
API Deprecation: A Systematic Mapping Study
Leif Bonorden

Universität Hamburg
Hamburg, Germany

leif.bonorden@uni-hamburg.de

Matthias Riebisch
Universität Hamburg
Hamburg, Germany

matthias.riebisch@uni-hamburg.de

Abstract—Application Programming Interfaces (APIs) are the
prevalent interaction method for software modules, components,
and systems. As systems and APIs evolve, an API element may
be marked as deprecated, indicating that its use is disapproved
or that the feature will be removed in an upcoming version.
Consequently, deprecation is a means of communication between
developers and, ideally, complemented by further documentation,
including suggestions for the developers of the API’s clients.

API deprecation is a relatively young research area that
recently gained traction among researchers. To identify the
current state of research as well as to identify open research
areas, a meta-study that assesses scientific studies is necessary.
Therefore, this paper presents a systematic mapping study on API
deprecation to classify the state of the art and identify gaps in
the research field. We identified and mapped 36 primary studies
into a classification scheme comprising general and API-specific
categories.

We identified five major gaps in previous research on API
deprecation as opportunities for future studies: studying remote
APIs, investigating a broader range of static APIs, joining
suppliers’ and clients’ views, including humans in studies, and
avoiding deprecation.

Index Terms—API Deprecation, Systematic Mapping Study,
API Evolution

I. INTRODUCTION

A. Motivation

As modern software architecture favors the decomposition
of systems into more and smaller independent parts, the rela-
tions between these parts become more critical. The prevalent
way to implement such a relation is an application program-
ming interface (API). As software systems evolve, their APIs
change as well. During the evolution of APIs, elements may
be deprecated, indicating that their use is disapproved or that
they will be removed in upcoming versions—posing the risk
of breaking functionality in the API’s clients.

Since research on API deprecation is still relatively young
and gained traction recently, classification and coordination
of research results and efforts is needed—which this meta-
study addresses. First, we support planning and reporting on
API deprecation research by providing a classification scheme.
Second, we identify research gaps and highlight opportunities.

In addition, recent reporting on the state of the practice
claimed that research on APIs does not reflect the diversity
of APIs in practice. In particular, research on remote APIs
is demanded [1]. In response, this meta-study evaluates the
coverage of API types in research and validates the claim.

B. Contribution
This study investigates the state of research on API depre-

cation by performing a systematic mapping study identifying
103 unique studies. The main contributions are:

• A catalog of 36 relevant primary studies composing the
state of research.

• A classification scheme for research on API deprecation.
• A map of current research and a gap analysis highlighting

five major research gaps and opportunities.
• A replication package enabling further investigation [2].

The contribution is intended to benefit researchers conducting
further studies on the topic, particularly supporting the direc-
tion of future research towards open issues.

II. BACKGROUND

A. Application Programming Interfaces
APIs enable the cooperation of software systems using

the means of programming languages. Since the term was
introduced in the 1960s [3], it has gained importance through
the division of complex software systems into modules [4].
Nowadays, APIs have become the prevalent interaction method
to reuse software components, communicate via networks, and
provide data for others [5].

Two essentially different types of APIs are distinguished [1]:
Static APIs denote APIs in libraries, frameworks, or software
development kits that may be statically linked—also referred
to as traditional APIs or programming language APIs. In
contrast, remote APIs use means of network communication
to interact—also referred to as web APIs. With the advent of
containerization and microservices, remote APIs are no longer
limited to web applications but are becoming a ubiquitously
used type of API—even if the system’s components are
deployed on the same machine or cloud service.

The main stakeholders concerned with APIs are its suppli-
ers—API developers—and its clients—API users.

As software systems evolve, their APIs need to be adapted
accordingly: Suppliers add, change or remove elements in the
API, and clients need to adjust their code to the new version.
Versioning of APIs may be used to avoid sudden changes.
Furthermore, clients may be supported by providing suitable
alternatives or by tools automatically updating code.

B. API Deprecation
API suppliers may mark elements of an API as deprecated,

signaling its clients that the use is discouraged or that the

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works.



element will be removed in a future version. Depending on the
type of API and the environment it resides in, an appropriate
prebuilt deprecation feature exists. Otherwise or additionally,
the supplier needs to find other means to document the
deprecation and communicate it to its clients.

A common usage scenario for API deprecation is API evo-
lution. Deprecation is used to warn about an upcoming change
that could break the clients’ code: The affected API element is
marked as deprecated, and ideally, a schedule announcing the
element’s removal and a suggestion for an alternative solution
are provided. The client is given a reasonable amount of time
to adapt to the changing API element before the change breaks
the client’s code.

Additionally, API deprecation may also be used without the
intention to change the API element: The element’s usage may
be discouraged, or caution needs to be exercised in its usage,
even though it remains part of the API—e.g., the supplier does
not guarantee thread safety for a method.

The Java Language Specification [6] provides a typical
definition of deprecation:

“Programmers are sometimes discouraged from us-
ing certain program elements (modules, classes,
interfaces, fields, methods, and constructors) be-
cause they are considered dangerous or because a
better alternative exists. The annotation interface
Deprecated allows a compiler to warn about uses
of these program elements.”

