
Industry Voices on Software Engineering Challenges
in Cyber-Physical Production Systems Engineering

Kevin Feichtinger1∗, Kristof Meixner3, Felix Rinker3, István Koren4, Holger Eichelberger5,
Tonja Heinemann6, Jörg Holtmann7, Marco Konersmann8, Judith Michael9, Eva-Maria Neumann10,

Jérôme Pfeiffer6, Rick Rabiser1,2, Matthias Riebisch11, Klaus Schmid5
1LIT Cyber-Physical Systems Lab, Johannes Kepler University Linz, Austria

2CDL VaSiCS, LIT Cyber-Physical Systems Lab, Johannes Kepler University Linz, Austria
3CDL SQI, Institute of Information Systems Engineering, Technische Universität Wien, Austria

4Chair of Process and Data Science, RWTH Aachen University, Germany
5Software Systems Engineering, Institute of Computer Science, University of Hildesheim, Germany

6Institute for Control Engineering of Machine Tools and Manufacturing Units, University of Stuttgart, Germany
7Department of Computer Science and Engineering, Chalmers, University of Gothenburg, Sweden

8Institute for Software Technology, University of Koblenz-Landau, Germany
9Software Engineering, RWTH Aachen University, Germany

10Institute of Automation and Information Systems, Technical University of Munich, Germany
11Software Development and Software Construction Methods, Universität Hamburg, Germany

∗E-Mail: kevin.feichtinger@jku.at

Abstract—Cyber-Physical Production Systems (CPPSs) are
envisioned as next-generation adaptive production systems com-
bining modern production techniques with the latest information
technology. A CPPS creates a complex environment between
different domains (mechanical, electrical, software engineering),
requiring multidisciplinary solutions to tackle growing com-
plexity issues and reduce (maintenance) effort. Software plays
an increasingly important role in assuring an effective and
efficient operation of CPPSs. However, software engineering
methods applied for CPPSs seem to lag behind modern software
engineering methods, where tremendous progress has been made
in the last years. We initiated the Software Engineering in
Cyber-Physical Production Systems Workshop (SECPPS-WS) to
analyze and overcome this gap. After two instances with mostly
academic participants, we conducted a full-day workshop with
nine industry representatives from eight companies that develop
and maintain CPPSs. Each industry representative presented
their current work and challenges. We collected these challenges
and condensed a categorized list of challenges backed by industry
statements and literature. This paper presents the resulting list
and pointers to (partial) solutions to offer guidance for academia
and identify promising research opportunities in this area.

Index Terms—Digital Transformation, CPPS Engineering, Re-
search Challenges

I. INTRODUCTION

In Cyber-Physical Production Systems (CPPSs) engineer-
ing, engineers from different disciplines (e.g., mechatronic,
electronic, and software engineering) develop modern pro-
duction systems that manufacture highly customizable goods
tailored to customer needs [1]. CPPSs adapt to uncertain
conditions of their physical environment using the latest in-
formation and communication technology [1], [2]. In practice,

CPPS engineering raises several challenges, which require
multidisciplinary solutions to tackle growing complexity is-
sues and reduce engineering and maintenance efforts. These
challenges also concern the engineering of software for CPPSs
and its operation.

Several works discussed CPPS challenges [3], [4] and
presented research agendas to address them [5], [6]. For
instance, Bureŝ et al. [7] summarized challenges for software
engineering in Cyber-Physical Systems (CPSs) and outlined
the importance of flexible approaches to address changing
requirements, uncertain conditions, structural transformations,
and evolving CPSs. Vogel-Heuser et al. [4] investigated the
evolution impact and challenges on the life-cycle phases of
developing automated production systems and outlined a re-
search roadmap to address these challenges. In particular they
focused on software, which gains an increasingly important
role in the development of effective and efficient CPPSs.
Modern software engineering approaches, such as agile meth-
ods, microservice architectures, continuous integration and
deployment, and variability modeling, could help. However,
based on the authors’ experience and recent empirical results
by Berger et al. [8], it does not seem that these approaches
made their way into industry nor into CPPS engineering.

In 2021 we initiated the Software Engineering in Cyber-
Physical Production Systems Workshop (SECPPS-WS)1 [9] to
investigate the topic in more detail and grasp important chal-
lenges for software engineering in particular. The workshop
aims to discuss approaches and methods to develop software
for CPPS and address challenges in adopting state-of-the-
art software engineering tools and techniques to the CPPS

1https://rickrabiser.github.io/secpps-ws/978-1-xxxx-xxxx-1/22/$31.00 ©2022 IEEE

https://rickrabiser.github.io/secpps-ws/

domain. After two workshops with participants mostly from
academia, we invited industrial stakeholders to a third instance
to present their ongoing work and point out current challenges
from their industrial practice.

In this paper, we present and discuss the results of this
workshop as a categorized list of CPPS engineering challenges
underpinned by industry voices. We back these challenges
using related literature and outline partial solution candidates.
The paper does not provide a systematic overview of the
literature and solution candidates. However, we argue that
the industry voices combined with the collected literature
and solution candidates provide a good foundation for future
research directions. Similarly, while the list of challenges
might not be complete, it provides a broad overview of what
industry is currently struggling with.

The remainder of the paper is structured as follows. Sec-
tion II describes how we elicited and consolidated the chal-
lenges. Section III presents and discusses the categorized list of
challenges. Section IV discusses lessons learned and outlines
a research agenda. Section V concludes the paper.

II. RESEARCH METHOD

This section presents how we elicited the challenges in the
SECPPS-WS and consolidated them for this work utilizing the
methodology of a judgement study [10].

