OE-Vorlesung 2021

Einführung in die Theorie der Petrinetze

Prof. Dr. Peter Kling Wintersemester 2021/22

Wer spricht denn da?

Peter Kling

- · Büro: G-229
- E-Mail: peter.kling@uni-hamburg.de
- · Leitung des ABs Theorie Effizienter Algorithmen

Wer spricht denn da?

Peter Kling

- Büro: G-229
- E-Mail: peter.kling@uni-hamburg.de
- · Leitung des ABs Theorie Effizienter Algorithmen

Sprechstunden

- · Wann immer meine Bürotür offen steht oder...
- · ...nach Absprache per Email
- · Während Pandemien: via UHH Zoom

Wer spricht denn da?

Peter Kling

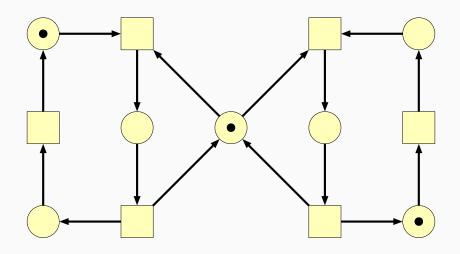
- Büro: G-229
- E-Mail: peter.kling@uni-hamburg.de
- · Leitung des ABs Theorie Effizienter Algorithmen

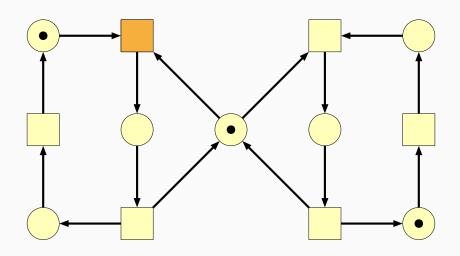
Sprechstunden

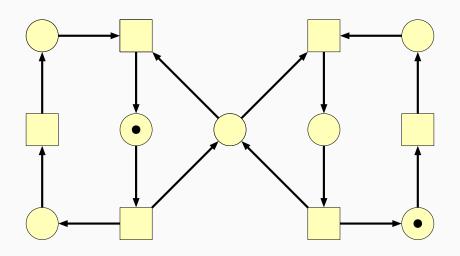
- · Wann immer meine Bürotür offen steht oder...
- · ...nach Absprache per Email
- · Während Pandemien: via UHH Zoom

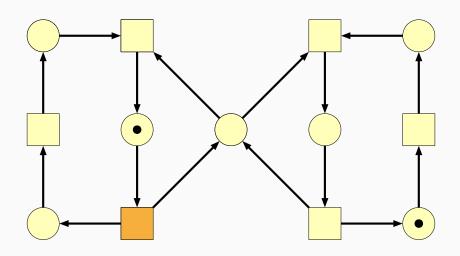
Seid nicht schüchtern!

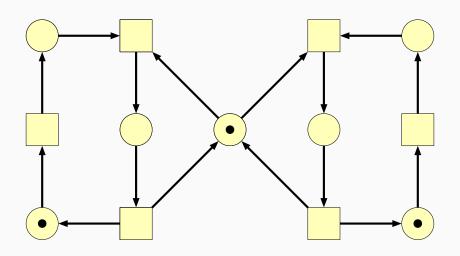
Stellt Fragen!