The supplier of a Java API should use this annotation to
mark an element as deprecated. Additionally, they should
provide further explanation and advice in the accompanying
documentation Thus, the client’s Java compiler can now warn
about the deprecation if the annotated element is used.

C. Related Work

A previous systematic review of API evolution by Lamothe
et al. [7] mentions deprecation but does not consider it
separately. The systematic review includes 369 publications,
of which most deal with the Android ecosystem or study the
Java programming language.

Further systematic studies on APIs cover usability [5], [8]
or documentation [9], [10], but none of these include the topic
of API deprecation.

In a study on API misuse, Bonifácio et al. [11] discuss
related work on API evolution and identify two general
directions for research: The first goal is to “help developers to
migrate their systems in response to the evolution of APIs”.
The second focus lies on “understanding how developers
evolve APIs and on characterizing the evolution of APIs.”
These directions relate to perspectives on clients and suppliers,
respectively.

The state of the practice on API evolution has been studied
by Raatikainen et al., focusing on the suppliers’ perspec-
tive [1]: Remote APIs are identified as prevalent in industrial
projects, while static APIs are still in use. Furthermore, API
evolution itself is not considered a particularly challenging
topic, but the manual effort to avoid the unintended breaking

of APIs is high. Finally, it is argued that the diversity in API
types is not reflected in current research.

III. RESEARCH METHOD

We conduct a systematic mapping study following the
methodology for systematic mapping studies in software en-
gineering by Petersen et al. [12], [13]. Additionally, we heed
the empirical standard for systematic reviews from the ACM
SIGSOFT Paper and Peer Review Quality Initiative [14].

A systematic mapping study method rigorously reviews
primary studies on a research topic. It characterizes the state
of the art of research on this topic and allows the identification
of research gaps and opportunities for further primary studies.

Figure 1 provides an overview of the systematic mapping
process and the interim numbers of studies in each step. Each
study’s assessment was performed by one researcher and the
result was discussed among the authors as described by [15].

Database
search

183

Duplicate
elimination

103

Study
selection

35

Snow-
balling

36

Data
Extraction

Map

Fig. 1. Systematic mapping process

A. Research Questions

First, we aim to map the field of API deprecation research
according to the Who-What-How research strategy framework
for software engineering [16]:

RQ1 Who are the beneficiaries of research on API depreca-
tion?

RQ2 What are the types of contribution in research on API
deprecation?

RQ3 Which research strategies are used in research on API
deprecation?

These criteria are derived deductively—i.e., originating in the
Who-What-How framework—and allow for a general classi-
fication of software engineering research, e.g., distinguishing
analyses describing the status quo from results proposing new
solutions.

Second, we add classifications specific to API deprecation:
RQ4 What types of APIs are the subject of research on API

deprecation?
RQ5 What aspects of deprecation are considered in research

on API deprecation?
These criteria are constructed inductively—i.e., built from
observations in this study—and provide a more specific, thus
more detailed classification for research on API deprecation.

B. Search Strategy

We selected five academic databases to search for rele-
vant studies: ACM Digital Library, IEEE Xplore, Microsoft
Academic, Elsevier ScienceDirect, and Web Of Science. We



omitted Springer and Wiley Intersciences since their publica-
tions are included in Microsoft Academic and Web of Science,
respectively.

We did not consider gray literature for this secondary study
since the goal is to classify and map published research—in
contrast to practitioners’ experience and needs. Furthermore,
the properties addressed in RQ1–3 are hardly applicable to
gray literature; thus, the inclusion of gray literature would risk
the study’s validity and soundness. However, gray literature
needs to be considered in future research on API deprecation
to widen the view and connect academia and practice.

Since the topics of API deprecation and API evolution are
closely related, we decided to pursue a relatively broad strat-
egy and did not separate them. Instead, we set the appearance
of “API deprecation” or “deprecated API” as the minimal
requirement for relevance; thus, possibly including studies
on the more general topic of API evolution. Consequently,
we chose api AND deprecat* as the generic search
string which ought to appear in title, abstract, or keywords.
Depending on the databases’ available search settings, we
adapted the generic search string as shown in Table I. For
databases that did not offer the desired settings exactly, we
widened the search—including all metadata (including title,
abstract, and keywords) or full text. The inquiries were last
updated on October 1st, 2021.

In total, the results comprised 183 studies. We used the
EPPI-Reviewer software [17] to collect these results and
perform the following steps. Identifying 80 duplicates, 103
unique studies remained for screening.

C. Study Selection

To select only studies relevant to API deprecation, we de-
fined inclusion and exclusion criteria, which we checked using
adaptive reading depth: First, for each study, title, abstract,
and keywords were checked. If no confident decision could
be made, the full text was screened to avoid false negatives.

Any selected study must fulfill all of the following inclusion
criteria:

I1 Publication type. The study was published in a journal
or at a workshop or conference.