After the second SECPPS-WS, we established a reading
group to get an overview of recent literature from the field
and to collect (partial) solutions to challenges described in
the literature. We used the discussions among reading group
participants as a basis for questions to industry partners, which
we invited to the third SECPPS-WS instance. We invited
industrial stakeholders to present their ongoing work and point
out current challenges from their industrial practice in CPPS
software engineering. Nine practitioners from eight European
companies of different size developing and maintaining CPPSs
or solutions for CPPSs participated in the workshop. The range
of domains reached from automotive manufacturing over med-
ical supply engineering to solution providers and integrators
for CPPSs. While the stakeholders might not cover the entire
CPPS industry, we carefully selected the practitioners, thus
covering a representative set of experts in the field [10].

All academic participants took notes based on the practi-
tioners’ presentations and discussions among participants in a
shared document. Additionally, we later received feedback on
CPPSs challenges from one industry partner who was unable
to attend the workshop and integrated this feedback into our
notes. The authors of this paper then discussed the notes and
elicited concrete challenges for software engineering in CPPS
in multiple meetings. Specifically, we used open coding [10]
to highlight challenges in notes and created a mindmap from
these codes to discuss and refine the challenges among all
authors until we achieved a common understanding of the
challenges. We also used the results of the reading group to
assess how existing work might tackle some of the challenges.

III. CHALLENGES

This section describes the categorized challenges and dis-
cusses partial solutions to them. We have explicitly highlighted
industry voices in the challenge explanations and set them
in context to software engineering research. Fig. 1 shows
the categorization of the challenges, also represented by the
subsections of this section, and their sub-challenges.

A. Complexity

Complexity in software engineering for CPPS has been
reported along multiple dimensions:

System complexity. Two workshop participants reported on
the system complexity, which is on the one hand induced by
the sheer amount of different subsystems and on the other
hand by their heterogeneity (e.g., sensor systems, real-time
control systems, process optimization systems, . . .). Corre-
spondingly, Serpano [11] states that singular CPSs encompass
traditional IT systems with Operational Technology (OT) sys-
tems. These two subsystem classes differ regarding the aspects
“purpose, computing components, communication technolo-
gies, and interfaces to ownership and management” [11]. Thus,
this heterogeneity imposes challenges (i.e., software integra-
tion/upgrade, network interoperability, synchronization regard-
ing real-time processes and applications, and security [11]) for
the integration of the IT and OT subsystems of one “simple”
CPS. Beyond that, a CPPS constitutes a complex System-of-
Systems, in which the IT subsystems have to control a variety
of heterogeneous OT subsystems like Programmable Logic
Controllers (PLCs) with software deployed to them. These, in
turn, have to interact with each other in a synchronized way.
In this context, engineers also have to consider the goods to be
produced and the required resources while carefully designing
the production process to produce meaningful goods safely.

Time complexity. One company from the special operation
vehicle domain reported that CPPSs and their subsystems tend
to be long-living over multiple decades. This longevity chal-
lenges the maintenance and evolution of CPPSs [4] and soft-
ware engineering [12]. Several workshop participants pointed
out different lengths of development cycles of the disci-
plines involved in CPPSs engineering drive these challenges.
Mechanics and automation hardware tend to have longer
cycles, wheres software tends to have shorter cycles [13].
One participant from the plant-building domain outlined the
need for continuous operation of the plant (24/7/365).
Consequently, experiments in production regarding changing
requirements and different development life cycles are impos-
sible. Yet, CPPSs need to evolve over a system’s lifespan to
maintain their quality, still remain backwards compatibility
on the hard- and software side. Modularity and well-defined
interfaces would help but raise the complexity as interface
specifications change, especially in software engineering.

Integration complexity. The complexity of the manufactur-
ing domain requires different stakeholders, everyone having
their own domain-specific knowledge and view on the system
and services. Thus, different artifacts realizing each view
exist. Specifying systems and their services is necessary to

Real-time Requirements

Data Analytics & AI

Education

Variability Agility

MultidisciplinarityB

DC

E F

H

SECPPS
Challenges

Complexity A

Knowledge
Management G

System

Time

Information

among different subsystems
heterogeneity

long-living over multiple decades
different lengths of development cycle

continuous operation of the plant
backwards compatible

integration of heterogeneous artifacts
vertical / horizontal integration

information overload
identifying relevant potential sources

multiple protocols and vendor-specific tools

different disciplines
different teams follow different processes
use different tools
different backgrounds and knowledge
poorly integrated tool and discipline knowledge
high organizational complexity

Stakeholder exchange

Learning curve

Cost share of funding

Product Variability

Variant Management

Monetary Evaluation

Product and Variant Evolution

dependencies between variants
change impact

necessary experience of agile methods
different models used in different stages of the development process
difference in life cycle time of CPPS components
strong regulation of the CPPS domain

hard real-time requirements
CPPS experts are hardly ever software engineers
missing time due to production deadlines
new methods to exchange and enrich knowledge are needed

 high number of variants
compatibility constraints between variant

implicit employee knowledge
individuals concentrate knowledge

inaccessible and missing knowledge

Product
Knowledge

Organisational
Knowledge

frequency and volume
real-time requirements
specific execution platform

Integration

Fig. 1. Overview of identified Software Engineering in Cyber-Physical Production Systems (SECPPS) challenges.

achieve a holistic view of the system integrating these—
often heterogeneous—artifacts. One paradigm to handle
complexity is model-driven systems engineering that employs
models for describing aspects of a CPPS [14]. Today a slew of
modeling languages is already used to model different aspects
of CPPSs. Furthermore, standardized (IEC) languages, e.g.,
IEC 61131-3 [15] or IEC 61499 [16], exist for programming
PLCs. However, integrating these artifacts entails vertical
integration, i.e., across multiple abstraction or production
layers, e.g., component, subsystem, system, and horizontal
integration, i.e., across systems on the same layer. These in-
tegration challenges extend to tools, software, communication
interfaces, and other components involved in the composition
of System-of-Systems.