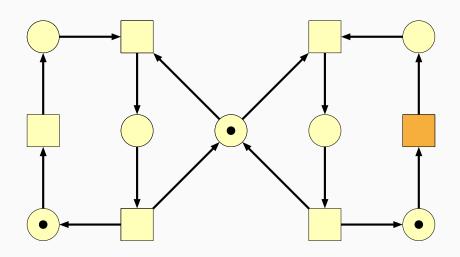


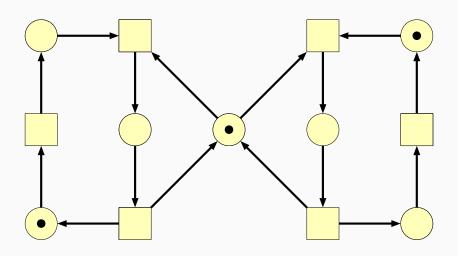


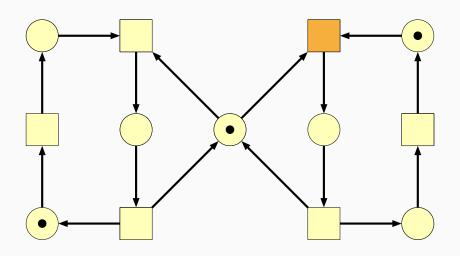


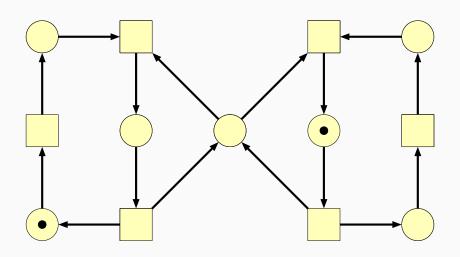


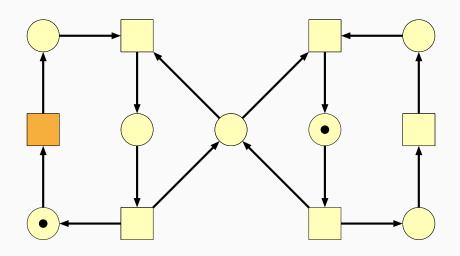


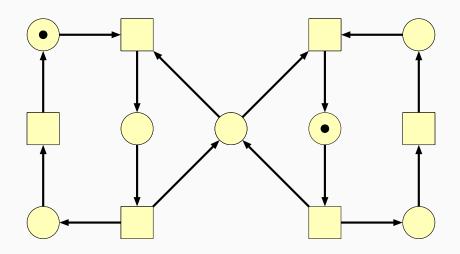


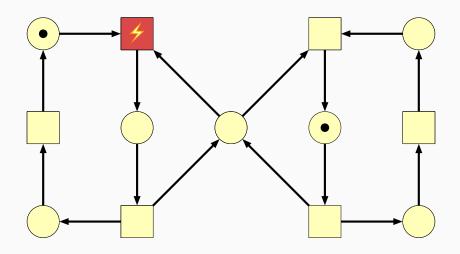


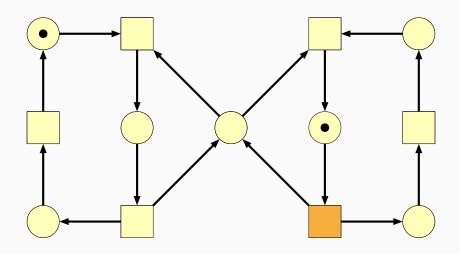


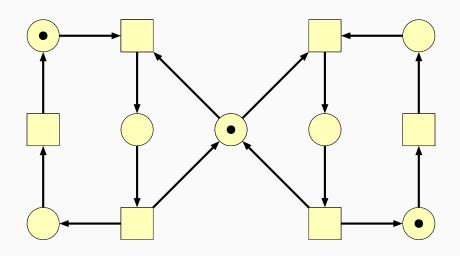


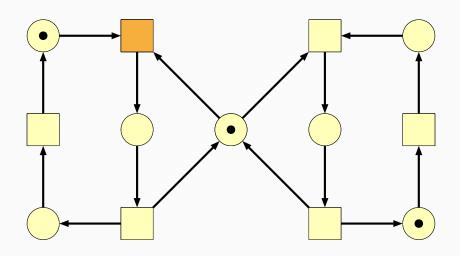


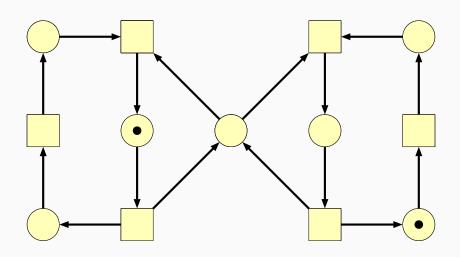












Übersicht

- 1 Informatik, Modellierung & Mathematik
- 2 🗸 Graphische Einführung in Petrinetze
- **③ ▶** Formale Einführung in Petrinetze
- 4 Reaping the Fruits!
- 5 Let's go Dining!
- 6 Zusammenfassung & 🔭 Ausblick

1) Informatik, Modellierung & Mathematik

Computer science is not about machines in the same way that astronomy is not about Telescopes. There is an essential unity of mathematics and computer science.