I2 Research topic. The study discusses API deprecation.
I3 Language. The study is published in English.

Criterion I1 subsumes any track at a conference—e.g.,
tool demonstration or doctoral symposium—and early access
publications—i.e., ahead-of-time publication by the confer-
ence or journal. These inclusion criteria achieve the selection
of all research contributions on API deprecation without
further restrictions.

On the other hand, a study was excluded if any of the
following exclusion criteria apply:
E1 Publication type. The study is not peer-reviewed—e.g.,

a preprint or a masters’ thesis.
E2 Research subject. The study does not research API

deprecation—e.g., deprecation is only mentioned as a
related topic.

E3 Contribution. The study does not present any new in-
sights on deprecation—e.g., presentation of a research
idea.

E4 Extension. The study is included in another publica-
tion that is considered in this systematic mapping study
instead—e.g., a conference article extended in a journal.

These exclusion criteria guarantee that only peer-reviewed
results on API deprecation are included and ensure that no
single investigation is included multiple times.

The selection excludes 68 studies following these criteria,
yielding 35 studies for further classification.

D. Verification of the Search Process

To verify the choice of databases and search strings, we
selected 5 studies we were already familiar with before con-
ducting the systematic search [18]–[22]. The studies provide
different views of API deprecation and are written by various
authors. Our search strategy successfully identified all of these
studies, indicating field coverage.

Furthermore, we applied forward and backward snowballing
to the identified primary studies [23]: First, we collected the
references and citations using the Semantic Scholar Academic
Graph API [24]. Second, we eliminated duplicates and re-
moved the studies already identified in the search process,
yielding 1033 further publications. Again, we assessed these
using adaptive reading depth, identifying 1 more study [25]
to include. Finally, we repeated the snowballing process for
this newly identified study, yielding 9 further publications—
of which none met the criteria. In conclusion, we obtained a
set of 36 relevant primary studies and a total of 1042 related
works. A corresponding list is given in the data set [2].

E. Construction of the Classification Scheme

We used the generic Who-What-How research strategy
framework for software engineering [16] to deductively out-
line a classification scheme along RQ1–3. Subsequently, we
extended the classification scheme inductively for RQ4–5 by
keywording of abstracts as proposed by Petersen et al. [12].

1) Beneficiaries (“Who?”, RQ1): Software engineering re-
search may benefit one or more of the following beneficiaries.
If such information is given explicitly, we only consider the
beneficiary stated by the study. Otherwise, we infer the data
from the study’s motivation or goal.

• Human stakeholders: The study claims a contribution
for software developers or other people concerned with
the development of software.

• Technical systems: The study’s goal is the improvement
of a tool or software system.

• Researchers: The study’s results assist in further re-
search.

2) Contribution (“What?”, RQ2): Software engineering
research may contribute different types of results. We consider
studies aiming to understand the status quo, solve a problem,
or both.

• Descriptive Knowledge: The study is an analysis of a
phenomenon or problem yielding a better understanding.



TABLE I
INDIVIDUAL INQUIRIES

Source Search String Scope # of Results

ACM Digital Library “api deprecation” Full text 22
ACM Digital Library “deprecated api” Full text 46

IEEE Xplore api AND deprecation All metadata 13
IEEE Xplore api AND deprecated All metadata 26

Microsoft Academic “api deprecation” Full text 18
Microsoft Academic “deprecated api” Full text 19

Science Direct api AND deprecation Title, abstract, keywords 4
Science Direct api AND deprecated Title, abstract, keywords 6
Web of Science api AND deprecat* Title, abstract, keywords 32

• Solution: The study introduces new means to solve a
problem.

Furthermore, we inductively refined the solutions and found
concrete tools, general methods and proposed classification
schemes.

3) Strategy (“How?”, RQ3): The research strategy
model [16] identifies four empirical and one non-empirical
category of research strategies. A study may apply multiple
research strategies.

• Field: Researchers observe a socio-technical system with-
out (field study) or with little (field experiment) interven-
tion in its natural setting.

• Lab: Researchers let human actors perform activities in
a highly controlled neutral setting (lab experiment) or
setting mimicking a natural environment (experimental
simulation).

• Respondent: Researchers gather insights from experts
with a survey or interview (sample survey) or collect
feedback on a new solution (judgment study).

• Data: Researchers study a phenomenon without involving
human participants by analyzing data (data mining study)
or performing benchmarks (data experiment).

• Non-empirical: Researchers analyze existing research
contributions (meta-studies) or provide mathematical
proofs (formal methods).

While meta-studies may be viewed as empirical investigations
on a meta-level, we follow the terminology presented by the
research strategy model and use the label ‘non-empirical’.

4) API Type (RQ4): The two types of APIs—static APIs
and remote APIs—are essentially distinct. We identified spe-
cific instances of these types from the studies’ abstracts.

• Static APIs: The study is concerned with APIs that may
be accessed within a single programming language, in-
cluding libraries and frameworks, and elements provided
by an SDK. Since we observed several studies on the
Android ecosystem, we split it from general Java APIs.

