
Improving the Search for Architecture Knowledge
in Online Developer Communities

Mohamed Soliman∗, Amr Rekaby Salama∗, Matthias Galster†, Olaf Zimmermann‡, and Matthias Riebisch∗
∗Department of Informatics, University of Hamburg, Germany
Email: {soliman, salama, riebisch}@informatik.uni-hamburg.de
† University of Canterbury, Christchurch, New Zealand

Email: mgalster@ieee.org
‡ University of Applied Sciences of Eastern Switzerland (HSR FHO), Rapperswil, Switzerland

Email: olaf.zimmermann@hsr.ch

Abstract—To make good architecture design decisions, develop-
ers need to know about suitable architecture solution alternatives.
However, with the rapid and continuous increase of solution
alternatives (e.g. technologies, patterns, tactics) it is challenging to
acquire architecture knowledge and to ensure that this knowledge
is up to date. Our goal is to improve how architects search for
architecturally relevant information in online developer commu-
nities. We developed a new search approach for architecturally
relevant information using Stack Overflow as an example of
an online developer community. Our search approach differs
from a conventional keyword-based search in that it considers
semantic information of architecturally relevant concepts in Stack
Overflow. We also implemented the search approach as a web-
based search engine. To show the effectiveness of the search
approach compared to a conventional keyword-based search, we
conducted an experiment with 16 practitioners. To ensure realism
of the experiment, tasks given to practitioners are based on real
scenarios identified in a separate interview study with a different
set of practitioners. The experiment showed that the new search
approach outperforms a conventional keyword-based search.

Keywords-software architecture knowledge; search approach;
online developer communities; Stack Overflow

I. INTRODUCTION

A. Problem and Context

The number of architectural solutions to design problems
(e.g. technologies, patterns, tactics) has increased significantly
over the last decade [1]. Moreover, solutions evolve constantly
as the half-life of software engineering knowledge, tools and
technologies is about five years [2]. This makes it challenging
to learn, explore and to keep up to date with solution alterna-
tives. To support architects when coping with the fast change
of architecture solution alternatives, researchers have proposed
architecture knowledge (AK) repositories (e.g. [3], [4]). These
repositories contain knowledge about technologies, patterns,
tactics etc. and their characteristics (e.g. how a technology
helps implement a certain architecture pattern). Repositories
allow architects to browse and learn about new solutions.
However, repositories rely on manually capturing and curating
AK [5]. This raises practical problems, because knowledge
and experience about technologies tends to be shared by
architects and developers through different knowledge sharing
channels, such as online developer community web pages (e.g.

blogs, forums) and vendor websites. Repositories therefore
need to aggregate information from different sources [5].
Also, as argued above, AK evolves fast, so manually captured
knowledge becomes out of date quickly.

On the other hand, online developer communities (such as
Stack Overflow) encourage individuals to share their experi-
ence about software engineering problems continuously and
frequently. This is because such communities reward submit-
ting valuable questions and answers with increasing reputation.
However, while online developer communities capture large
amounts of information in posts (i.e. questions and answers),
this information is represented as unstructured text. Moreover,
the abstract nature of architectural concepts makes it difficult
for keyword-based searches to find architecturally relevant
information: The same architecture concept could be presented
with many keywords, and the same keyword might refer to
different concepts. For example, a keyword-based search for
“Apache webserver performance” will not find posts which
contain the “throughput”, even though throughput is related
to performance and could therefore be relevant. Also, some
words could occur in different posts with different meanings.
For example, “server” could relate to architecture components
in an architecture-relevant post, but refer to a deployment
environment in programming-related posts.

B. Paper Goal and Contributions

According to Kazman and Cervantes, finding architectural
solutions typically follows three iterative steps [6]:

1) Identify design concepts: Types of architectural solutions
(e.g. patterns, tactics, technologies) and candidate so-
lutions (e.g. layers in case of patterns, RabbitMQ for
broker technologies) are identified.

2) Select design concepts: Based on the benefits and draw-
backs of alternative design concepts, the most appropri-
ate solutions are selected.

3) Instantiate architecture elements: Selected design con-
cepts are customized for the given design issue (e.g. for
a layered pattern, we need to decide on the number of
layers, components in layers and their communication).

When performing these steps, developers search various
sources, including online communities, e.g. Stack Over-

flow [7]. Even though developer communities typically help
developers solve coding problems, they also provide archi-
tecturally relevant information [8], [9]. Furthermore, online
developer communities offer free information, fast responses
to questions and diverse solutions and opinions. Therefore, we
aim at answering the following research question:

RQ: How can we improve the search for architecturally
relevant information in online developer communities?

This research question is motivated by the shortcomings
of traditional keyword-based search approaches which cannot
deal with the ambiguity of terms for architectural concepts.
Gorton et al. [5] argue that it is challenging for practitioners
to create effective search queries for relevant architecture
information and internet search engines return many irrelevant
results. Thus, we need domain-specific search approaches [7].

To answer this RQ, we developed an enhanced search
approach to search for architecturally relevant information
in Stack Overflow. We selected Stack Overflow since it is
currently the biggest1 and most popular online developer
community (see [7]) and does indeed contain architecturally
relevant information [8], [9]. Also, Gorton et al. recommend
Stack Overflow for solving architectural issues [5]. Our con-
tributions are the following:
• We developed a new search approach to help find archi-

tecturally relevant information on Stack Overflow. The
search approach (see Section III) utilizes the classification
approach to filter and re-rank Stack Overflow posts based
on their suitability for architecture design activities.

• We developed and evaluated classification approaches to
automatically separate architecture-relevant posts from
pure programming-related posts in Stack Overflow. The
classification approaches (see Section IV) also classify
architecture-relevant posts into sub-categories to support
specific architecture design activities.

• We performed an experiment with 16 practitioners to
show the effectiveness of the search approach for support-
ing architecture design tasks. The new search approach
outperforms a conventional keyword-based search. The
evaluation is presented in Section V.

Our work utilizes semantic information captured in an ontol-
ogy of AK concepts, rather than depending solely on lexical
features of Stack Overflow posts. In summary, our work
shows the feasibility of building specialized search engines for
architectural information in online developer communities.