Information complexity. CPPSs produce large quantities of
data, which can result in information overload. As reported
by industry representatives, an example is a high number of
event reports in human-machine interfaces (HMI). In addition,
the data may differ in transmission velocity, quality, and
validity, depending on its source and context. These aspects are
directly related to the organization using CPPSs, in the most
complex case distributed globally [17]. Due to the amount and
time constraints of CPPS data, scalability of solutions becomes
an issue [18]. In large quantities of data, identifying potential
relevant sources can be challenging. As an example reported
by industry, identifying sources for errors is not trivial when a
product defect is recognized in quality control. Another aspect
raising the complexity of information transmitted in CPPSs
are the multitude of protocols, including their semantics,
and vendor-specific tools to manage these protocols. In this
regard, further standardization is needed [19].

B. Multidisciplinary

Various disciplines are involved in engineering and main-
taining CPPSs. Software engineers responsible for develop-
ing, e.g., the control software for CPPSs [6] require inputs
and knowledge from their upstream disciplines. In practice,
as several industry participants in our workshop confirmed,
different discipline teams follow a variety of processes, use
diverse tools, and have different backgrounds and knowl-
edge. The tools and the discipline knowledge are poorly
integrated resulting in a high organizational complexity
(cf. Section III-A). For the integration of models, there are
approaches such as mega models [20] or approaches in the
context of Model-based Systems Engineering that rely on
model transformations [21], [22]. However, tool support and
acceptance in industrial projects are still not sufficient. One ap-
proach often followed in practice is the definition of Minimum
Viable Products (MVPs). Nevertheless, in a multidisciplinary
context it is often unclear what can be understood as an
MVP that satisfies the involved disciplines. As several industry
participants of the workshop confirmed, for the developers
of (control) software in the context of CPPSs, it remains
challenging to consider the knowledge from multiple involved
disciplines when building solutions.

Stakeholder exchange. In practice, important system fea-
tures have to be defined across multiple disciplines in CPPS
engineering. Therefore, representatives of the responsible dis-
ciplines should meet and interact regularly. Industry partici-
pants, however, also confirmed that, in practice, such meetings
are rare and sometimes only occur once a year. Interaction is
typically based on the exchange of documents and spread-
sheets, some manually created, others exported from different

tools. Based on the knowledge contained in these documents,
software engineers develop and maintain the CPPS software,
which requires a lot of experience.

Learning curve. One industry participant explained that it
can take several years to get a software engineer in their
domain up to speed. Many industries use legacy industry stan-
dards instead of modern software engineering approaches and
tools, at least compared to software development/IT compa-
nies. As a result, it is hard to find software engineers who want
to work in such multidisciplinary environments. Researchers
in industry and academia are working on bringing modern
approaches, such as DevOps, to industry [23]. However, in
practice applying new approaches may lead to problems. For
instance a lack of testing may cause integration issues, even
in traditional software engineering [24].

Cost. According to a workshop participant from the plant
building domain, a challenge for software engineering for
CPPS is the share of funding compared to an overall CPPS
project. In particular, this concerns the basic automation,
which accounts to 0.5 to 2 percent of some projects’ budget.
A possible contribution of academia could be to emphasize
the value of proper software in the long run.

C. Variability

CPPSs are typically developed and maintained over many
years, resulting in a plethora of variants created to address
specific customer requirements. As confirmed by all partici-
pants, customers expect a system (e.g., plant or machine) cus-
tomized to their specific needs, especially in industries that
typically deal with highly configurable products. Dealing with
variability in industry, however, currently depends too much
on mostly tacit domain expert knowledge and custom-
built tools focusing on particular artifacts and software and
hardware platforms [5], [6].

Product Variability. Two industry participants, one from
special vehicle construction and one from packaging manage-
ment, mentioned the challenge of the desired high product
variability in modern production, a.k.a lot-size 1 and config-
ure to order. While the first participant noted that their products
are highly individual, the second added that specific business
processes to model them are still missing. These mentions are
confirmed in recent literature [25], [26] and recent approaches
try to consider variability from multiple, i.e., product,
process, and business perspectives [27], [28]. Industry 4.0
aims to facilitate such flexibility and adaptability to address
product variability to meet customer requirements [29], [30].

Variant Management. As multiple industry participants of
our workshop pointed out, it is particularly challenging to man-
age the high number of variants and especially their (potential)
compatibility. The dependencies between variants need to
be modeled for this purpose. For instance, a large European
truck company tries to address this issue by large constraint
databases, which have been presented during a keynote by
Mattias Nyberg [31] at the 25th ACM International Systems
and Software Product Line Conference. This is something
the Software Product Line (SPL) community has focused on

for over three decades, resulting in a slew of variability
modeling approaches [32]. Even though the challenges of
integrating variability modeling in CPS engineering have been
discussed [33] and several approaches have been developed to
extract variability from various (industrial) artifacts [28], [34]–
[36], only few of these approaches seem to have reached
industry, especially regarding CPPS [8].

Product and Variant Evolution. The participants also re-
ported product evolution and its change impact on the
production system as an essential challenge (cf. also [37]).
These challenges mean that the production systems and their
software have to be re-configured to meet new requirements
and manufacture new or changed products. However, the
impact of product evolution should be predictable in advance.
While SPL engineering can provide the means to model
product variability, and there are works trying to improve
artifact evolution [38], [39], SPL evolution is still challenging
for software engineering [40], [41].

Monetary Evaluation. One industry stakeholder noted the
monetary evaluation of variants in CPPS is a challenge. For
instance, how can the value of an additional product variant
be automatically evaluated and is a customer willing to pay
the additional cost (for the CPPS)? In SPL, the monetary
value of software variants and their contribution to the overall
return on investment of the product line is relatively negligible.
However, in CPPS engineering the contribution of every single
product type manufactured to the return on investment of the
CPPS is crucial [36]. Current variability modeling approaches
largely focus on features but do not consider a fixed set of
products that should be produced or the monetary values of
features. As far as costs are modeled, e.g., in the field of reuse
economics [42], these cost models do not take the issue of
physical production processes and their variability into
account, which is a major issue for CPPS.

