
Improving API Design Skills with the API Design Fest:

Insights from a Preliminary Experiment with Students

Achim Röll
Universität Hamburg
post@achimroell.de

Leif Bonorden
Universität Hamburg

leif.bonorden@uni-hamburg.de

Abstract

APIs should be stable and demand a careful evolu-
tion, which requires a good initial design. Such API
design skills usually come from experience, but the
API Design Fest intends to compress such experience
into a dense course. While the original training event
was intended for practitioners, we are interested in the
applicability in software engineering education. Thus,
we conducted a slightly adopted API Design Fest with
students and report on initial insights. While we find
the overall event and its API design activities suit-
able, we recommend extended preparation on break-
ing changes for future API Design Fests with stu-
dents.

1 API Evolution

As software systems evolve, APIs should remain rela-
tively stable—serving as a layer of abstraction: Even
if implementation details change, the interface ensures
continued compatibility. However, if interfaces are
set in stone, they may hinder evolution. Thus, inter-
faces may also change, and some of their modifications
(breaking changes) may impair compatibility [2].

If APIs are well-designed, the need for breaking
changes is minimized. Yet, API design skills are often
learned from experience as most API designers don’t
have specific training [3].

2 API Design Fest

The API Design Fest by Jaroslav Tulach [1] is a train-
ing event that confronts API designers with typical
situations of API evolution. The idea is to experience
the challenges of API evolution that would typically
occur over a long time in a dense course. Furthermore,
as the participants attempt to break each other’s so-
lutions, a peer-learning effect is expected.

The original API Design Fest uses the Java pro-
gramming language and comprises three phases:

1. Initial Design: The participants design an API
and a corresponding implementation for boolean
circuits supporting AND, OR and NOT.

2. Evolution: The participants extend their
boolean circuits to circuits that handle all double

values from 0 (equivalent to false) to 1 (equiv-
alent to true) with adjusted definitions for AND,
OR and NOT. Furthermore, clients should be able
to define new circuit elements, e.g., GTE (≥), by
providing a suitable mathematical expression. At
the same time, any client code working with the
old API version must also work with the new API
version.

3. Competition: The solutions are shared between
the participants. Subsequently, the participants
try to break each other’s APIs by writing tests
that succeed with the version from phase 1 but
fail with the version from phase 2. Participants
win points by breaking others’ APIs and earn
bonus points if their own API remains unbroken.

The event has been carried out several times, and
Tulach has shared the main ideas of participants’ so-
lutions and their respective challenges [1].

3 Experiment with Students

We adopted the API Design Fest for an experimen-
tal setting with students: First, we extended the task
descriptions to provide guidance for novel program-
mers. Second, we automated the provision of tasks
and submission of solutions in GitLab. Finally, we
added a fourth phase to compare the students’ API
design before and after the API Design Fest :

4. Check: The participants design an API for
aggregators—independent from the circuit API.
An aggregator takes an initial value and an aggre-
gate function. The aggregate function updates
the current value if a new value is added. A
simple example is the sum aggregation: A new
value is added to the current value. Additionally,
the participants were given a hint that the API
might be extended for more complex aggregate
functions in the future, e.g., arithmetic mean ag-
gregation.

We invited students from several informatics-related
study programs to participate in the API Design
Fest, leading to 12 participants from various bach-
elor’s and master’s programs with diverse program-
ming experiences. Due to the COVID-19 pandemic,

we conducted this API Design Fest remotely. Fur-
thermore, we scheduled 2 days for each phase to allow
for asynchronous participation, although each phase
comprises at most 2 hours of work.

In addition to unit tests and the competition re-
sults, we further analyzed the participants’ solutions
from all phases to identify common patterns (e.g.,
object factories), evaluate general code quality (e.g.,
names), and check API design principles (e.g., im-
mutability of method parameters).

4 Insights

The participants chose various design approaches in
the first phase, including a single static class, compre-
hensive class hierarchies, object factories, and exten-
sive string parsing. All of these approaches were also
observed by Tulach in his API Design Fests. On the
other hand, some solutions described by Tulach were
not given in our experiment. In the second phase, par-
ticipants who applied information hiding in the first
phase could easily extend their solutions. However,
others encountered problems as their solutions from
the first phase were too rigid or too specific.

In the third phase, the participants in our API
Design Fest deviated more from Tulach’s observa-
tions: Attempts to break each other’s APIs were rel-
atively simple and did not use more comprehensive
techniques, e.g., Java reflection. Moreover, some par-
ticipants missed even simple breaking changes, e.g.,
method renaming.

Analyzing the solutions further, we found gen-
eral high quality regarding basic quality criteria, e.g.,
consistently and well-named methods and acceptable
method length. The solutions were more diverse for
other criteria: API documentation and code readabil-
ity stretched from ‘very well’ to ‘unacceptable’, only
some solutions used appropriate types or handled ex-
ceptions and corner cases.

In the fourth phase, we observed more comprehen-
sive solutions, particularly solutions with more com-
plex structures using appropriate (generic) types and
factories. However, many solutions still did not han-
dle corner cases or hide internal information.

Overall, we clustered the solutions into three cate-
gories: (1) collection of methods, (2) basic structure,
(3) advanced design. The number of solutions per cat-
egory is given in Table 1—indicating a general increase
in quality from phase 1 to phase 4.

Category (1) (2) (3) N/A

of solutions, phase 1 4 4 2 2
of solutions, phase 4 1 4 6 1

Table 1: Observed solutions for each category from
first and fourth phase (higher is better)

Finally, we asked the participants to reflect on the
experiment: All students rate their solution in phase

4 equal or better than their respective solution in
phase 1. However, asked about their learning effect,
their statements range from ‘learned almost nothing’
to ‘learned a lot’.

The first author’s master’s thesis [4] presents the
experiment’s results in more detail and discusses them
further.

5 Conclusion

We conducted a preliminary experiment with students
on the learning effects of the API Design Fest and
found the training event generally suitable for edu-
cational settings. While we saw similar designs to
Tulach’s original training event, we observed a lack
of comprehensive breaking attempts. We will use our
observations to improve future API Design Fests:

Experiments with students: For future experi-
ments with students, we will use on-site settings and
provide extended preparation about breaking changes.
Furthermore, we will investigate the respective influ-
ence of the second and third phases on the overall
learning effect.

Experiments with practitioners: We intend to
conduct experiments with experienced API designers
to compare solutions and learning opportunities.

Transfer to other APIs: While Java APIs—
and programming language APIs in general—remain
an important topic, remote APIs—in particular, web
APIs via REST—gained importance. Future work on
the API Design Fest may include an adoption for such
APIs.

References

[1] J. Tulach. Practical API Design – Confessions of
a Java Framework Architect. Apress, 2012.

[2] L. Xavier et al. “Historical and impact analysis
of API breaking changes: A large-scale study”.
In: 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering
(SANER). 2017, pp. 138–147.

[3] L. Murphy et al. “API Designers in the Field:
Design Practices and Challenges for Creating Us-
able APIs”. In: 2018 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing
(VL/HCC). 2018, pp. 249–258.

[4] A. Röll. “Wirksamkeit eines Programmierwet-
tbewerbs zur Verbesserung von API-Design-
Fähigkeiten”. Master’s Thesis. Hamburg, Ger-
many: Universität Hamburg, 2022.

	API Evolution
	API Design Fest
	Experiment with Students
	Insights
	Conclusion

