool. The controlled natural language sup-
ports the readability of the architecture rules. Due to the fact that it
is also verifiable, there is no need to support the formalization with
natural language descriptions that could be inconsistent with the
actual formalization. That is why, our approach greatly supports
living and self-validating architecture documentation. As shown in
the evaluation, architecture rules can be automatically verified by
exploiting the advantages of mature reasoning services based on
description logics in order to reveal crucial architecture violations.
In the future, we plan to conduct an expert study with software
architects from industry in order to evaluate how they perceive the
usefulness and usability of the CNL.
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