D. Agility

Agility for CPPSs can be regarded as continuous architect-
ing, assessment, and twinning based on accepted reference
architectures like the Reference Architecture Model Industry
4.0 (RAMI 4.0), standardization, simulation of (embedded)
architectures for assessment as well as operation, maintenance,
and evolution of Digital Twins (DTs) [43]. The main chal-
lenges in this regard can be subdivided into three main themes.

Experience. Experience with agile methods in engineering
companies is crucial. However, according to one workshop
stakeholder from a large European company, it is often lack-
ing, especially with model-driven engineering methods.

Verification. Different models are used in different stages of
the development process, which must be synchronized when
changes are applied. Verification and validation of the models
and their contents become essential due to the complexity and
variety of CPPS. However, verification and validation are
not yet prominent in the academic literature about CPPS [17].

Different life-cycle times. While product life cycles tend to
get gradually shorter [1], software update cycles are in the

scope of weeks or months in agile environments, and produc-
tion equipment is often used for decades (cf. Section III-A).
The agile processes in software engineering for CPPS need
to take these different scales into account. Nevertheless,
agility requires short innovation cycles in CPPS engineering.
However, according to a participant of the workshop, these
innovation cycles are often impeded by the strong regulation
of the CPPS domain.

E. Real-time Requirements

One workshop participant reported on the challenges in-
duced by the presence of real-time requirements for the OT
subsystems in a CPPS. OT subsystems in a CPPS must fulfill
not only their functional requirements but they must also
adhere to hard real-time requirements, such as response
time under 10ms. Particularly, the heterogeneity of the OT
subsystems (cf. Section III-A) impose different classes of real-
time requirements. There are various classes of applications
in CPPSs interacting with each other, where each of these
classes imposes differently tight real-time requirements on the
applied networks and on the software together with the PLC it
is deployed to [11], [44]. Consequently, safety standards like
the IEC 61508 suggest certain safety measures to ensure that
the OT subsystems fulfill their real-time requirements.

Additionally, in modern CPSs the real-time-critical OT
subsystems have to interact via fog computing with non–
or soft-real-time and often cloud-based IT subsystems (cf.
Section III-A), thereby requiring independence as well as
synchronization between both technology areas [11], [44].
Finally, the advent of data analytics in the context of CPPSs
impose further challenges regarding real-time requirements
and computing capabilities (cf. Section III-H).

F. Education

Formal education. CPPS engineering combines several dis-
ciplines, which requires a range of formally educated experts
in these areas. While students can often include subjects taught
in other disciplines as electives, programs like mechatronics
and software engineering contain multidisciplinary elements
by design [45]. As the subject of mechatronics evolved from
combining computer science, electronics, and mechanical en-
gineering to form a topic of its own [46], a similar evolution
seems beneficial for CPPSs. This way, knowledge from the
electronics, computer science, and mechanics domain can be
integrated with methods and tools from software engineering
(cf. learning curve in Section III-B).

Job training. CPPSs are developed and maintained by
professionals from a variety of fields. Early systems were often
developed by electronics professionals who learned how to
program, as indicated by representatives from the industry.
Such systems may become challenging to maintain, as lan-
guages like C or Ladder Diagram are replaced by higher-level
languages, such as Python and JavaScript, which are often
oriented towards web services or cloud development. Even
though most professionals working with CPPSs today learned
to program as part of their formal education, they are hardly

ever software engineers. The most significant problem in
education on the job, as reported in the workshop, is missing
time due to project deadlines, especially for experienced
colleagues. In this regard, new methods to exchange and
enrich knowledge are needed while partaking in productive
processes.

G. Knowledge Management

CPPSs need to integrate domain-specific knowledge from
heterogeneous information sources to provide the basis for,
e.g., analytics, simulations and decisions (cf. tool integration
in Section III-B). This knowledge is spread over the entire
CPPS ecosystem, including its context.

Product knowledge. The trend toward mass customization
leads to products with a high number of variants specified
in product design (cf. Section III-C), with a high number
of relationships and compatibility constraints between dif-
ferent product variants, and to highly specified production
processes about which knowledge is distributed among human
workers, supporting (information) systems, and the CPPS.

Organizational knowledge. Moreover, organizational knowl-
edge about these products and processes as implicit employee
knowledge is often not made explicit. This is especially chal-
lenging because individuals concentrate knowledge about
a system over time, but it depends on those individuals to
make the knowledge transfer work (cf. stakeholder exchange
in Section III-B). Knowledge management systems [47] allow
to combine these human-machine information sources and
support knowledge generation and utilization. We can apply
methods from requirements engineering to explicate knowl-
edge from humans and identify inaccessible and missing
knowledge. We need to apply methods to structure exter-
nalized knowledge, which includes contextual data-traces and
meta-data [48] as well as knowledge in engineering and
process models [49]. This knowledge can be organized in
organizational knowledge bases [50] to enable the support of
evolution and learning.

H. Data Analytics and AI

An industry partner from an internationally distributed au-
tomation company did not participate in the actual workshop.
Based on a post-workshop interview with this person, we
identified challenges induced from the field of data analytics
for CPPSs, which was initially not considered in the workshop.

Data analytics capabilities in CPPSs include complex event
processing, soft-real-time stream processing as well as Artifi-
cial Intelligence (AI). Thus, engineering challenges for data
analytics systems, e.g., as discussed in [51], also apply to
CPPSs. Some core challenges are similar, e.g., intrinsic com-
plexity, interdisciplinarity, the need for agile development, or
(edge-)distributed data processing in (soft-)real-time settings.
Functional requirements for data analyses often emerge late,
e.g., during experimentation or realization. Furthermore, data
privacy and data consistency and correctness require special
approaches, e.g., during quality assurance. The embedded
nature of the OT subsystems of a CPPS aggravate existing

challenges, e.g., frequency and volume of machine data
streams at high sampling rates, hard real-time require-
ments (cf. Section III-E) or specific execution platforms, e.g.,
PLCs that require IEC languages for programming. It is worth
mentioning that edge devices bridge both worlds and integrate
a hard real-time IEC environment for OT with a separated IT
environment, where data analytics, AI, and even containers for
virtualization can be executed.