Before presenting our contributions in Sections III, IV,
and V, we discuss some of the conceptual foundations of our
work in Section II. We then discuss our findings (including
future work) in Section VI, present related work in Section VII
and conclude the paper in Section VIII.

1As of March 14, 2018, stackoverflow.com has 15,508,519 posts (12,812
posts have the “architecture” tag). Other communities have fewer posts. For
example, as of Mach 14, 2018, softwareengineering.stackexchange.com has
48,662 posts (2,102 posts have the “architecture” tag.)

II. BACKGROUND

A. Architecture-Relevant Posts (ARPs)

Soliman et al. [8] define ARPs in Stack Overflow as “posts
with questions related to performing an architecture design
activity. The questions in ARPs sometimes consider quality
attributes and contextual factors, and the answers involve
experience and knowledge about technology solutions, their
differences and capabilities”. Below is a Stack Overflow post2

that discusses the components design when using technolo-
gies “RIA Services and Entity Framework”. The question is
about assigning responsibility for the business logic. A reply
describes a possible component design.

Question: “I have been experimenting recently with
Silverlight, RIA Services, and Entity Framework
using .NET 4.0. I’m trying to figure out if that stack
makes sense for use in any of my upcoming projects
(...) but I’m struggling to decide how an application
on top of this stack should be architected. (...) So,
my questions: What is the best location for business
logic (rules, validations, behaviors, authorization) in
an application using this stack? ”. Answer:“ We’ve
decided to build a domain model on top of the
RIA entities. Additionally, we elected to follow the
MVVM pattern to model UI interactions. So far, I’ve
noticed the following benefits: 1. Domain classes are
a nice place to put business logic including complex
validations. 2. Domain classes use the RIA entities
and context as interface to data store. 3. Domain
classes are modeled after business concerns.”

Soliman et al. [8] also categorized ARPs based on the
purpose of posts and types of architectural solutions discussed:
• Technology identification posts concerned with searching

for suitable technologies for a design problem.
• Technology evaluation posts concerned with evaluating

one or more technologies with regards to certain aspects
(e.g. performance).

• Features and configuration posts describing features of
a technology solution or the configuration (component
design) of an architecture (e.g. the example given above).

Categorizing ARPs allows grouping ARPs, which contain
similar AK concepts. For example, Technology evaluation
posts contain benefits and drawbacks about technologies,
which is useful when performing the Select design concepts
design step. Our search approach relies on providing suitable
types of ARPs for each design step (see Section III-B).

B. Architecture Knowledge Ontology in Stack Overflow

Some of the steps of the enhanced search approach in
Section III-A rely on an ontology for architectural concepts.
Soliman et al. [9] proposed an ontology to specify the concepts
relevant to software architecture in online developer communi-
ties. We provide a brief description for some ontology classes
(i.e. “explicit specifications of a concept” [10]). A complete

2https://stackoverflow.com/questions/2897513

TABLE I
EXAMPLES OF COMPOSITE ONTOLOGY CLASSES

ID Ontology class Example post
CONF Architecture Configuration Push data from server to client
REQ Requirement and Constraint We need reliable delivery
FEAT Technology Feature ProtoBuffers offer serialization

ASTA Technology Benefit
or Drawback

MSMQ does not provide
messaging patterns

ADD Recommended Decision WCF seems best suited

DR Decision Rule If you want to make API public
do it in RESTful way

description is provided by Soliman et al. [9]. For example,
the sentence “If performance is your main criteria, you should
definitely look at ZeroMQ.” in an ARP3 contains the following
ontology classes:

1) Simple ontology classes: These classes are represented in
text as single words which refer to certain architectural
concepts. For example, the words “ZeroMQ” and “per-
formance” are two simple concepts assigned to ontology
classes Technology Solution (TEC) (“ZeroMQ”) and
Quality Attribute (QA) (“performance”).

2) Lexical triggers: They indicate individual words that are
not specifically related to an architectural concept, but
still capture important meanings for the whole sentence.
For example, in the above statement, words like “crite-
ria” would be of ontology class Concern Noun.

3) Composite ontology classes: These are represented in
text as clauses and sentences and are composed of
simple ontology classes and lexical triggers to capture
semantics. For example, “performance is your main
criteria” would be of ontology class Requirement and
Constraint (REQ), “you should definitely look at Ze-
roMQ” would be of ontology class Recommended De-
cision (ADD) and the whole statement above would
be of ontology class Decision Rule (DR). Table I lists
additional examples of composite ontology classes.

III. SEARCH APPROACH FOR ARCHITECTURALLY
RELEVANT INFORMATION

A. Overview of Enhanced Search Approach

The most common way to search online developer pages
such as Stack Overflow are web-based search approaches [7].
Therefore, our search approach also utilizes ideas from
keyword-based web search approaches. Our approach en-
hances a keyword-based search using two additional activities
which complement a pure keyword-based search with semantic
information about architecture relevance of posts: A) Filtering
and separating “architecture-relevant” posts from other types
of posts. B) Re-ranking “architecture-relevant” posts based on
their significance to support a certain architecture design step.
Fig. 1 shows the proposed search approach. Step 3 and Step 4
are our main contributions, which differentiate our enhanced
search from a conventional keyword-based search:

Step 1 – Specify search query + design step: Similar to
a normal keyword-based search, a user defines a query with
keywords relevant to a design problem. However, different to

3stackoverflow.com/questions/17806977

Step 1: Specify
query + design step

Step 1: Specify
query + design step

User writes
query

User selects
design step

Step 2:
Determine

initial
ranking of

posts

Step 3:
Filter
ARPs

Step 4:
Re-rank

ARPs

Step 5:
Present
list of

results

Classify Posts

Fig. 1. Enhanced search process (gray elements are the extensions of a
keyword-based search)

a conventional keyword-based search, a user also specifies the
current design step (used in Step 4 to filter and re-rank posts).
Here, we utilize the three design steps proposed by Kazman
and Cervantes [6], see Section I-B (identify design concepts,
select design concepts, and instantiate architecture elements).