– Java (not Android-specific)
– Android
– JavaScript
– Python
– other (other language or language-agnostic)

• Remote APIs: The study is concerned with APIs im-
plemented by another system or component and may be

invoked over a network. We only identified one type of
remote APIs:

– REST/OpenAPI
5) Aspect of Deprecation (RQ5): To identify and distin-

guish various concerns in the context of API deprecation, we
used keywording [12]: First, we read the studies’ abstracts
and noted keywords describing stakeholders, their points of
view and their activities—e.g., ‘client developers’, ‘fault miti-
gation’, ‘refactoring’. Second, we clustered the keywords into
four categories:

• Decision (Supplier)
• Documentation (Supplier)
• Information (Client)
• Reaction (Client)
Section IV-A provides a more detailed description of the

arising four-step API deprecation model.

F. Data Extraction
Following the construction of the classification scheme,

we extracted the relevant data from the studies’ full texts
to sort them accordingly: The first author extracted the data
using the data extraction form in EPPI-Reviewer [17], and
the second author revised the classification. All disagreements
were solved by discussion, and a consensus was reached.

The resulting classification is given in section IV-B.

IV. RESULTS

A. Four-step API Deprecation Model
The first result from the research process is the classifica-

tion scheme itself—in particular, the four-step model of API
deprecation:

• Decision (Supplier): The supplier of an API investigates
a situation and decides to deprecate an API element.

• Documentation (Supplier): The supplier of an API im-
plements, documents and communicates the deprecation.

• Information (Client): The client obtains knowledge of
the deprecation of an API element. They may research
additional documentation or request assistance.

• Reaction (Client): The client updates their code or
chooses to ignore the deprecation.

The order of these steps may differ, and the steps may
overlap—e.g., a supplier could add documentation after a
client has already reacted to a deprecation.



Furthermore, research may take another point of view than
a step itself indicates—e.g., researchers may reconstruct a
supplier’s decision process after a decision has been made
and ask clients for information influencing their reaction after
it has been carried out.

B. Classification and Map

We identified and classified 36 relevant primary studies. A
histogram of the selected studies’ publication years (see Figure
2) shows that research on API deprecation commenced in
2005 and was mainly published since 2016 (83% of identified
primary studies). An overview of the studies’ classification is
presented in Table II. A more detailed version is provided in
the data set for this paper [2].

TABLE II
CLASSIFICATION OF PRIMARY STUDIES

Beneficiary
Human Stakeholders [18], [21], [22], [26]–[52]
Technical Systems [20], [25], [53]–[55]
Researcher [18], [19], [22], [41], [48], [49], [51]

Contribution
Analysis [18], [19], [21], [22], [26]–[30], [32], [36]–

[38], [40]–[42], [45], [48], [49], [51], [54]
Tool [18], [20], [27], [31], [33], [34], [39], [43],

[44], [47], [50], [52], [53], [55]
Method [25], [30], [35], [45], [46]
Classification [30]

Strategy
Field [29], [53]
Lab —
Respondent [22], [31], [32], [42], [51]
Data [18]–[21], [26]–[28], [30]–[40], [42]–[52],

[54], [55]
Non-empirical [25]

API Type
Java [19], [22], [25], [28], [31], [33], [35]–[37],

[39]–[42], [44], [50]–[52]
Android [20], [21], [27], [29], [34], [43], [45], [46],

[55]
JavaScript [32], [54]
Python [47]–[49], [51]
other (static) [19], [26], [30], [38], [53]
REST/OpenAPI [18]

Aspect
Decision (Supplier) [22], [30], [41]
Documentation (Sup-
plier)

[18], [19], [25], [28], [31], [32], [37], [48],
[54]

Information (Client) [32], [47]
Reaction (Client) [20]–[22], [26], [27], [29], [32]–[36], [38]–

[40], [42]–[46], [48]–[55]

a) Beneficiaries of Research (RQ1): A large majority
of studies (83%) directly support human stakeholders, while
improvements of technical systems (14%) and guidance for
future research (19%) occur rarely. Multiple beneficiaries were
given in 6 studies.

20
0
5

2
00

6

20
07

20
08

20
09

20
10

20
11

2
01

2

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0
1
2
3
4
5
6
7
8
9
10

Fig. 2. Number of studies on API deprecation per year

b) Types of Contribution (RQ2): Descriptive knowledge
(58%) and solutions (56%) are almost balanced. Within the
solution providing studies, tools are the major contribution
(39%). In 5 studies, we identified more than one contribution
type.

c) Research Strategies (RQ3): The majority of studies
apply a data strategy (86%). In contrast, respondent strategies
(14%), field strategies (6%), and non-empirical strategies (3%)
are rarely applied; lab strategies did not occur. Multiple
research strategies were involved in 3 studies—combining
respondent and data strategies. Additionally, 4 studies used
data experiments together with data mining studies—two
methods of the same strategy.

d) Types of API (RQ4): Research almost exclusively
considered static APIs (97%); remote APIs are only considered
in 1 study (3%). Specifically, the studies’ primary focus are
Java APIs in general (47%) and the Android ecosystem (25%).
Other static APIs are studied less (31%).

e) Aspects of API Deprecation (RQ5): Clients’ reactions
to deprecation are the main subject of the selected studies
(75%). On the other hand, significantly fewer studies are
concerned with the suppliers of deprecated APIs (33%).

f) Map of Research on API Deprecation: We select the
dimensions aspect of deprecation, API type, and contribution
type for the research map on API deprecation, given in Figure
3. Both the left-hand and the right-hand sides of the map
contain all 36 studies. Differences in numbers are attributable
to the assignment of multiple categories to a single study.