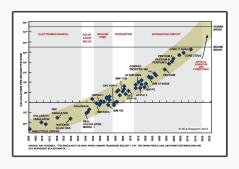
-Michael Fellows, Professor @ Universität Bergen

Moore's Law

/ikipedia Link

Die Komplexität integrierter Schaltkreise verdoppelt sich etwa alle 2 Jahre.

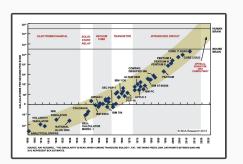
oder ähnlich



Moore's Law

ikipedia Link

Die Komplexität integrierter Schaltkreise verdoppelt sich etwa alle 2 Jahre.



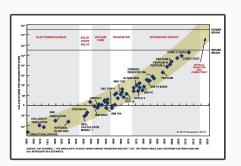
Lösung von Optimierungsproblem

- · 1988: 82 Jahre
- · 2003: 1 Minute
- \implies Faktor $43 \cdot 10^6$

Moore's Law

ikipedia Link

Die Komplexität integrierter Schaltkreise verdoppelt sich etwa alle 2 Jahre.



Lösung von Optimierungsproblem

· 1988: 82 Jahre

· 2003: 1 Minute

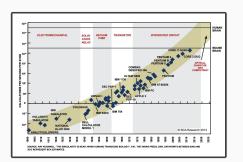
 \implies Faktor $43 \cdot 10^6$

HW-Verbesserung: ≤ 10³

Moore's Law

ikipedia Link

Die Komplexität integrierter Schaltkreise verdoppelt sich etwa alle 2 Jahre.



Lösung von Optimierungsproblem

- <u>1988:</u> 82 Jahre
- · 2003: 1 Minute
- \implies Faktor $43 \cdot 10^6$

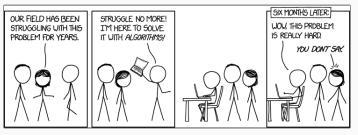
HW-Verbesserung: $\leq 10^3$

click for more xkcd comics

click for more xkcd comics

Problem-Lösung

- 1) Verstehen des Problems
- 2) Formalisierung & Modellierung
- 3) Entwicklung eines Algorithmus
- 4) Beweis der Korrektheit & Effizienz

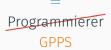


click for more xkcd comics

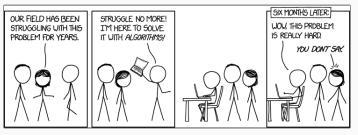
Problem-Lösung

- 1) Verstehen des Problems
- 2) Formalisierung & Modellierung
- 3) Entwicklung eines Algorithmus
- 4) Beweis der Korrektheit & Effizienz

Informatiker



General Purpose Problem Solver



click for more xkcd comics

Problem-Lösung

- 1) Verstehen des Problems
- 2) Formalisierung & Modellierung
- 3) Entwicklung eines Algorithmus
- 4) Beweis der Korrektheit & Effizienz

Informatiker

General Purpose Problem Solver

Frage

Frage

Warum modellieren wir überhaupt?

Kommunikation

Frage

- Kommunikation
- · Problemstellung konkretisieren

Frage

- Kommunikation
- · Problemstellung konkretisieren
- · auf das Wesentliche konzentrieren

Frage

- Kommunikation
- · Problemstellung konkretisieren
- · auf das Wesentliche konzentrieren
- · Vorgänge am Modell durchspielen & Thesen testen

Formalisierung & Modellierung

Frage

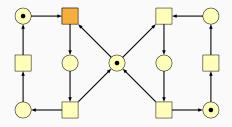
Warum modellieren wir überhaupt?

- Kommunikation
- · Problemstellung konkretisieren
- · auf das Wesentliche konzentrieren
- · Vorgänge am Modell durchspielen & Thesen testen

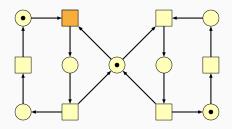
Weiterführende Literatur

Stachowiak (1973): "Allgemeine Modelltheorie."