Step 2 – Determine initial ranking of posts: This step
is the same as in conventional keyword-based search ap-
proaches. It first parses, stores and indexes all words in posts
that are searched to facilitate fast retrieval through mapping
between posts and words (note that our implementation for
this step uses existing libraries to implement indexing, see
Section III-C). Then, this step assigns weights to these words
based on their ability to differentiate posts (e.g. using the
TF/IDF weighting scheme [11]). Finally, based on the key-
words in a search query, a similarity score between keywords
and the words in posts (considering the weight of each word)
is calculated for each post to assess its relevance to the query.

Step 3 – Filter architecture-relevant posts: This step
requires information about the type of post, i.e. is a post an
ARP or not, and if so, what type of ARP (see types of posts in
Section II-A). We obtain this information by classifying posts.
Details about the classification are provided in Section IV. All
architecture-relevant posts with a similarity score higher than
zero (as computed in Step 2) are moved above programming
posts in the list of search results. ARPs are sorted in an
ascending order based on their similarity scores.

Step 4 – Re-rank architecture-relevant posts: Filtered
posts are re-ranked according to their suitability to support
the design step specified in Step 1. To relate types of ARPs
to design steps, we assigned a “quota” (i.e. estimated per-
centages) for how types of ARPs should appear in the search
results depending on the selected design step. Post types with
higher quota have a bigger chance of appearing in the top
results. For example, for a query for design step “identify
design concepts”, the top ten search results will contain
50% of “technology identification” posts, 30% “technology
evaluation” posts and 20% of “features and configuration”
posts. Posts with the highest similarity scores (from Step
2) are selected as part of the quota for each ARP type.
Percentages for “select design concept” and “instantiating
architecture elements” are 30%, 50%, 20%, and 10%, 15%,
75%, respectively. These quotas are estimated according to an
exploratory study (see Section III-B).

B. Types of Architecture-relevant Posts and Design Steps

To determine the most useful types of architecture-relevant
posts to support the three generic design steps proposed by

Kazman and Cervantes [6] (see Section I-B), we performed
an exploratory study as follows:

1) Link ontology classes to design steps: Some ontology
classes (see Section II-B) are more useful than others for
certain design steps. Based on the definitions of ontology
classes and design steps, we decided what ontology classes are
more useful for which design step: For design step “identify
design concepts”, it is useful to reuse design decisions re-
lated to technology solutions. Therefore, ontology class ADD,
which contains ontology class TEC has been selected as
being relevant to this design step. For design step “select
design concepts”, ontology classes QA, ASTA and DR are
important to evaluate and select solutions [12]. For design
step “instantiate architecture elements”, design decisions on
architectural configurations (components and connectors) and
technology features are useful to be reused [6]. Therefore,
ontology class ADD, which contain ontology classes FEAT
and CONF have been selected as being relevant to this design
step.

2) Calculate occurrences of ontology classes in posts:
Soliman et al. [9] provide a corpus of 105 ARPs classified into
the three types. The posts of this corpus are annotated with
more than 3,800 annotations. Each annotation represents an
ontology class as defined in the ontology of Soliman et al. [9]
(see Section II-A). We counted the number of occurrences of
each ontology class for each type of ARP. The supplementary
material5 provides detailed statistics about the number of
occurrences of annotations for each ontology class.

3) Obtain quotas for post types: Based on occurrences
of ontology classes in the types of posts and the relevance of
ontology classes for design steps, we determined quotas for
types of posts and how types of posts appear in search results.
For example, annotations about ontology classes ASTA and DR
(important for design step “select design concepts”) appear
in “technology evaluation” posts 1.6 times more frequently
than in “technology identification” posts, and 2.5 times more
frequently than in “features and configuration” posts. Thus, for
design step “select design concepts” quotas are 30% “technol-
ogy identification” posts, 50% “technology evaluation” posts
and 20% “features and configuration” posts. We estimated
quotas for the other two design steps accordingly.

C. Implementation of Search Approach

We implemented the search approach as a proof-of-concept
web-based search engine using Apache Lucene. We used
Lucene, because it has successfully been applied in previous
software engineering research [13]. Filtering and re-ranking
of posts were built on top of the keyword-based search
in Lucene. Our implementation includes its own database
of posts. This database has been filled by querying Stack
Overflow’s API. Therefore, new posts can easily be added.
Similar to conventional search engines, a list of re-ranked posts
is presented to the user.

IV. IDENTIFICATION AND CLASSIFICATION OF
ARCHITECTURE-RELEVANT POSTS

A. Overview

The search approach proposed in Section III requires filter-
ing and re-ranking of posts based on the type of a post. There-
fore, in this section we develop and evaluate an approach to
identify and classify architecture-relevant posts in Stack Over-
flow. The goal is to classify posts into predefined categories
(three types of ARPs, see Section II-A, and programming
posts). The classification approaches that we developed and
compared use different methods for preprocessing posts. Pre-
processing transforms words in posts into a feature vector (i.e.
a vector of numbers which represents important classification
features). Natural language has a lexical and a semantic dimen-
sion [14]. Therefore, we explored two preprocessing methods
with different classification features: 1) Lexical features of text
in posts using the Bag-of-Words method [15] (Section IV-B).
2) Semantic features of text in posts using an ontology-based
classification which captures semantics [16] (Section IV-C).

The different preprocessing methods produce feature vec-
tors, which are used by classification algorithms (e.g. Bayesian
Network) to develop a classification model. The model is
developed through training previously classified posts. In
Section IV-E, we present results for the best performing clas-
sification algorithms. We also experimented with an ensemble
learning approach [17] to combine the results of different clas-
sification approaches into a single approach (Section IV-D).

B. Bag-of-Words Classification

Bag-of-Words uses individual words in posts to determine
characteristics of the text [18]. The frequency of each word as
well as the frequency of sequences of words in posts are used
as features for training classification algorithms. To transform
textual posts into a feature vector, we first removed stop words
from posts4. This reduces noise and increases the chance for
distinctive sequence of words to be transformed into single
features. Then, we used an n-gram sequence classification
approach [19] to capture the sequence of common words.
The frequency of each unique sequence of words is treated as
a feature. We experimented the Bag-of-Words preprocessing
with several classification algorithms. The best performing
algorithms are presented in Section IV-E.