V. DISCUSSION

A. State of Research on API Deprecation

Our systematic mapping study provides a high-level
overview of the research area of API deprecation. Overall,
we notice a focus on particular research topics and methods
with few studies assessing issues outside this focus—which
fits the characterization as a young and still evolving research
area and provides opportunities to mature the research area by
identifying and filling the gaps.

The majority of research on API deprecation addresses
the reaction of clients to deprecation in Java and Android
systems. These studies mostly use data research strategies
to provide analyses and tools. This focus is reasonable as



A
n
a
ly

si
s

T
o
o
l

M
et

h
o
d

C
la

ss
ifi

ca
ti

o
n

J
a
v
a

A
n
d
ro

id

J
a
v
a
sc

ri
p
t

P
y
th

o
n

o
th

er
(s

ta
ti

c)
R

E
S
T

/
O

p
en

A
P

I

Reaction (Client)

Information (Client)

Documentation (Supplier)

Decision (Supplier)

15

1

7

3

11

1

2

3

1 1

11

5

2

9 2

1

2

3

1

1

3

1

1

11

Aspect

Contribution API type

Fig. 3. Map of Research on API Deprecation

the Android ecosystem depends on the Android operating sys-
tem, which follows a strict deprecation and removal policy—
demanding swift reaction of all clients. In the case of Java,
the mature deprecation feature allows for a thorough analysis
of (open-source) projects.

Few studies address other static APIs. We attribute this to
the less mature and less comprehensive deprecation features in
other programming languages—including the popular Python
and JavaScript [22]: Absence of a definitive way to deprecate
elements may discourage developers from using deprecation
and complicates research. For remote APIs, research has
just begun. While the importance of remote APIs increases
in practice [1], the variety of implementation options calls may
hinder practical usage and scientific analysis of deprecation.

On the clients’ side, research focuses the reaction—
i.e., updating the clients’ systems. On the suppliers’ side,
research focuses on the documentation of deprecation—
i.e., activities after the decision to deprecate an element
has been made. We attribute both of these observations to
the potential of automation in practice, possibly motivating
research. Furthermore, we assume that the feasibility of data
research methods for these aspects facilitates research.

Most studies pursue data research strategies. These strat-
egies offer a relatively objective and comparable measurement
for the evaluation of tools and allow the inclusion of a variety
of systems in data analyses. However, they lack human factors.

B. Research Gaps and Opportunities

Following the observations on the state of research, we
identified gaps in previous research and opportunities for
future studies. In the following, we focus on five significant
observations:

a) Uncharted Territory—Remote APIs: Only 1 study
researches deprecation of remote APIs [18], although remote
APIs are the prevalent type of APIs in the software indus-
try [1].

A tool for standardized specification and documentation of
REST APIs exists in OpenAPI, and elements may be marked

as deprecated in an OpenAPI specification. Future research
needs to understand further suppliers’ and clients’ needs on
deprecation of remote APIs as well as the current practice.
Additionally, methods and tools to support the deprecation
process are needed. Finally, the transferability of results on the
deprecation of static APIs to remote APIs should be examined.

Furthermore, this supports the observation by Raatikainen
et al., who noticed research on APIs to include remote APIs
only rarely. [1]

b) Out of Focus—Static APIs: In the case of static APIs,
most research has been conducted on the Java programming
language and the Android ecosystem. In particular, primarily
descriptive analyses have been performed for Java APIs; for
the Android ecosystem, most publications present tools.

According to Sawant et al. [22], the Java deprecation
feature comprises a broader range of functions than most other
languages. Nonetheless, research on the deprecation of static
APIs should consider more instances: More programming lan-
guages should be studied—especially those without a mature
deprecation mechanism. Studies on individual programming
languages or settings should be checked for transferability and
generalizability.

c) Unbridged Gap—Suppliers’ and Clients’ Views on
API Deprecation: Suppliers and clients of an API may pursue
different goals in detail but share a common ground in general:
The clients’ software should interact correctly and efficiently
with the API and the system to which it belongs.