Nowadays, AI is frequently used in CPPS for condition
monitoring or predictive maintenance, as confirmed by a recent
survey in the IIP-Ecosphere project [52]. However, systematic
development in industry settings impose specific demands,
e.g., compliance with certain standards. Example challenges
for ISO-13374 are the need for integrated application design
tools or the compliant evolution and change management of
existing solutions [53]. These topics will become more urgent
as other use cases are explored, e.g., energy optimization, and
the number of cases per company will grow.

IV. LESSONS LEARNED AND RESEARCH AGENDA

Complexity is a multi-dimensional problem. System com-
plexity, time complexity, integration complexity, and informa-
tion complexity have to be considered in the CPPS context.
Modeling techniques and domain-specific languages can help
alleviate some of the complexity. However, they come at the
cost of, e.g., additional maintenance effort to keep the models
and the implementation consistent and require training of staff.

CPPSs require real multidisciplinary approaches and tools.
In practice, tools and artifacts are often specific to the disci-
plines and hard to integrate. Thus, interchanging information
via common formats, such as AutomationML, can only be
the first step. Also, despite tooling, proper (cross-disciplinary)
stakeholder interaction is hard to realize in practice [1], [54].

Product variability management for different goals influ-
ences development and business processes. Product manage-
ment mainly focuses on product production and whether the
implementing CPPSs produces it in batch or as single prod-
ucts, i.e., lot-size 1. Therefore, the resulting product variability
must be expressed in and across the domains and development
areas, covering mechatronic, software, and business aspects.
Each area uses heterogeneous methods and tools, which makes
it hard to combine various artifacts, and there are no scalable or
maintainable one-size-fits-all approaches available [55], [56].
Therefore, there is a need for an integrated, yet multi-view ap-
proach, involving different perspectives of CPPS engineering
and supporting different goals during development.

Current life-cycle management tools and tool integrations
are not sufficient. Given the integration complexity, multidisci-
plinarity, and variability in the CPPS domain, the state-of-the-
art tooling regarding life-cycle management and tool integra-
tion is insufficient in several ways. On the one hand, product
lifecycle management (PLM) tools originate from the mechan-
ical engineering discipline and are well-suited for managing
models and data on physical parts. However, they abstract
away too many aspects from software engineering artifacts.
On the other hand, application lifecycle management (ALM)

tools originate from the software engineering discipline and
provide an integrated management environment amenable to
software engineers but are not well-suited to integrate the
artifacts of other (CPPSs) engineering disciplines. Both life-
cycle management tool directions are slowly melting together
(particularly through mutual buyouts of the corresponding tool
vendors), but the CPPS domain is still far away from an
adequate solution.

Approaches from academia often never reach industry. For
example, a slew of variability modeling approaches has been
proposed that were never actually tried out for industrial use
cases [57]. While it could be worthwhile to investigate this in
more detail for CPPSs, it is hard to get scientific credit for
such application-oriented research, especially in the software
engineering research community [58].

CPPS Variability, especially the maintenance and evolution
of CPPS variants, will remain a problem. Only proper variabil-
ity management tool support and automation of tedious main-
tenance tasks (keyword: round-trip engineering and product
line evolution) in general could help, but existing approaches
need to be adapted to the CPPS context.

Engaging human factors is crucial. In addition to software
and hardware, the engagement of human factors is crucial.
Engineers constitute a significant source of information about
variants of products, variability constraints between different
product variants, the CPPS and its processes. Exploring and
modeling their knowledge, leveraging it in software, retaining
knowledgeable employees, and providing them programming
skill updates will continue to be essential factors.

Research agenda. To tackle the discussed challenges, we
propose the following research agenda.

The goal must be to allow disciplines to keep their
local tools, artifacts, and ways of working, while still
providing means to integrate knowledge. To also support
evolution, especially required for long-living CPPSs, support
for managing variability in space (variants) and time
(versions) is essential. While in software engineering, the
latter aspect is often well-covered by version control systems,
such as GIT, the former is often not well-integrated with
these systems. Furthermore, some disciplines in CPPSs will
not be able to work easily with such systems as they have
mainly been designed for text-based artifacts in software
engineering rather than, e.g., (graphical) engineering models.
Thus, existing variant and version management systems
need to be adapted to the CPPS context, e.g., based on
ontologies. This is far from trivial, and a one-size-fits-all
approach will not be possible. A good starting point, however,
will be best practices from software engineering, such as using
traceability links with GIT, PLM, and ALM tools.

An underlying issue of many challenges is that the dis-
ciplines in CPPSs do not speak the same language, due to
different backgrounds, diverse tools, and various artifacts. Still,
developing software for CPPSs requires knowledge about all
these disciplines. Thus, one solution is to define ontolo-
gies that represents concepts from different disciplines
covering the required knowledge and its meta-information.

Another solution is to use connected, consistency-supporting
modeling approaches applying domain-specific modeling
languages and reusable model libraries as a part of integrated
knowledge bases. These concepts need to be integrated to-
wards a common understanding using methods, such as the
Common Concept Glossary (CCG) approach [59], and allow
for mappings or transformations between concepts.

Moreover, a truly multidisciplinary approach to lifecycle
management and tool integration would be much more
discipline-integrating and thereby promising for coping with
the challenges discussed in this paper than simply melting
PLM and ALM tools together.

DTs represent another important concept for simulation,
integration, testing and property prediction. DTs seem also
promising to facilitate backwards compatibility and continu-
ous operation when used for verification and validation. Even
if the state-of-the-art covers already many facets [48], there are
many open issues such as horizontal and vertical integration
of different subsystems, consideration of user preferences and
user rights, and consideration of time behaviour.