C. Ontology-Based Classification

The classification approaches developed in this section use
an ontology-based document classification approach [16]. To
explore both the impact of individual ontology classes and
sequences of ontology classes on identifying architecture-
relevant posts, we separately explored single-ontology-class
and multi-ontology-class classification approaches.

4http://astellar.com/2011/12/stopwords-for-sphinx-search/

1) Single-ontology-class Classification: The single-
ontology-class approach relies on features from separate
simple ontology classes and lexical triggers (see Section II-B).
We counted the total number of words as well as the distinct
number (without duplicates) of words in a post which belong
to a simple ontology class or lexical trigger. Additionally,
we considered commonly used features for classifying Stack
Overflow posts such as the availability of source code, and
the number of words and paragraphs in a post.

2) Multi-ontology-class Classification: The single-
ontology-class classification does not identify composite
ontology classes. Therefore, we also explore multi-ontology-
class classification, which treats each possible sequence of
single ontology classes and lexical triggers as features. To
transform text in posts into features (i.e. sequences of ontology
classes), we followed three steps: 1) Lemmatization converts
the inflected forms of a word into a single form. This allows
capturing more words for one ontology class. 2) Abstraction
replaces words which belong to one of the ontology classes
with the name of that ontology class. For example, all different
technology names (e.g. RabbitMQ, MSMQ) are replaced with
the TEC ontology class name. 3) Sequential feature encoding
captures all possible combinations of sequences of ontology
classes in a post via n-gram processing. The frequency of
each unique sequence of ontology classes is treated as feature.

Similar to the Bag-of-Words classification, we experimented
with several classification algorithms. The best performing
algorithms are presented in Section IV-E.

D. Ensemble Learning

Combining the different approaches together would make
use of the benefits of each to potentially improve the quality
of classification. To achieve this, we performed ensemble
learning using the voting algorithm [20]. The voting algorithm
takes the probabilities of a post for being of a certain type
as computed by each classification approach and calculates
an average probability. We chose the voting algorithm after
a comparison with the boosting ensemble learning algorithm
[21]. The boosting ensemble learning algorithm did not im-
prove the quality of the classification above the quality of the
individual classification approaches combined in the ensemble.

E. Evaluation of Classification Approaches

We conducted experiments using a corpus of categorized
Stack Overflow posts from Soliman et al. [8]. The corpus
consists of 1,653 programming posts and 858 ARPs. The 858
ARPs are further categorized into 282 technology identifica-
tion ARPs, 291 technology evaluation ARPs and 285 fea-
tures and configuration ARPs. We performed a 10-fold cross-
validation [22]: All posts in the corpus were randomly divided
into ten equal groups. We then performed 10 experiments
where we trained the classification algorithms on nine groups
and tested them on the remaining group. For each of the ten
experiments we calculated precision P, recall R, and F1 as the
harmonic mean of precision and recall. We used Weka [23] to
conduct the experiments.

TABLE II
EVALUATION RESULTS OF CLASSIFICATION APPROACHES. P, R, AND F1

ARE AVERAGE PRECISION, RECALL AND F-SCORES

Bag-of-words
BN5G - A1

Single-ontology
LMT - A2

Multi-ontology
VB5G - A3

Ensemble
Learning

Voting
P 0.73 0.725 0.701 0.737
R 0.715 0.756 0.652 0.733

F1 0.722 0.725 0.672 0.734

Fig. 2. Comparing F -scores across different classification approaches and
types of posts

As mentioned in Sections IV-B and IV-C, we experimented
with several classification algorithms in combination with
the three preprocessing approaches (Bag-of-Words, Single-
ontology, Muli-ontology). We selected classification algo-
rithms which are known for their ability to classify documents
and which have been used previously to solve software engi-
neering problems (e.g. [24]). In this section, we present the re-
sults for the best performing classification approaches. The full
results for all algorithms and experiments are available in the
supplementary material5. The best performing classification
approaches are A1: Bag-of-Words using Bayesian Network
(BN5G) [25]; A2: Single-ontology-class classification [16]
using logistic model trees (LMT) [26]; A3: Multi-ontology-
class classification using Naive Bayes (VB5G) [27].

The three best performing classification approaches are
combined using the voting ensemble learning. Table II presents
the results of evaluation for the classification approaches
(based on the average P, R and F1 across the ten experiments
for each classification approach). The results show no sig-
nificant differences between the the classification approaches.
However, the ensemble learning shows a slightly higher clas-
sification accuracy over the individual approaches.

The results in Table II are the average of F1 among the four
types of posts (programming posts, technology identification,
technology evaluation, and features and configuration). To
explore the ability of the classification approach to identify
each type of posts, we computed F1 for each type of post
separately. Fig. 2 shows a comparison between the different
types across the different classification approaches. We can
observe that all classification approaches are significantly
better at identifying programming posts than at identifying

5https://swk-www.informatik.uni-hamburg.de/~soliman/ICSA2018.zip

TABLE III
EXPERIENCES OF PRACTITIONERS IN EXPERIMENT

Software development Software architecture
Years # Participants # Years # Participants

>12 Years 6 >5 Years 3
6-12 Years 6 2-5 Years 9
3-5 Years 4 1 Year 4

ARPs. Another observation is the ability of all classification
approaches to identify “technology evaluation” ARPs better
than other types of ARPs.

V. EVALUATION OF SEARCH APPROACH

The primary method to evaluate search approaches is expert
judgment about the relevance of the results obtained from a
search [11]. Therefore, to compare the effectiveness of the en-
hanced search approach proposed in this paper (ENHANCED)
to a conventional keyword-based search (NORMAL), we con-
ducted an experiment with 16 practitioners (Table III). Here,
effectiveness is the ability of a search approach to identify
posts relevant for solving architecture design tasks. Thus, we
asked participants to perform architecture design tasks and use
NORMAL and ENHANCED to search for information that
supports these tasks. To implement NORMAL, we used the
default implementation of Apache Lucene (i.e. no filtering/re-
ranking of results). We tested the following hypotheses:
• H0: There is no difference between the effectiveness of

NORMAL and ENHANCED.
• H1: There is a statistically significant difference between

the effectiveness of NORMAL and ENHANCED.