We have identified 4 studies that regard both the suppliers’
and the clients’ perspectives—all of which are descriptive
analyses. Future studies should better include the suppliers
and their perspective in API deprecation research. In particular,
both points of view should be combined for a more general
understanding and assistance of the whole process.

d) Human-out-of-the-loop—Methodical Triangulation
of Research Strategies: Research triangulation strategies
confirm results using other research methods, including data
and methodical triangulation. While data triangulation—the
usage of multiple data sources—has been performed in several



studies on API deprecation, we could observe little methodical
triangulation—the combination of different research strategies.
In particular, most research on API deprecation is performed
solely on data without the involvement of humans.

Additionally, if data research strategies are applied, studies
typically inspect only open-source software.

e) Prevention Better Than Cure—Avoiding API Dep-
recation: Previous research focuses on understanding and
reacting to API deprecation, but no studies on means to avert
or simplify deprecation have been identified— i.e., no studies
addressed situations before the first step of the API deprecation
model. Future research should investigate which decisions lead
to API deprecation and how deprecation may be avoided.

VI. THREATS TO VALIDITY

Common threats to validity in software engineering sec-
ondary studies have been discussed in [56]. We address the
applicable threats and our countermeasures.

A. Study Selection Validity

Completeness of study selection is the main threat for a
systematic mapping study. To mitigate this threat, we decided
to broaden the search as far as possible—narrowing the results
relatively late after applying an adaptive reading strategy.
This was possible since the number of identified studies
was relatively low. We chose multiple databases to cover all
major publication venues for software engineering research
and verified the completeness by checking the inclusion of
previously manually selected studies.

Inclusion and exclusion criteria were selected solely based
on the study’s intentions, and generic limitations (e.g., a
restriction on the publication year) were not used. The decision
to exclude gray literature has been motivated and complies
with the study’s intent. Furthermore, no sampling of relevant
studies was needed as the number of results was low enough to
select all results for further investigation. Decisions to select a
study as an extended version of another were conducted with
a consistent strategy.

Additionally, we performed forward and backward snow-
balling, identifying one further study. This study [25] was
published at a small workshop in 2007 and is not indexed
in any major database. Thus, we conclude that this addition
does not indicate a general fault in our search process.

Only one author performing the study poses a threat to
validity. This researchers’ bias was mitigated by discussion
between the authors before each step was conducted and
revision of each step’s results by the second author.

B. Data Validity

Data validity for systematic mapping studies is concerned
with constructing the classification scheme and the data ex-
traction. To mitigate this threat, we applied several strategies:
We used a combination of deductive (the Who-What-How
framework) and inductive scheme construction to preserve the
advantages and avoid the disadvantages of both strategies. Fur-
thermore, by using an adaptive reading strategy, no decisions
have been generically limited to the contents of an abstract.

C. Research Validity

The research process for the systematic mapping study has
been described in detail. The data has been made available to
ensure reliability and enable replication or extension.

VII. CONCLUSIONS

A. Summary

This meta-study presents a systematic mapping study on
API deprecation, including 36 relevant primary studies. We
found studies to mainly address human stakeholders, to pro-
vide descriptive analyses as well as new solutions, and to base
their insights mostly on (open-source) data. Furthermore, the
studies strongly focus static APIs, particularly Java and the
Android ecosystem, and clients’ reactions to deprecation.

Subsequently, we identified five major gaps in current
research on API deprecation:

1) Uncharted Territory: Deprecation of remote APIs has
barely been considered.

2) Out of Focus: Research on the deprecation of static
APIs includes only a few programming languages.

3) Unbridged Gap: Suppliers and clients of an API have
rarely been considered jointly.

4) Human-out-of-the-loop: Research strategies have been
focused on data and did not include human actors.

5) Prevention Better Than Cure: Investigations do not
include causes or prevention of deprecation.

B. Future Work

First, future research on API deprecation needs to address
the five major research gaps we identified.

Furthermore, future research needs to compare academic
achievements with practitioners’ needs on API deprecation
to enhance the applicability of findings in practice. In this
context, existing gray literature and knowledge among practi-
tioners need to be included in future studies.

Finally, a general model of API deprecation—extending or
replacing the basic four-step model presented in this study—
should be developed and evaluated. In particular, both sup-
pliers and clients should be included with their needs and
contributions to the process.

C. Data Availability

The complete data set has been made available as open data
via Zenodo [2]. The files include all unique search results:

• Included studies with their complete classification.
• Excluded studies with the decisive exclusion criteria.
• A list of studies identified through snowballing.

REFERENCES

[1] M. Raatikainen, E. Kettunen, A. Salonen, M. Komssi, T. Mikkonen,
and T. Lehtonen, “State of the Practice in Application Programming
Interfaces (APIs): A Case Study,” in ECSA’21, 2021, pp. 191–206.

[2] L. Bonorden and M. Riebisch, “API Deprecation: A Systematic
Mapping Study [Data set],” Zenodo, 2022. [Online]. Available:
https://www.doi.org/10.5281/zenodo.5650121

[3] I. W. Cotton and F. S. Greatorex, “Data structures and techniques for
remote computer graphics,” in 1968 Fall Joint Comp. Conf., ser. AFIPS
Conf. Proc., vol. 33, part I, 1968, pp. 533–544.