Software engineering research must demonstrate within
long-term lighthouse projects that agility and model-driven
engineering methods can be well applied in industrial prac-
tice. Thus, we need more field piloting of approaches and
methods, e.g., model-based and SPL approaches, and industry
partners who agree to a long-term, cross-company cooperation.

V. CONCLUSION

In this paper, we presented software engineering challenges
in CPPS engineering motivated by industry voices and backed
by recent literature. We elicited the challenges during the
third instance of the SECPPS-WS1, to which we invited
industry partners to present their current work and challenges.
Nine practitioners from eight different European companies,
developing diverse CPPSs, participated. The challenges were
complemented with findings of a reading club established to
find recent related literature and possible (partial) solution can-
didates for particular challenges. We discussed the particular
challenges and collected essential lessons learned to guide
possible research directions.

We found that the CPPS domain not only bears challenges
for the engineering of software but also for its operation.
Key challenges for software engineering include Complexity,
Multidisciplinary and Variability. Unsolved challenges range
from the need for development approaches and tools, which
foster a real multidisciplinary environment over academic ap-
proaches that do not reach industry to the evolution of CPPSs
variants/artifacts. These challenges need more attention by
software engineering researchers and practitioners.

To this end, we defined an initial research agenda describ-
ing the first steps towards addressing these challenges. Fur-
thermore, we will continue the SECPPS-WS series to develop
and discuss potential solutions together with academics and
practitioners.

ACKNOWLEDGEMENT

We thank all (industrial) participants of the SECPPS Work-
shop series for their input and feedback. The financial support
by the Christian Doppler Research Association, the Austrian
Federal Ministry for Digital and Economic Affairs and the Na-
tional Foundation for Research, Technology and Development
is gratefully acknowledged. Partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC-2023 Internet of
Production – 390621612 and the German Federal Ministry of
Education and Research (BMBF – 01IS19084D) as well as the
German Federal Ministry of Economic Affairs and Climate
Action (BMWK, IIP-Ecosphere – 01MK20006C, SofDCar –
19S21002L).

REFERENCES

[1] S. Biffl, D. Gerhard, and A. Lüder, “Introduction to the multi-
disciplinary engineering for cyber-physical production systems,” in
Multi-Disciplinary Engineering for Cyber-Physical Production Systems.
Springer, 2017, pp. 1–24.

[2] L. Monostori, “Cyber-physical Production Systems: Roots, Expectations
and R&D Challenges,” Procedia CIRP, vol. 17, pp. 9–13, 2014.

[3] T. Bureŝ, D. Weyns, B. Schmerl, J. Fitzgerald, A. Aniculaesei, C. Berger,
J. a. Cambeiro, J. Carlson, S. A. Chowdhury, M. Daun, N. Li, M. Mark-
thaler, C. Menghi, B. Penzenstadler, A. Pettit, R. Pettit, L. Sabatucci,
C. Tranoris, H. Vangheluwe, S. Voss, and E. Zavala, “Software engineer-
ing for smart cyber-physical systems (sescps 2018) - workshop report.”

[4] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54–84, 2015.

[5] M. Galster, U. Zdun, D. Weyns, R. Rabiser, B. Zhang, M. Goedicke, and
G. Perrouin, “Variability and complexity in software design: Towards a
research agenda,” SIGSOFT Softw. Eng. Notes, vol. 41, 2017.

[6] R. Rabiser and A. Zoitl, “Towards mastering variability in software-
intensive cyber-physical production systems,” Procedia Computer Sci-
ence, vol. 180, pp. 50–59, 2021, proceedings of the 2nd International
Conference on Industry 4.0 and Smart Manufacturing (ISM 2020).

[7] T. Bureŝ, D. Weyns, B. Schmer, E. Tovar, E. Boden, T. Gabor,
I. Gerostathopoulos, P. Gupta, E. Kang, A. Knauss, P. Patel, A. Rashid,
I. Ruchkin, R. Sukkerd, and C. Tsigkanos, “Software engineering for
smart cyber-physical systems: Challenges and promising solutions,”
SIGSOFT Softw. Eng. Notes, vol. 42, no. 2, p. 19–24, jun 2017.

[8] T. Berger, J.-P. Steghöfer, T. Ziadi, J. Robin, and J. Martinez, “The state
of adoption and the challenges of systematic variability management in
industry,” Empirical Software Engineering, vol. 25, no. 3, 2020.

[9] R. Rabiser, B. Vogel-Heuser, M. Wimmer, A. Wortmann, and A. Zoitl,
“Workshop on Software Engineering in Cyber-Physical Production Sys-
tems (SECPPS), 2nd Edition,” in Software Engineering, ser. LNI, vol.
P-320. Gesellschaft für Informatik e.V., 2022, pp. 105–106.

[10] M. Felderer and G. H. Travassos, Eds., Contemporary Empirical Meth-
ods in Software Engineering. Springer, 2020.

[11] D. Serpanos, “The cyber-physical systems revolution,” Computer,
vol. 51, no. 3, pp. 70–73, 2018.

[12] I. Groher and R. Weinreich, “An interview study on sustainability con-
cerns in software development projects,” in 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), 2017.

[13] F. Li, G. Bayrak, K. Kernschmidt, and B. Vogel-Heuser, “Specification
of the requirements to support information technology-cycles in the
machine and plant manufacturing industry,” IFAC Proceedings Volumes,
vol. 45, no. 6, pp. 1077–1082, May 2012.

[14] L. Berardinelli, A. Mazak, O. Alt, M. Wimmer, and G. Kappel, “Model-
driven systems engineering: Principles and application in the CPPS do-
main,” in Multi-Disciplinary Engineering for Cyber-Physical Production
Systems. Springer, 2017, pp. 261–299.