A. Experiment Design

1) Experimental Corpus: We used a corpus of 2,511 posts
from Soliman et al. [8] that were classified by practitioners.
This corpus includes 1,653 programming posts, 282 tech-
nology identification posts, 291 technology evaluation posts
and 285 features and configuration posts. Furthermore, we
classified another 7,702 posts using the classification approach
discussed in Section IV-E. These 7,702 posts were randomly
selected from a larger pool of posts, which were obtained
from Stack Overflow. Like with the 2,511 posts in the original
corpus, we chose posts with positive user ratings on Stack
Overflow to avoid poor quality posts in our corpus, because
poor quality posts consume much time during a search [7].
This resulted in a total of 10,213 classified Stack Overflow
posts as our experimental corpus. This number of posts is
similar to other studies in software engineering that investigate
search approaches for online communities (e.g. [28], [29]).

2) Architecture Design Tasks: Participants in the experi-
ment solved six architecture design tasks, which required them
to search for architectural information. Criteria for defining the
design tasks were: a) Tasks are independent from the corpus of
posts to ensure validity and to prevent bias, and b) tasks should
simulate real design problems that occur during different
design activities. Therefore, we interviewed three practitioners
from different companies to provide real-world scenarios and
related tasks, and for which they had to search for architecture
information in the past. The interviewed practitioners were not

participants in the experiment. This resulted in five tasks. We
then categorized these five tasks according to the three design
steps from Kazman and Cervantes [6] (see Section I-B). To
include two tasks for each design step, we added a sixth task
from a case study conducted by Kazman et al. [6]. Below
we list a brief description for each task for each of the three
design steps. A complete description for each task is available
in our supplementary material.
Tasks for design step “identify design concepts”:
• T1: For a realtime stock monitoring dashboard, identify

middleware technologies which scale to > 100k users.
• T2: A claim management system needs to communicate

with mobile apps. Identify JSON parsers for Java with
high performance, and taking into consideration organi-
zational policies around open source technologies.

Tasks for design step “select design concepts”:
• T3: A help desk system communicates with a knowl-

edge base via asynchronous communication and pub-
lish/subscribe patterns. Compare interoperability and la-
tency of RabbitMQ, Apache Kafka, and ActiveMQ.

• T4: Compare three technology families for big data
systems: Data collector, message brokers, and ETL en-
gines; technologies must support a throughput of 15,000
events/second and ensure availability of 99.99%.

Tasks for design step “instantiate architecture elements”:
• T5: CRM apps communicate with several other systems

using Apache Camel and RabbitMQ. Search for technol-
ogy features and components designs to determine mech-
anisms for message channeling, translation and routing,
as well as a deployment topology (physical design).

• T6: An online shop in Java exposes services to other apps.
Search for best practices regarding service decomposition
to achieve high cohesion and low coupling.

To reduce bias or differences between the description of
tasks, we captured tasks in a template. The template follows
guidelines for developing simulated search tasks for informa-
tion retrieval systems [30]. It includes a description of the
functional and quality requirements, constraints, and the actual
search goal of a task which aligns with the design steps.

3) Experiment Execution: We designed the experiment
using a Graeco-Latin Square (GLS) design [31]. In this design,
the order in which the six design tasks are performed as well
as the order in which the two search approaches are used
are rotated. Following the GLS design, there are six different
sequences of tasks (T1, T2, T3,... T6, then T6, T1, T2,... T5,
until sequence T2, T3,... T1). These six sequences are applied
twice to rotate the order in which the two search approaches
are used (i.e. in total there are 12 sequences of tasks). For the
first six sequences (sequences T1, T2,... T6 to T2, T3,... T1),
NORMAL was used for the first three tasks in a sequence
and ENHANCED for the second three tasks in a sequence.
Starting from the seventh sequence to the 12th sequence (i.e.
again T1, T2,... T6 to T2, T3,... T1) ENHANCED was used for
the first three tasks in a sequence and NORMAL for the second
three tasks in a sequence. We randomly assigned participants

to sequences of tasks. Since we had 16 participants, every
sequence was completed by at least one practitioner, and four
sequences were completed by two practitioners.

Each participant read design tasks and then submitted search
queries (sequences of words) and obtained a list of ranked
posts. We asked participants to analyze only the top ten posts
for relevance (users of search engines rarely look beyond the
tenth result [32]) and rate each post on a Likert scale:

1) Irrelevant (0): Post has nothing to do with the task.
2) Low (1): Post contains information which is not immedi-

ately relevant to solving the task, but helps refine search.
3) Medium (2): Post addresses a problem different but simi-

lar to task at hand, but still provides relevant information.
4) High (3): Post addresses a similar or same problem as

specified in the task and contains useful information to
solve design task.

These ratings of participants for posts are needed to calculate
measures for search engine effectiveness.

4) Measures of Effectiveness: We measure the effec-
tiveness of each of the search engines using two met-
rics: Precision@k and Normalized Discount Cumulative
Gain(nDCG@k), where k is the maximum number of posts
that are considered for evaluation. We considered k from 1 to
10, because the top 10 search results are commonly checked
by users of search engines [32].

Precision@k [11] is the ratio between the number of
relevant posts (low, medium or high), and the number of
retrieved posts in results m, where m ≤ k. m can be less
than k if a poorly phrased query returns few results.