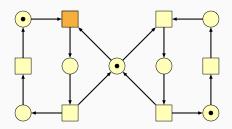
2) 🗸 Graphische Einführung in Petrinetze



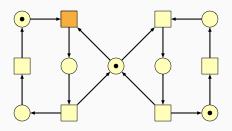
· eine (von vielen!) Modellierungstechnik



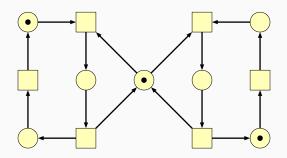
- · eine (von vielen!) Modellierungstechnik
- · gute graphische Visualisierung
 - → Grundidee intuitiv verständlich

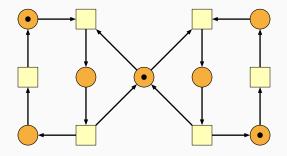


- · eine (von vielen!) Modellierungstechnik
- · gute graphische Visualisierung
 - ⇒ Grundidee intuitiv verständlich
- · können Nebenläufigkeiten & Parallelität abbilden

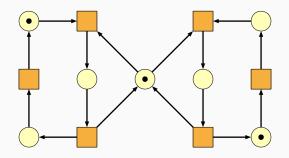


- · eine (von vielen!) Modellierungstechnik
- · gute graphische Visualisierung
 - → Grundidee intuitiv verständlich
- · können Nebenläufigkeiten & Parallelität abbilden
- · mathematische Definition
 - ⇒ präzise & exakt
 - ⇒ erlaubt formale (und ggfs. automatisierte) Überprüfung

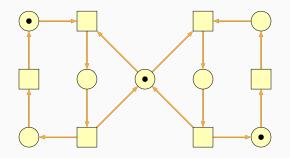




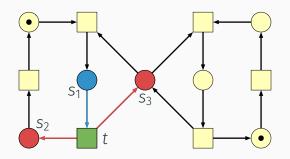
• <u>Stellen:</u> passive Komponenten



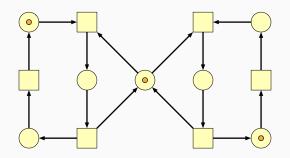
- <u>Stellen:</u> passive Komponenten
- <u>Transitionen:</u> aktive Komponenten



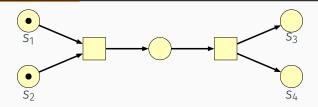
- <u>Stellen:</u> passive Komponenten
- · Transitionen: aktive Komponenten
- <u>Kanten:</u> gerichtete Verbindung von Stellen und Transitionen

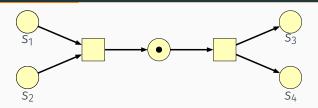


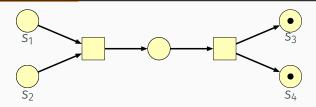
- · Stellen: passive Komponenten
- · <u>Transitionen:</u> aktive Komponenten
- · <u>Kanten:</u> gerichtete Verbindung von Stellen und Transitionen
 - Eingangsstelle von Transition t: s₁
 - Ausgangsstelle von Transition t: s_2 und s_3

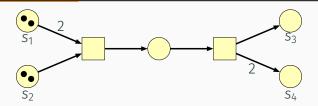


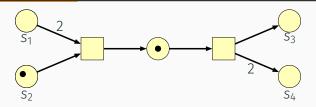
- · Stellen: passive Komponenten
- · <u>Transitionen:</u> aktive Komponenten
- · <u>Kanten:</u> gerichtete Verbindung von Stellen und Transitionen
 - Eingangsstelle von Transition t: s_1
 - Ausgangsstelle von Transition t: s₂ und s₃
- · Marken: "lokaler Zustand" einer Stelle

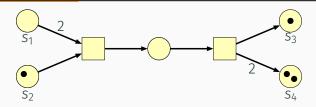


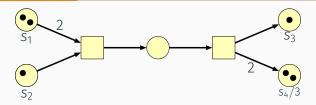


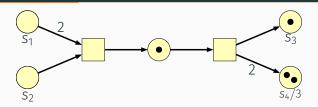


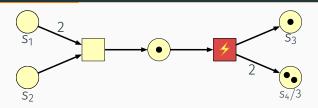


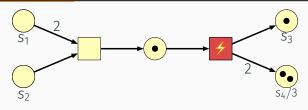








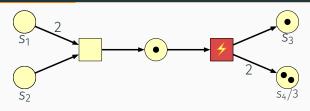




Definition 1: Aktiviertheit

Eine Transition ist aktiviert, wenn

- (a) alle Eingangsstellen ausreichend Marken beinhalten und
- (b) und die Kapazität jeder Ausgangsstellen ausreicht, um entsprechend viele zusätzliche Marken aufzunehmen.