[15] M. Tiegelkamp and K.-H. John, IEC 61131-3: Programming industrial
automation systems. Springer, 2010.

[16] International Electrotechnical Commission, “IEC 61499-1, Function
Blocks - part 1: Architecture: Edition 2.0,” Geneva, 2012.

[17] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer, “Modeling
languages in Industry 4.0: an extended systematic mapping study,”
Software and Systems Modeling, vol. 19, no. 1, pp. 67–94, 2020.

[18] M. Brichni and W. Guedria, “Data analytics challenges in industry 4.0: A
case-based approach,” in OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems". Springer, 2018.

[19] J. L. Romero-Gázquez and M. Bueno-Delgado, “Software architecture
solution based on sdn for an industrial iot scenario,” Wireless Commu-
nications and Mobile Computing, 2018.

[20] A. Seibel, S. Neumann, and H. Giese, “Dynamic hierarchical mega mod-
els: comprehensive traceability and its efficient maintenance,” Software
and Systems Modeling, vol. 9, no. 4, pp. 493–528, 2010.

[21] J. Holtmann, R. Bernijazov, M. Meyer, D. Schmelter, and C. Tschirner,
“Integrated and iterative systems engineering and software requirements
engineering for technical systems,” Journal of Software Evolution and
Process, vol. 28, no. 9, pp. 722–743, 2016.

[22] C. Heinzemann, O. Sudmann, W. Schäfer, and M. Tichy, “A discipline-
spanning development process for self-adaptive mechatronic systems,”
in Intl. Conf. on Software and Systems Process. ACM, 2013, pp. 36–45.

[23] P. Brauner, M. Dalibor, M. Jarke, I. Kunze, I. Koren, G. Lake-
meyer, M. Liebenberg, J. Michael, J. Pennekamp, C. Quix, B. Rumpe,
W. van der Aalst, K. Wehrle, A. Wortmann, and M. Ziefle, “A computer
science perspective on digital transformation in production,” ACM Trans.
Internet Things, vol. 3, no. 2, feb 2022.

[24] E. Laukkanen, J. Itkonen, and C. Lassenius, “Problems, causes and
solutions when adopting continuous delivery—a systematic literature
review,” Information and Software Technology, vol. 82, pp. 55–79, 2017.

[25] X. L. Hoang and A. Fay, “A capability model for the adaptation of
manufacturing systems,” in ETFA. IEEE, 2019, pp. 1053–1060.

[26] J. Pfrommer, D. Stogl, K. Aleksandrov, V. Schubert, and B. Hein,
“Modelling and orchestration of service-based manufacturing systems
via skills,” in ETFA. IEEE, 2014, pp. 1–4.

[27] H. S. Fadhlillah, K. Feichtinger, K. Meixner, L. Sonnleithner, R. Ra-
biser, and A. Zoitl, “Towards multidisciplinary delta-oriented variability
management in cyber-physical production systems,” in Proc. of the 16th
International Working Conference on Variability Modelling of Software-
Intensive Systems, ser. VaMoS ’22. ACM, 2022.

[28] K. Meixner, K. Feichtinger, R. Rabiser, and S. Biffl, “Efficient produc-
tion process variability exploration,” in Proc. 16th International Working
Conference on Variability Modelling of Software-Intensive Systems.
ACM, 2022.

[29] W. Motsch, K. Dorofeev, K. Gerber, S. Knoch, A. David, and
M. Ruskowski, “Concept for modeling and usage of functionally de-
scribed capabilities and skills,” in ETFA. IEEE, 2021, pp. 1–8.

[30] P. I. 4.0, “Details of the Asset Administration Shell Part 1 (V. 3.0RC01),”
German BMWI, Standard, Nov. 2020, https://bit.ly/37A002I.

[31] M. Nyberg. (2021, 09) Generating safety cases for large-scale
industrial product lines. Keynote at 25th ACM International Systems
and Software Product Line Conference. [Online]. Available: https:
//splc2021.net/program/keynotes

[32] M. Raatikainen, J. Tiihonen, and T. Männistö, “Software product lines
and variability modeling: A tertiary study,” Journal of Systems and
Software, vol. 149, pp. 485–510, 2019.

[33] J. Krüger, S. Nielebock, S. Krieter, C. Diedrich, T. Leich, G. Saake,
S. Zug, and F. Ortmeier, “Beyond software product lines: Variability
modeling in cyber-physical systems,” in Proceedings of the 21st Inter-
national Systems and Software Product Line Conference - Volume A,
ser. SPLC ’17. New York, NY, USA: ACM, 2017, p. 237–241.

[34] M. T. Valente, V. Borges, and L. Passos, “A semi-automatic approach
for extracting software product lines,” IEEE Trans. Softw. Eng., 2012.

[35] N. H. Bakar, Z. M. Kasirun, and N. Salleh, “Feature extraction ap-
proaches from natural language requirements for reuse in software
product lines: A systematic literature review,” Journal of Systems and
Software, vol. 106, pp. 132–149, 2015.

[36] K. Feichtinger, K. Meixner, R. Rabiser, and S. Biffl, “Variability trans-
formation from industrial engineering artifacts: An example in the cyber-
physical production systems domain,” in Proc. 24th ACM International
Systems and Software Product Line Conference. ACM, 2020.

[37] R. Messnarz, A. Much, C. Kreiner, M. Biro, and J. Gorner, “Need for
the continuous evolution of systems engineering practices for modern
vehicle engineering,” in European Conference on Software Process
Improvement. Springer, 2017, pp. 439–452.

[38] C. Seidl, F. Heidenreich, and U. Aßmann, “Co-evolution of models and
feature mapping in software product lines,” in 16th Int. Software Product
Line Conference - Vol. 1, ser. SPLC ’12. ACM, 2012, p. 76–85.