Precision does not consider the ranking of posts and their
relevance. nDCG@k [11] uses weights for posts based
on their relevance and ranking in the list of search results
(i.e. the higher the relevance and rank, the more weight).

nDCG@k for a query is calculated as
DCG

IDCG
, with DCG =∑k

i=1

2reli − 1

log2(i+ 1)
, where reli is the degree of relevance of

a post found by a query (based on the Likert scale above).
IDCG is the DCG value for an ideal ranking of posts for a
certain design task. In the above equation for nDCG@k, this
ideal ranking is based on combining the individual rankings of
posts (based on their relevance to a task) from all participants.
For example, if user 1 rated posts x, y, z with relevance 3, 3,
1 for task T1 and user 2 rated posts a, b, c with relevance 2,
2, 1 for task T1, the ideal ranking for task T1 is 3, 3, 2, 2, 1,
1, 0, 0, 0, 0 when evaluating the top ten search results [11].

B. Evaluation Results

Participants submitted a total of 422 queries (on average
70 queries per task). The number of queries did not differ
significantly between participants, tasks or design steps. The
queries contain keywords, which refer to several AK concepts.
For example, the query “Latency and reliability of RabbitMQ”
contains keywords which refer to concepts like quality at-
tributes and technology solutions. A complete list of executed
queries is available in the supplementary material5.

Fig. 3. Relevant posts identified by participants for each design step.

Fig. 3 shows the number of posts identified as relevant
to tasks and grouped by design step. We note that queries
related to tasks which belong to design step “select design
concept” led to the highest number of posts and the highest
relevance. Queries for tasks related to design step “identify
design concepts” yielded the lowest number of posts.

We calculated Precision@k and nDCG@k for NORMAL
and ENHANCED, with @k1→10. Fig. 4 shows a summary
for all values of nDCG as box-and-whisker plots @k1→3.
The figure shows that ENHANCED has improved the over-
all nDCG values of searching. Fig. 5 shows the average
Precision@k and nDCG@k for the three design activities
and for ENHANCED and NORMAL. The ENHANCED ap-
proach improved the precision of the search for all three
design activities. The “Select design concepts” design step
achieves the highest nDCG improvement, while step “In-
stantiate architecture elements” has the lowest improvement.
Moreover, the values of nDCG for “select design concepts”
decrease gradually with the increase of k. A possible reason
for this could be the ability of the classification approach to
identify “Technology evaluation” ARPs better than “Features
and configuration” ARPs (see Fig. 2).

To evaluate H0 and ensure significance, we performed a
two-sample T -test with unequal variances [33] on all values of
Precision@k of ENHANCED and NORMAL and nDCG@k
for ENHANCED and NORMAL, see Fig. 6. The results of the
T -test indicate that ENHANCED outperforms NORMAL with
statistical significance for both Precision@k and nDCG@k
and for all values of k. From Fig. 6, we can observe that
the T -values of Precision start with high values (highest T -
value for Precision@k = 2) and decrease gradually with the
increase of k. On the other hand, the T -values of nDCG start
with a lower value @k = 1 and then increase @k = 2, and
only change slightly until @k = 10.

VI. DISCUSSION OF RESULTS AND FUTURE WORK

A. Interpretation of Results

Normal search engines are limited for finding architecturally
relevant information in communities. Even with a small search
corpus and after removing low quality posts, the normal
keyword-based search in our experiment could only reach an
average Precision@1 (i.e. the first post in the returned list of

Fig. 4. nDCG@1−3 for NORMAL and ENHANCED. The lower and upper
boxes are the lower and upper quartiles of the distribution, respectively. The
vertical thin line is from the minimum to the maximum nDCG values.

results is the most relevant post) between up to 0.51 and 0.62.
A real search on millions of posts would yield lower precision.
This lack of accurate search results from conventional searches
explains the effort required to curate AK [5].

Our results show that filtering and re-ranking posts sig-
nificantly improved the effectiveness of our search to find
architecturally relevant information for design problems. In
addition, the results show that searching for architectural
information for different purposes (i.e. within different design
steps) benefit differently from developer communities and the
enhanced search. For example, our results in Fig. 3 and 5
show that tasks within the “Select design concept” design step
find more relevant posts than other design steps. On the other
hand, it is challenging to find posts for the “Identify design
concepts” tasks. One reason behind this could be the abilities
of the classification approach (see Fig. 2). Another possible
reason is the complexity to describe a design problem using
keywords, because the variations of terms for describing a
design problem is big (e.g. domain and business terms).

The classification used in our search approach (Sec-
tion IV-E) yields high accuracy when identifying and sepa-
rating ARPs from programming posts (highest F1: 0.84 in
Fig. 2). On the other hand, it is more challenging to further
classify ARPs into their subtypes (highest F1: 0.55 in Fig 2
when classifying technology evaluation posts). The complexity
to classify text on web pages according to certain architecture
concepts has also been experienced by Gorton et al. [5],
who achieved a maximum precision of 0.59 when detecting
technology features in online technology documentation.

B. Threats to Validity

1) Internal validity: In our experiment with practitioners to
evaluate the enhanced search, the experience and background
of participants might have influenced the assessment of the
architectural relevance of a post. Also, since participants
completed the tasks in their own time, we did not have full
control of their behavior (e.g. being tired). We tried to mitigate
these issues through rotating the task order. Another threat
is the design tasks. However, we used real design scenarios
from practitioners and scenarios that were independent from
the topics of the posts used for the experiment.

2) External validity: The effectiveness of the search ap-
proach (Section V-B) depends on the accuracy of the classi-

fication approach (Section IV-E). However, it is challenging
to specify and generalize a clear relationship between the
effectiveness of the search approach and the accuracy of the
classification approach. The search approach depends on filter-
ing and re-ranking ARPs as presented in Section III-A. When
filtering ARPs, the classification approach produced good
results (F1: 0.84 in Fig. 2). However, just filtering architecture
posts is not sufficient to significantly improve the search
for architectural information. In a separate pilot study (with
different tasks and participants), we tested the search approach
in Section III-A without re-ranking ARPs. The pilot study
showed that filtering ARPs just slightly (not significantly)
improved the effectiveness of search. Details and results of
the pilot study are provided in the supplementary material5.
However, the results of our experiments in Section V-B show
that combining accurate filtering of ARPs with re-ranking
ARPs has significantly improved the effectiveness of search,
even with a low accuracy in classifying ARPs. Therefore, we
expect even further improvements of the effectiveness of the
search if the accuracy of the classification improves.