Definition 1: Aktiviertheit

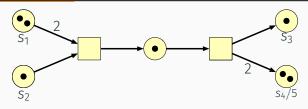
Eine Transition ist aktiviert, wenn

- (a) alle Eingangsstellen ausreichend Marken beinhalten und
- (b) und die Kapazität jeder Ausgangsstellen ausreicht, um entsprechend viele zusätzliche Marken aufzunehmen.

Definition 2: Schalten

Ist eine Transition aktiviert, so *kann* sie **schalten**. Dabei

- (a) werden von allen Eingangsstellen Marken entfernt und
- (b) zu allen Ausgangsstellen Marken gelegt.
- Dies geschieht entsprechend der Kantengewichtung.



Definition 1: Aktiviertheit

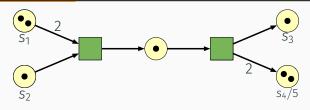
Eine Transition ist aktiviert, wenn

- (a) alle Eingangsstellen ausreichend Marken beinhalten und
- (b) und die Kapazität jeder Ausgangsstellen ausreicht, um entsprechend viele zusätzliche Marken aufzunehmen.

Definition 2: Schalten

Ist eine Transition aktiviert, so *kann* sie **schalten**. Dabei

- (a) werden von allen Eingangsstellen Marken entfernt und
- (b) zu allen Ausgangsstellen Marken gelegt.
- Dies geschieht entsprechend der Kantengewichtung.



Definition 1: Aktiviertheit

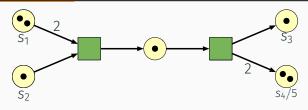
Eine Transition ist aktiviert, wenn

- (a) alle Eingangsstellen ausreichend Marken beinhalten und
- (b) und die Kapazität jeder Ausgangsstellen ausreicht, um entsprechend viele zusätzliche Marken aufzunehmen.

Definition 2: Schalten

Ist eine Transition aktiviert, so *kann* sie **schalten**. Dabei

- (a) werden von allen Eingangsstellen Marken entfernt und
- (b) zu allen Ausgangsstellen Marken gelegt.
- Dies geschieht entsprechend der Kantengewichtung.



Definition 1: Aktiviertheit

Eine Transition ist aktiviert, wenn

- (a) alle Eingangsstellen ausreichend Marken beinhalten und
- (b) und die Kapazität jeder Ausgangsstellen ausreicht, um entsprechend viele zusätzliche Marken aufzunehmen.

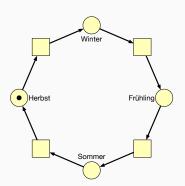
Definition 2: Schalten

Ist eine Transition aktiviert, so *kann* sie **schalten**. Dabei

- (a) werden von allen Eingangsstellen Marken entfernt und
- (b) zu allen Ausgangsstellen Marken gelegt.
- Dies geschieht entsprechend der Kantengewichtung.

Nichtdetermi nismus

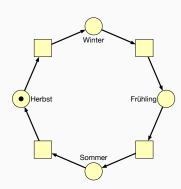
- · eine Stelle pro Jahreszeit
- · Position der Marke beschreibt aktuelle Jahreszeit
- · sich ändernde Jahreszeiten
 - → dynamisches System
 - → modelliert durch Transitionen



- · eine Stelle pro Jahreszeit
- · Position der Marke beschreibt aktuelle Jahreszeit
- · sich ändernde Jahreszeiten
 - → dynamisches System
 - → modelliert durch Transitionen

Eigenschaften dieses Systems

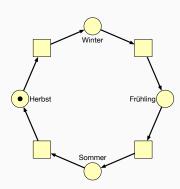
- genau eine Marke (Invariante)
- · Netz stellt Kausalitäten dar
- · Transitionen schalten sequentiell



- · eine Stelle pro Jahreszeit
- · Position der Marke beschreibt aktuelle Jahreszeit
- · sich ändernde Jahreszeiten
 - → dynamisches System
 - modelliert durch Transitionen

Eigenschaften dieses Systems

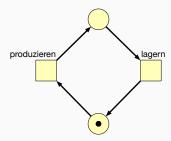
- genau eine Marke (Invariante)
- · Netz stellt Kausalitäten dar
- · Transitionen schalten sequentiell



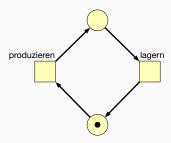
Nicht alle Systeme haben diese Eigenschaften!