[4] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[5] I. Rauf, E. Troubitsyna, and I. Porres, “A systematic mapping study
of API usability evaluation methods,” Comput. Sci. Rev., vol. 33, pp.
49–68, 2019.

[6] J. Gosling et al., “The Java Language Specification, Java SE 17 Edition,”
2021.

[7] M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A Systematic Review
of API Evolution Literature,” ACM Comput. Surv., vol. 54, no. 8, pp.
1–36, 2022.

[8] C. Burns, J. Ferreira, T. D. Hellmann, and F. Maurer, “Usable results
from the field of API usability: A systematic mapping and further
analysis,” in VL/HCC’12, 2012, pp. 179–182.

[9] A. Cummaudo, R. Vasa, and J. Grundy, “What should I document? a
preliminary systematic mapping study into API documentation knowl-
edge,” in ESEM’19, 2019, pp. 1–6.

[10] K. Nybom, A. Ashraf, and I. Porres, “A Systematic Mapping Study on
API Documentation Generation Approaches,” in SEAA’18, 2018.

[11] R. Bonifácio, S. Krüger, K. Narasimhan, E. Bodden, and M. Mezini,
“Dealing with Variability in API Misuse Specification,” in ECOOP’21,
2021, pp. 19:1–19:27.

[12] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
Mapping Studies in Software Engineering,” in EASE’18, 2008.

[13] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting
systematic mapping studies in software engineering: An update,” Inf.
Softw. Technol., vol. 64, pp. 1–18, 2015.

[14] P. Ralph et al., “Empirical Standards for Software Engineering Re-
search,” 2021.

[15] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature Reviews in Software Engineering,” Evidence-Based Software
Engineering, Tech. Rep. EBSE-2007-01, 2007.

[16] M.-A. Storey, N. A. Ernst, C. Williams, and E. Kalliamvakou, “The
who, what, how of software engineering research: A socio-technical
framework,” Empir. Softw. Eng., vol. 25, no. 5, pp. 4097–4129, 2020.

[17] J. Thomas et al., “Eppi-reviewer: advanced software for systematic
reviews, maps and evidence synthesis,” 2022, EPPI-Centre, UCL Social
Research Institute, University College London.

[18] J. Yasmin, Y. Tian, and J. Yang, “A First Look at the Deprecation of
RESTful APIs: An Empirical Study,” in ICSME’20, 2020, pp. 151–161.

[19] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “On the use of
replacement messages in API deprecation: An empirical study,” J. Syst.
Softw., vol. 137, pp. 306–321, 2018.

[20] S. A. Haryono, F. Thung, D. Lo, L. Jiang, J. Lawall, H. Jin Kang,
L. Serrano, and G. Muller, “AndroEvolve: Automated Update for An-
droid Deprecated-API Usages,” in ICSE’21: Demos, 2021, pp. 1–4.

[21] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “CDA:
Characterising Deprecated Android APIs,” Empir. Softw. Eng., vol. 25,
no. 3, pp. 2058–2098, 2020.

[22] A. A. Sawant, M. Aniche, A. van Deursen, and A. Bacchelli, “Under-
standing developers’ needs on deprecation as a language feature,” in
ICSE’18, 2018, pp. 561–571.

[23] C. Wohlin, “Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering,” in EASE’14, 2014.

[24] W. Ammar et al., “Construction of the literature graph in semantic
scholar,” in NAACL-HLT: Industry, 2018, pp. 84–91.

[25] S. A. Spoon, “Fine-grained api evolution for method deprecation and
anti-deprecation,” in Int. Workshop on Foundations and Developments
of Object-Oriented Languages, 2007.

[26] A. Hora, R. Robbes, M. T. Valente, N. Anquetil, A. Etien, and
S. Ducasse, “How do developers react to API evolution? a large-scale
empirical study,” Softw. Qual. J., vol. 26, no. 1, pp. 161–191, Mar. 2018.

[27] H. Huang, L. Wei, Y. Liu, and S.-C. Cheung, “Understanding and
detecting callback compatibility issues for Android applications,” in
ASE’18, 2018, pp. 532–542.

[28] D. Ko, K. Ma, S. Park, S. Kim, D. Kim, and Y. L. Traon, “API Document
Quality for Resolving Deprecated APIs,” in APSEC’14, 2014, pp. 27–30.

[29] M. Lamothe and W. Shang, “Exploring the use of automated API
migrating techniques in practice: an experience report on Android,” in
MSR’18, 2018, pp. 503–514.

[30] A. Mirian, N. Bhagat, C. Sadowski, A. Porter Felt, S. Savage, and
G. M. Voelker, “Web Feature Deprecation: A Case Study for Chrome,”
in ICSE’19: SEIP, 2019, pp. 302–311.

[31] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and
G. Canfora, “ARENA: An Approach for the Automated Generation of
Release Notes,” IEEE Trans. Softw. Eng., vol. 43, no. 2, 2017.

[32] R. S. d. Nascimento, E. Figueiredo, and A. Hora, “JavaScript API
Deprecation Landscape: A Survey and Mining Study,” IEEE Softw.,
2021, Early Access.