Re-ranking ARPs depends on “quota” assigned to each type
of ARP, which is another threat. If these quotas change, then
the search might identify other posts as architecturally relevant
and the search might come up with different results. The lack
of empirical studies on searching for architecture information
using search engines prevented us from using mathematical
modeling (e.g. [34]) for the re-ranking of posts. Mathematical
modeling requires the execution and monitoring of thousands
of queries using several tasks, which is challenging with the
limited time available for architects to conduct experiments.
To mitigate this threat, we followed an empirical approach and
developed the quota based on an empirical study. Moreover,
we fixed quotas for the experiment.

Regarding the evaluation of the search approach, the number
of posts is limited due to the nature of our work. Parts
of the corpus are classified by practitioners. This manual
classification requires experienced practitioners rather than
novices. It takes a practitioner around four hours to classify
100 posts. The same reason (time-consumption) prevents us
from having a bigger number of participants for the experiment
to evaluate the effectiveness of the search approach. It took
participants between four and eight hours to solve the six
tasks. This time is needed to understand the tasks, read posts
carefully and get familiar with the domain. This is also why
we had only two tasks per design step.

C. Future Work

During the experiments, practitioners faced problems related
to the nature of architecture-relevant posts in developer com-
munities. These problems deserve future work:

Complex semantics of discussions: Practitioners need
to carefully read online discussions to understand described
problems and their context. Even similar design problems
often involve contextual differences. One reason for the textual
complexity is incomplete information provided by users who
cannot share the full context (e.g. business goals).

Fig. 5. Average nDCG@k and Precision@k for each design activity.

Fig. 6. Significance T -value for nDCG@k and Precision@k. The critical
T -value is 1.963 (T -values > 1.963 are considered significant). The higher
the T -value, the higher the probability for being significant.

Required domain knowledge: When architects are not an
expert in a problem domain, it becomes harder to specify
useful and meaningful keywords for a search query. This is
because developer community websites are not categorized
according to the domain or types of design problems.

Lack of trust in community: Some of the information in
developer communities could be wrong and misleading. Thus,
architects need to be cautious when evaluating the proposed
solutions and their descriptions and discussions.

VII. RELATED WORK

The proposed approach is the first for a specialized search
for architectural information in online developer communities.
In this section, we give a brief overview on related work.

Capturing and documenting AK: During the last decade,
approaches to capture AK have been proposed. A recent survey
on AK [35] showed that most of the approaches to capture
AK are about documenting design decisions in templates
(e.g. [36]) or manually populating knowledge management
systems (e.g. [37], [38]). Due to the effort required to doc-
ument decisions manually, approaches have been proposed to
support this process. For example, Falessi et al. [39] proposed
to document only the most necessary decisions.

Automatically capturing AK: van der Ven et al. [40]

proposed an approach to automatically analyze and capture
information about design decisions from version manage-
ment data of large open-source repositories. Lopez et al.
[41] proposed an ontology-based natural language processing
approach for capturing design decisions from existing archi-
tecture documents. Bhat et al. [42] proposed an approach to
automatically identify and classify design decisions in issue
management systems. However, existing approaches do not
consider developer communities as a source for reusing AK.

Classification and search in developer communities:
Within the last few years, developer communities have been
studied. For example, Treude et al. [43] analysed programming
posts on Stack Overflow qualitatively and defined several types
(e.g. posts about debugging, how-to questions). Gottipati et
al. [28] and Zou et al. [29] proposed approaches to improve
the search for programming questions in software forums. The
engines are based on classifying the discussions in online
developer communities into semantically relevant categories
using machine learning. However, these approaches did not
investigate how online developer communities can be searched
for architecturally relevant information.

AK in developer communities: Recent works explore AK
in developer communities and products documentation web
pages. In previous work [8], researchers analyzed Stack Over-
flow posts to determine types of architecture-relevant posts.
In addition, previous work developed an ontology for the AK
concepts, which are mentioned in Stack Overflow posts [9].
We used this ontology in our work. Gorton et al. [5] proposed
an approach based on machine learning to automatically
recommend web pages which contain AK relevant to certain
technology features. The approach shows promising results for
findings relevant architecture web pages. Our study comple-
ments these works towards specialized search approaches for
software architecture in developers communities.

VIII. CONCLUSIONS

Effectively identifying architecture solutions to design prob-
lems became challenging due to the rapid change of archi-
tectural solutions (technologies, patterns, tactics, etc.). Recent

research efforts investigated online developer communities to
deal with the challenges of architecture knowledge evolution.
Our goal in this paper was to improve the search for AK in
online developer communities based on architecturally relevant
information in posts (rather than relying on keywords). We
developed, implemented and evaluated an enhanced search
approach for Stack Overflow. This search approach does not
only rely on keywords, but also considers conceptual and se-
mantic information about architecturally relevant information.
Comparing this search approach with a conventional search
approach showed that the enhanced search leads to more effec-
tive results when searching for information when identifying
and selecting design concepts and instantiating architecture
elements. Moreover, experiments with practitioners confirmed
that searching and curating architecture knowledge from web
pages using search engines is complex and time consuming.
Most importantly, the results from experiments also showed
improved effectiveness of searching based on the information
needs for different architecture design steps.

REFERENCES

[1] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[2] P. Kruchten, “Lifelong learning for lifelong employment,” IEEE Soft-
ware, vol. 32, no. 4, pp. 85–87, 2015.

[3] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster,
“Managing architectural decision models with dependency relations,
integrity constraints, and production rules,” Journal of Systems and
Software, vol. 82, no. 8, pp. 1249–1267, 2009.

[4] I. Gorton, J. Klein, and A. Nurgaliev, “Architecture knowledge for
evaluating scalable databases,” in Working IEEE/IFIP Conference on
Software Architecture (WICSA). IEEE, 2015, pp. 95–104.

[5] I. Gorton, R. Xu, Y. Yang, H. Liu, and G. Zheng, “Experiments in
curation: Towards machine-assisted construction of software architecture
knowledge bases,” in IEEE/IFIP International Conference on Software
Architecture (ICSA). IEEE, 2017, pp. 79–88.