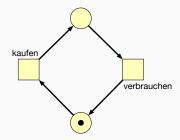
- Prozess 1: produziert eine Ressource
- Prozess 2: konsumiert eine Ressource

- Prozess 1: produziert eine Ressource
- Prozess 2: konsumiert eine Ressource

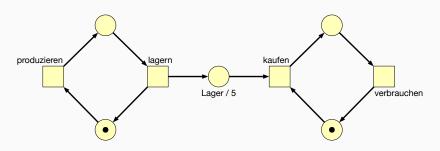


- Prozess 1: produziert eine Ressource
- Prozess 2: konsumiert eine Ressource





- Prozess 1: produziert eine Ressource
- · Prozess 2: konsumiert eine Ressource



Beispiel: Kritischer Bereich

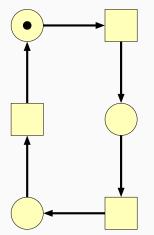
Zu Modellieren

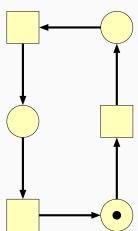
Zwei Prozesse, die in einem kritischen Bereich eine gemeinsame Ressource alleine nutzen wollen.

Beispiel: Kritischer Bereich

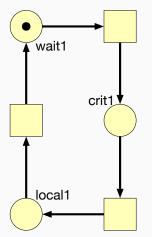
Zu Modellieren

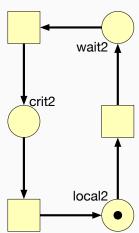
Zwei Prozesse, die in einem kritischen Bereich eine gemeinsame Ressource alleine nutzen wollen.



