
Interfaces in Modular Software Systems:
Some Research Questions

Leif Bonorden
Universität Hamburg

bonorden@informatik.uni-hamburg.de

Abstract
Modularity of software systems is well-known and supported
by various theories. Interfaces and interactions between such
software modules are differently seen and treated from differ-
ent points of view.

This article briefly surveys semi-formal models, formal
specifications and technical implementations, and intro-
duces corresponding research questions regarding the com-
patibility of these perspectives with each other and their role
in the software development process.

1 Modularity in Software Systems
The division of software systems into components or
modules to deal with complexity has been observed
for decades [7]. In particular, object-oriented software
development is an instrument to structure software
into components – classes and objects –, but nowa-
days the term module is used to describe larger ele-
ments of software. In 1988, Bertrand Meyer presented
five criteria for such modularity in a software develop-
ment process [5]:

• Decomposability. Division into less complex
structures that can be examined and developed
separately.

• Composability. Modules can be combined with
others in different settings, in particular outside
the original setting.

• Understandability. Ahumancanunderstandeach
module without knowing about others or only a
few others.

• Continuity. Small architectural changes in one
module affect no or only some other modules.

• Protection. Problems at run-time in one module
affect no or only some other modules.

The five criteria are used together with five rules
and five principles to characterise modular soft-
ware design. Following this approach, various ideas
of modularization have emerged – either technical,
e.g. service-oriented architecture (since 1998)[8], and
micro-services (since 2014)[2], or organizational, e.g.
domain-driven design (since 2004)[3].

2 Interfaces for Software Modules
In general, interfaces are considered to be the part of
a module that is common to – or commonly used by
– the module implementation and its environment. A

special case, whichwill not be further considered here,
are user interfaces. Thus, in the following the environ-
ment also consists of other softwaremodules and sys-
tems.

Meyer’s five criteria for modularity yield three rules
for modular software design that deal with interfaces
[5]:

• Few Interfaces. For each module, communication
is limited to as few other modules as possible.

• Small Interfaces. The communicated information
between modules is as small as possible.

• Explicit Interfaces. The communication of two
modules should be done explicitly and compre-
hensibly.

Based on these rules and similar results, software ar-
chitects design systems, modules and interfaces. Be-
sides module interfaces, the more general subject of
module interactionmay also be considered.

2.1 A Semi-formal Modelling Perspective
Using the Unified Modeling Language (UML), inter-
faces may be depicted in class diagrams or in compo-
nent diagrams. In class diagrams, interfaces may be
explicitly marked with the stereotype «interface» and
are otherwise identical to classes. In component dia-
grams, the interaction between components or mod-
ules is highlighted by explicit notation of interfaces.
Due to the semi-formal notation of UML, the seman-
tics of these notation may differ significantly.

2.2 Formal Perspectives
Mathematical foundations have been developed in or-
der to reason abstractly about interfaces. Among the
areas of active research on such formal instruments
are the following.

Modal Specification Modal automata specifications
distinguish two types of transitions: must and may –
formally a tupelS = (A,→must,→may)with an alpha-
betA and partial functions

→must,→may: A
∗ 7→ 2A

with the condition of

→must (a) ⊆ →may (a)

for each a ∈ A. A system implementing such specifica-
tions has to include all must transitions, but does not
need to include allmay transitions [4].



Interface Automata The transitions of an interface
automaton are labeld as input or output – formally a
tuple P = (X,x0, A,→) with state set X , an initial
state x0, an alphabetA and a transition relation

→ ⊆ X ×A×X.

The theory of these automata is game-based, i.e. two
players represent the environment (Input) and the
module (Output), respectively [1].

Design by Contract In contrast to modal specifica-
tions and interface automata, contract theory focuses
on pre and post conditions for interactions. A contract
is defined as a set of variables (input variables and out-
put variables) together with their types as well as as-
sumptions and guarantees, which lay out the respon-
sibilities of the environment and the module, respec-
tively: While the environment needs to ensure the as-
sumptions, it may expect the guarantees. On the other
hand, the module may expect the assumptions, but
needs to realize the guarantees [6].

2.3 Implementation Perspectives
On the programming and technical level, there are a
variety of different perspectives on module interfaces
and module interaction. Ranging from usage of pro-
gramming language features and middleware to the
choice of transmission protocols, module communica-
tion needs to be considered in various development ac-
tivities.

3 Further Considerations on Interfaces
Apart from different perspectives on interfaces and
module communication, additional considerations are
needed:

• Linkage between modules may be determined
statically– favoring analysis – ordynamically – in-
creasing flexibility.

• Provided interfaces and communication between
modules need to be considered from a security
perspective as they offer usual attack vectors.

• Design and implementation of interfaces and
communicationneed to be traceable across devel-
opment phases and artifacts.

• Interfaces need to be considered together with,
but also separated from their implementations in
order to allow future changes to the implementa-
tion or the system.

4 Research Questions
The intended research considers software construction
processeswith a special highlight on interfaces. In this
setting, the following research questions arise. To the
best of the author’s knowledge, they have not been
sufficiently answered in this context, but the results
that have already been achieved, for instance in formal
specification, need to be taken into account.

How can the different perspectives on interfaces and
module interaction be considered jointly?

• Towhat extend are the several formal views on in-
terfaces compatible?

• Can formal specifications of interfaces and mod-
ule interaction be profitably connected to semi-
formal models?

• How do programming and technical details result
from (semi-)formal models of module interfaces
and module interaction? How can this be sup-
ported in practice?

How can theories with formal basis further advance
general (not necessarily formal) software develop-
ment with respect to module interfaces and module
interaction?

• Can certain flaws in the design of a system be de-
tected through formally based analysis?

• How can formal theories aid the software devel-
opment in checking whether an implementation
satisfies its specification?

Are the additional considerations describable in the
different perspectives?

• How can security aspects be integrated into
(semi-)formal models of module interfaces and
module interaction?

• How canmodels and implementations ofmodule
interfaces and module interaction be linked?

• How can architectural knowledge be made avail-
able through models and implementation?

References
[1] Luca de Alfaro, Thomas A. Henzinger. Interface Automata. ACM

SIGSOFT Software EngineeringNotes, vol. 26, no. 5, pp. 109–120,
2001.

[2] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente,
Manuel Mazzara, Fabrizio Montesi, Ruslan Mustafin, Larisa Sa-
fina.Microservices: Yesterday, Today, and Tomorrow. In: Manuel
Mazzara, Bertrand Meyer (eds). Present and Ulterior Software
Engineering. Cham: Springer, 2017, pp. 195–216.

[3] Eric Evans. Domain-Driven Design: Tackling Complexity in the
Heart of Software. Boston: Addison-Wesley, 2004.

[4] KimG. Larsen.Modal Specifications International Conferenceon
Computer AidedVerification. Berlin, Heidelberg: Springer. 1989.

[5] Bertrand Meyer. Object-oriented software construction. New
York: Prentice Hall, 1988.

[6] Bertrand Meyer. Applying “Design by Contract”. Computer, vol.
25, no. 10, pp. 40–51, Oct. 1992.

[7] David L. Parnas. On the Criteria To Be Used in Decomposing Sys-
tems into Modules. Commun. ACM, vol. 15, no. 12, Dec. 1972, pp.
1053–1058.

[8] MohammadH. Valipour, Bavar Amirzafari, Khashayar N.Maleki
and Negin Daneshpour. A brief survey of software architecture
concepts and service oriented architecture. 2009 2nd IEEE In-
ternational Conference on Computer Science and Information
Technology, Beijing, pp. 34–38, 2009.