[33] H. A. Nguyen, T. T. Nguyen, G. Wilson, A. T. Nguyen, M. Kim, and
T. N. Nguyen, “A graph-based approach to API usage adaptation,” in
OOPSLA’10, 2010, pp. 302–321.

[34] M. A. Nishi and K. Damevski, “Automatically identifying valid API
versions for software development tutorials on the Web,” J. Softw. Evol.
Proc., vol. 32, no. 4, p. e2227, 2020.

[35] J. H. Perkins, “Automatically generating refactorings to support API
evolution,” in 6th Workshop on Program analysis for software tools and
engineering. Lisbon, Portugal: ACM, 2005, pp. 111–114.

[36] D. Qiu, B. Li, and H. Leung, “Understanding the API usage in Java,”
Inf. Softw. Technol., vol. 73, pp. 81–100, 2016.

[37] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning and
impact of breaking changes in the Maven repository,” J. Syst. Softw., vol.
129, pp. 140–158, 2017.

[38] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to API deprecation?: the case of a smalltalk ecosystem,” in FSE’12,
2012.

[39] M. Samak, D. Kim, and M. C. Rinard, “Synthesizing replacement
classes,” Proc. ACM Program. Lang., vol. 4, no. POPL, 2020.

[40] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of clients of 4 + 1 popular Java APIs and the JDK,” Empir.
Softw. Eng., vol. 23, no. 4, pp. 2158–2197, 2018.

[41] A. A. Sawant, G. Huang, G. Vilen, S. Stojkovski, and A. Bacchelli,
“Why are Features Deprecated? an Investigation Into the Motivation
Behind Deprecation,” in ICSME’18, 2018, pp. 13–24.

[42] A. A. Sawant, R. Robbes, and A. Bacchelli, “To react, or not to react:
Patterns of reaction to API deprecation,” Empir. Softw. Eng., vol. 24,
no. 6, pp. 3824–3870, 2019.

[43] S. Scalabrino, G. Bavota, M. Linares-Vasquez, M. Lanza, and R. Oliveto,
“Data-Driven Solutions to Detect API Compatibility Issues in Android:
An Empirical Study,” in MSR’19, 2019, pp. 288–298.

[44] R. Štrobl and Z. Tronı́ček, “Migration from deprecated API in Java,” in
SPLASH’13: Posters, 2013, pp. 85–86.

[45] F. Thung, S. A. Haryono, L. Serrano, G. Muller, J. Lawall, D. Lo, and
L. Jiang, “Automated Deprecated-API Usage Update for Android Apps:
How Far are We?” in SANER’10, 2020, pp. 602–611.

[46] F. Thung, H. J. Kang, L. Jiang, and D. Lo, “Towards Generating
Transformation Rules without Examples for Android API Replacement,”
in ICSME’19, 2019, pp. 213–217.

[47] A. Vadlamani, R. Kalicheti, and S. Chimalakonda, “APIScanner -
Towards Automated Detection of Deprecated APIs in Python Libraries,”
in ICSE: Demos, 2021, pp. 5–8.

[48] J. Wang, L. Li, and A. Zeller, “Better code, better sharing: on the need
of analyzing jupyter notebooks,” in ICSE’20: NIER, 2020, pp. 53–56.

[49] J. Wang, L. Li, K. Liu, and H. Cai, “Exploring how deprecated Python
library APIs are (not) handled,” in ESEC/FSE’20, 2020, pp. 233–244.

[50] Y. Xi, L. Shen, Y. Gui, and W. Zhao, “Migrating Deprecated API
to Documented Replacement: Patterns and Tool,” in 11th Asia-Pacific
Symposium on Internetware, 2019.

[51] B. Xu, L. An, F. Thung, F. Khomh, and D. Lo, “Why reinventing the
wheels? an empirical study on library reuse and re-implementation,”
Empir. Softw. Eng., vol. 25, no. 1, pp. 755–789, 2020.

[52] J. Zhou and R. J. Walker, “Api deprecation: a retrospective analysis and
detection method for code examples on the web,” in FSE’16, 2016.

[53] S. Arvedahl, “Introducing Debtgrep: A Tool for Fighting Technical Debt
in Base Station Software,” in 2018 Int. Conf. on Technical Debt, 2018.

[54] F. R. Cogo, G. A. Oliva, and A. E. Hassan, “Deprecation of packages
and releases in software ecosystems: A case study on npm,” IEEE Trans.
Softw. Eng., 2021, Early Access.

[55] S. A. Haryono, F. Thung, H. J. Kang, L. Serrano, G. Muller, J. Lawall,
D. Lo, and L. Jiang, “Automatic Android Deprecated-API Usage Update
by Learning from Single Updated Example,” in ICPC’20, 2020.

[56] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzige-
orgiou, “Identifying, categorizing and mitigating threats to validity in
software engineering secondary studies,” Inf. Softw. Technol., vol. 106,
pp. 201–230, 2019.