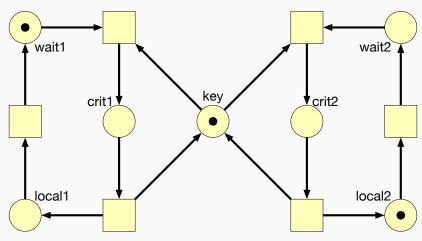


Zu Modellieren

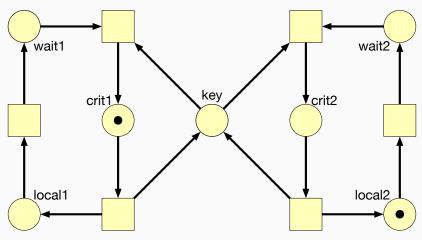




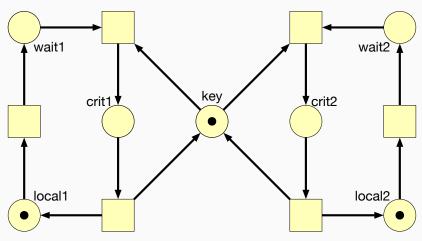
Zu Modellieren



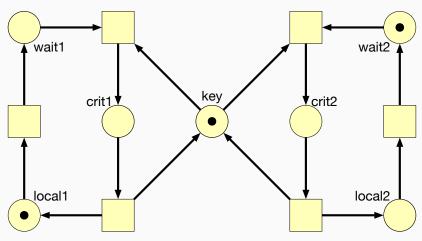
Zu Modellieren



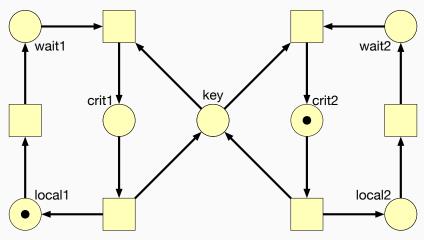
Zu Modellieren



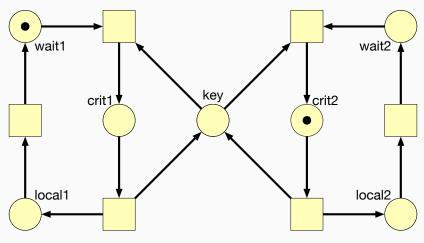
Zu Modellieren



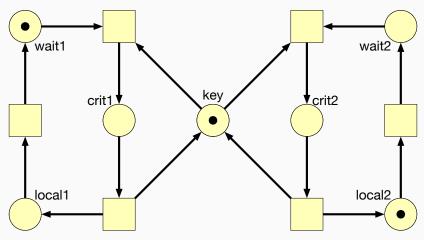
Zu Modellieren



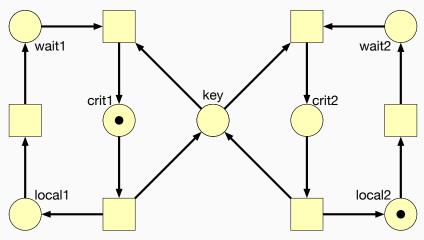
Zu Modellieren



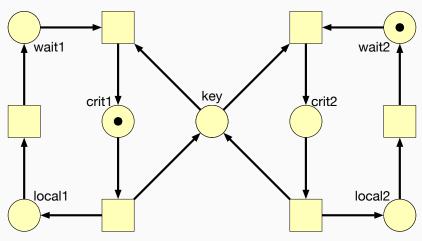
Zu Modellieren



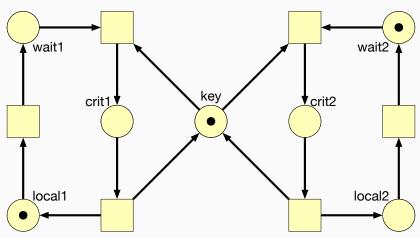
Zu Modellieren



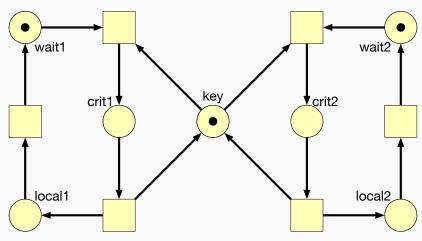
Zu Modellieren



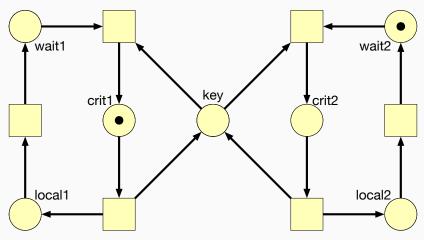
Zu Modellieren



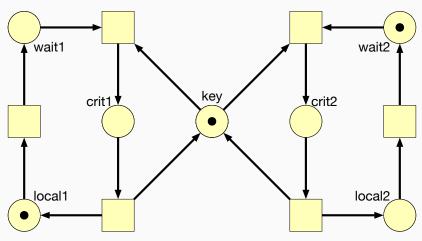
Zu Modellieren



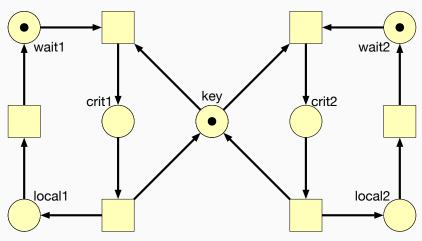
Zu Modellieren



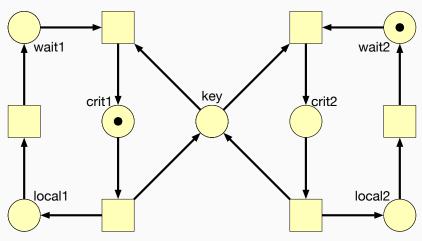
Zu Modellieren



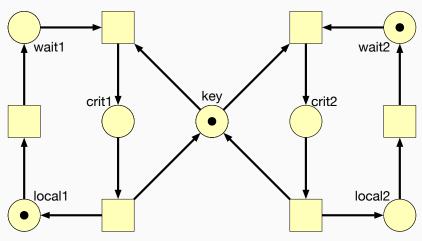
Zu Modellieren



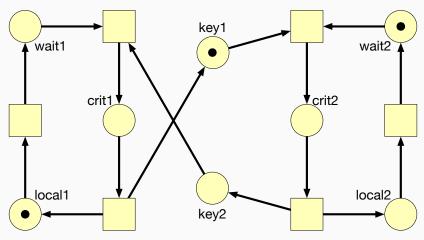
Zu Modellieren



Zu Modellieren



Zu Modellieren



3) 🎓 Formale Einführung in Petrinetze

• Menge: Ansammlung von Elementen

```
• z. B. M_1 = \{1, 2, 3\} und M_2 = \{2, \bigcirc\}
```