[39] K. Feichtinger, D. Hinterreiter, L. Linsbauer, H. Prähofer, and P. Grün-
bacher, “Guiding feature model evolution by lifting code-level depen-
dencies,” Journal of Computer Languages, vol. 63, 2021.

[40] M. Laguna and Y. Crespo, “A systematic mapping study on software
product line evolution: From legacy system reengineering to product
line refactoring,” Science of Computer Programming, vol. 78, 2013.

[41] M. Marques, J. Simmonds, P. Rossel, and M. Bastarrica, “Software
product line evolution: A systematic literature review,” Information and
Software Technology, vol. 105, pp. 190–208, JAN 2019.

[42] M. S. Ali, M. A. Babar, and K. Schmid, “A comparative survey
of economic models for software product lines,” in 35th Euromicro
Conference on Software Engineering and Advanced Applications, 2009.

[43] E. Y. Nakagawa, P. O. Antonino, F. Schnicke, T. Kuhn, and P. Ligges-
meyer, “Continuous systems and software engineering for industry 4.0:
A disruptive view,” Information and Software Technology, 2021.

[44] W. A. Khan, L. Wisniewski, D. Lang, and J. Jasperneite, “Analysis of the
requirements for offering industrie 4.0 applications as a cloud service,”
in 26th International Symposium on Industrial Electronics. IEEE, 2017.

[45] S. Coşkun, Y. Kayıkcı, and E. Gençay, “Adapting engineering education
to industry 4.0 vision,” Technologies, vol. 7, no. 1, p. 10, 2019.

[46] M. Grimheden and M. Hanson, “Mechatronics—the evolution of an
academic discipline in engineering education,” Mechatronics, 2005.

[47] F. Ansari, “Knowledge management 4.0: Theoretical and practical con-
siderations in cyber physical production systems,” IFAC-PapersOnLine,
vol. 52, no. 13, pp. 1597–1602, 2019, 9th IFAC Conference on Manu-
facturing Modelling, Management and Control MIM 2019.

[48] F. Becker, P. Bibow, M. Dalibor, A. Gannouni, V. Hahn, C. Hopmann,
M. Jarke, I. Koren, M. Kröger, J. Lipp, J. Maibaum, J. Michael,
B. Rumpe, P. Sapel, N. Schäfer, G. J. Schmitz, G. Schuh, and A. Wort-
mann, “A Conceptual Model for Digital Shadows in Industry and its
Application,” in Conceptual Modeling (ER’21). Springer, 2021.

[49] T. Brockhoff, M. Heithoff, I. Koren, J. Michael, J. Pfeiffer, B. Rumpe,
M. S. Uysal, W. M. P. van der Aalst, and A. Wortmann, “Process Pre-
diction with Digital Twins,” in Int. Conf. on Model Driven Engineering
Languages and Systems Companion (MODELS-C). ACM/IEEE, 2021.

[50] H. Panetto, B. Iung, D. Ivanov, G. Weichhart, and X. Wang, “Challenges
for the cyber-physical manufacturing enterprises of the future,” Annual
Reviews in Control, vol. 47, pp. 200–213, 2019.

[51] O. Hummel, H. Eichelberger, A. Giloj, D. Werle, and K. Schmid, “A
Collection of Software Engineering Challenges for Big Data System
Development,” in Proceedings of the Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, 2018, pp. 362–369.

[52] C. Niederee, H. Eichelberger, H.-D. Schmees, A. Broos, and
P. Schreiber, “Ki in der produktion – quo vadis?” Oct.
2021, https://www.iip-ecosphere.de/wp-content/uploads/2021/11/IIP-
Ecosphere-Whitepaper-zur-Umfrage-KI-in-der-Produktion.pdf. [Online].
Available: https://doi.org/10.5281/zenodo.6334521

[53] F. Pasic, “Model-driven development of condition monitoring software,”
in Proceedings of the 21st ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Pro-
ceedings, ser. MODELS ’18. ACM, 2018, p. 162–167.

[54] L. Waltersdorfer, F. Rinker, L. Kathrein, and S. Biffl, “Experiences
with technical debt and management strategies in production systems
engineering,” in Proceedings of the 3rd International Conference on
Technical Debt. New York, USA: ACM, jun 2020, pp. 41–50.

[55] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wąsowski,
“Cool features and tough decisions: A comparison of variability mod-
eling approaches,” in Proceedings of the Sixth International Workshop
on Variability Modeling of Software-Intensive Systems, ser. VaMoS ’12.
New York, NY, USA: ACM, 2012, p. 173–182.

[56] O. Oliinyk, K. Petersen, M. Schoelzke, M. Becker, and S. Schneickert,
“Structuring automotive product lines and feature models: an exploratory
study at opel,” Requirements Engineering, vol. 22, pp. 105–135, 2017.

[57] R. Rabiser, K. Schmid, M. Becker, G. Botterweck, M. Galster, I. Groher,
and D. Weyns, “A Study and Comparison of Industrial vs. Academic
Software Product Line Research Published at SPLC,” in 22nd Inter-
national Systems and Software Product Line Conference (SPLC 2018).
Gothenburg, Sweden: ACM, 2018, pp. 14–24.

[58] L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabetzadeh, “The
case for context-driven software engineering research: generalizability
is overrated,” IEEE Software, vol. 34, no. 5, pp. 72–75, 2017.

[59] F. Rinker, L. Waltersdorfer, K. Meixner, and S. Biffl, “Towards Support
of Global Views on Common Concepts employing Local Views,” in
ETFA. IEEE, 2019, pp. 1686–1689.

https://bit.ly/37A002I
https://splc2021.net/program/keynotes
https://splc2021.net/program/keynotes
https://doi.org/10.5281/zenodo.6334521

	Introduction
	Research Method
	Challenges
	Complexity
	Multidisciplinary
	Variability
	Agility
	Real-time Requirements
	Education
	Knowledge Management
	Data Analytics and AI

	Lessons Learned and Research Agenda
	Conclusion
	References