[6] R. Kazman and H. Cervantes, Designing Software Architectures: A
Practical Approach. Addison-Wesley Professional, 2016.

[7] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What
do developers search for on the web?” Empirical Software Engineering,
vol. 22, no. 6, pp. 3149–3185, Dec 2017.

[8] M. Soliman, M. Galster, A. R. Salama, and M. Riebisch, “Architectural
knowledge for technology decisions in developer communities: An ex-
ploratory study with stackoverflow,” in Working IEEE/IFIP Conference
on Software Architecture (WICSA). IEEE, 2016, pp. 128–133.

[9] M. Soliman, M. Galster, and M. Riebisch, “Developing an ontology for
architecture knowledge from developer communities,” in International
Conference on Software Architecture (ICSA). IEEE, 2017, pp. 89–92.

[10] T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[11] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[12] M. Soliman, M. Riebisch, and U. Zdun, “Enriching architecture knowl-
edge with technology design decisions,” in Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA). IEEE, 2015, pp. 135–144.

[13] L. Moreno, G. Bavota, S. Haiduc, M. Di Penta, R. Oliveto, B. Russo,
and A. Marcus, “Query-based configuration of text retrieval solutions
for software engineering tasks,” in 10th Joint Meeting on Foundations
of Software Engineering (FSE). ACM, 2015, pp. 567–578.

[14] B. Gleason, The development of language. Pearson Education, 2005.
[15] C. D. Manning and H. Schütze, Foundations of Statistical Natural

Language Processing. The MIT Press, 1999.
[16] J. Fang, L. Guo, X. Wang, and N. Yang, “Ontology-based automatic

classification and ranking for web documents,” in International Confer-
ence on Fuzzy Systems and Knowledge Discovery. IEEE, 2007, pp.
627–631.

[17] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence Review,
vol. 33, no. 1, pp. 1–39, 2010.

[18] G. Salton and M. McGill, Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., 1986.

[19] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classifica-
tion,” SIGKDD Explorations, vol. 12, no. 1, pp. 40–48, 2010.

[20] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classi-
fiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 226–239, 1998.

[21] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
Wiley-Interscience, 2004.

[22] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 2006.

[23] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: An update,” SIGKDD
Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[24] C. Treude and M. P. Robillard, “Augmenting api documentation with
insights from stack overflow,” in Proceedings of the 38th International
Conference on Software Engineering (ICSE). ACM, 2016, pp. 392–403.

[25] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network clas-
sifiers,” Machine Learning, vol. 29, no. 2, pp. 131–163, 1997.

[26] N. Landwehr, M. Hall, and E. Frank, “Logistic model trees,” Machine
Learning, vol. 59, no. 1-2, pp. 161–205, 2005.

[27] G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” in Eleventh Conference on Uncertainty in Artificial
Intelligence (UAI). Morgan-Kaufmann, 1995, pp. 338–345.

[28] S. Gottipati, D. Lo, and J. Jiang, “Finding relevant answers in software
forums,” in IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2011, pp. 323–332.

[29] Y. Zou, T. Ye, Y. Lu, J. Mylopoulos, and L. Zhang, “Learning to rank for
question-oriented software text retrieval (t),” in International Conference
on Automated Software Engineering (ASE). IEEE, 2015, pp. 1–11.

[30] P. Borlund, “The iir evaluation model: a framework for evaluation of
interactive information retrieval systems,” Information Research, vol. 8,
no. 3, 2003.

[31] J. T. Sutcliffe, “The pragmatics of information retrieval experimentation,
revisited,” Information Processing and Management, vol. 28, no. 4, pp.
467 – 490, 1992.

[32] L. A. Granka, T. Joachims, and G. Gay, “Eye-tracking analysis of user
behavior in www search,” in International Conference on Research and
Development in Information Retrieval. ACM, 2004, pp. 478–479.

[33] D. C. Montgomery, Design and Analysis of Experiments. John Wiley
& Sons, 2006.

[34] M. Fernández, D. Vallet, and P. Castells, “Probabilistic score normal-
ization for rank aggregation,” in Advances in Information Retrieval.
Springer, 2006, pp. 553–556.

[35] D. Tofan, M. Galster, P. Avgeriou, and W. Schuitema, “Past and
future of software architectural decisions - a systematic mapping study,”
Information and Software Technology, vol. 56, pp. 850–872, 2014.

[36] J. Tyree and A. Akerman, “Architecture Decisions: Demystifying Archi-
tecture,” IEEE Software, vol. 22, no. 2, pp. 19–27, 2005.

[37] M. Babar, I. Gorton, and B. Kitchenham, “A framework for supporting
architecture knowledge and rationale management,” in Rationale Man-
agement in Software Engineering. Springer, 2006, pp. 237–254.

[38] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation frame-
work for architecture decisions.” Journal of Systems and Software,
vol. 85, no. 4, pp. 795–820, 2012.

[39] D. Falessi, L. C. Briand, G. Cantone, R. Capilla, and P. Kruchten, “The
value of design rationale information,” ACM Transactions on Software
Engineering Methodology, vol. 22, no. 3, pp. 21:1–21:32, 2013.

[40] J. S. van der Ven and J. Bosch, “Making the right decision: Supporting
architects with design decision data,” in 7th European conference on
Software Architecture (ECSA). Springer, 2013, pp. 176–183.

[41] C. Lopez, V. Codocedo, H. Astudillo, and L. M. Cysneiros, “Bridging
the gap between software architecture rationale formalisms and actual
architecture documents: An ontology-driven approach,” Science of Com-
puter Programming, vol. 77, no. 1, pp. 66 – 80, 2012.

[42] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes,
“Automatic extraction of design decisions from issue management
systems: A machine learning based approach,” in Software Architecture,
A. Lopes and R. de Lemos, Eds. Springer, 2017, pp. 138–154.

[43] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web? (nier track),” in International Conference
on Software Engineering (ICSE). ACM, 2011, pp. 804–807.