- · Menge: Ansammlung von Elementen
 - z. B. $M_1 = \{1, 2, 3\}$ und $M_2 = \{2, \triangle\}$
- Enthaltensein: Gehört eine Element zu einer Menge?
 - z. B. $1 \in M_1$ aber $1 \notin M_2$

- Menge: Ansammlung von Elementen
 - z. B. $M_1 = \{1, 2, 3\}$ und $M_2 = \{2, \triangle\}$
- Enthaltensein: Gehört eine Element zu einer Menge?
 - z. B. $1 \in M_1$ aber $1 \notin M_2$
- · Teilmenge: Menge ist Teil einer anderen Menge
 - · z. B. $\{1,2\}\subseteq M_1$
 - aber $M_1 \not\subseteq M_2$ und $M_2 \not\subseteq M_1$

- Menge: Ansammlung von Elementen
 - z. B. $M_1 = \{1, 2, 3\}$ und $M_2 = \{2, \triangle\}$
- Enthaltensein: Gehört eine Element zu einer Menge?
 - z. B. $1 \in M_1$ aber $1 \notin M_2$
- · Teilmenge: Menge ist Teil einer anderen Menge
 - z. B. $\{1,2\} \subseteq M_1$
 - aber $M_1 \not\subseteq M_2$ und $M_2 \not\subseteq M_1$
- · Vereinigung: Zusammenwerfen zweier Mengen
 - z..B. $M_1 \cup M_2 = \{1, 2, 3, \triangle\}$

- Menge: Ansammlung von Elementen
 - z. B. $M_1 = \{1, 2, 3\}$ und $M_2 = \{2, \triangle\}$
- Enthaltensein: Gehört eine Element zu einer Menge?
 - z. B. $1 \in M_1$ aber $1 \notin M_2$
- · Teilmenge: Menge ist Teil einer anderen Menge
 - z. B. $\{1,2\} \subseteq M_1$
 - aber $M_1 \not\subseteq M_2$ und $M_2 \not\subseteq M_1$
- · Vereinigung: Zusammenwerfen zweier Mengen
 - z..B. $M_1 \cup M_2 = \{1, 2, 3, \triangle\}$
- · Schnitt: gemeinsame Elemente
 - z. B. $M_1 \cap M_2 = \{2\}$

- Menge: Ansammlung von Elementen
 - z. B. $M_1 = \{1, 2, 3\}$ und $M_2 = \{2, \triangle\}$
- Enthaltensein: Gehört eine Element zu einer Menge?
 - z. B. $1 \in M_1$ aber $1 \notin M_2$
- · Teilmenge: Menge ist Teil einer anderen Menge
 - z. B. $\{1,2\} \subseteq M_1$
 - aber $M_1 \not\subseteq M_2$ und $M_2 \not\subseteq M_1$
- · Vereinigung: Zusammenwerfen zweier Mengen
 - z..B. $M_1 \cup M_2 = \{1, 2, 3, \emptyset\}$
- · <u>Schnitt:</u> gemeinsame Elemente
 - z. B. $M_1 \cap M_2 = \{2\}$
- · Kartesisches Produkt: alle möglichen Pärchen
 - z. B. $M_1 \times M_2 = \{ (1,2), (1, \triangle), (2,2), (2, \triangle), (3,2), (3, \triangle) \}$

Grundlagen: Abbildungen

Definition 3: Abbildung

Eine Abbildung, notiert als

$$f: A \rightarrow B$$
,

bildet jedes Element $a \in A$ auf ein Element $f(a) \in B$ ab.

Grundlagen: Abbildungen

Definition 3: Abbildung

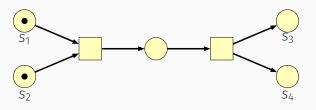
Eine Abbildung, notiert als

$$f: A \rightarrow B$$

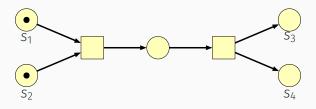
bildet jedes Element $a \in A$ auf ein Element $f(a) \in B$ ab.

Beispiele

- $f: \mathbb{N} \to \mathbb{N}$ mit $n \mapsto n^2$.
- $g: \mathbb{Z} \to \mathbb{N} \text{ mit } x \mapsto |x|$.
- $h: \{ \circlearrowleft, \circ \} \rightarrow \{ 1, 2 \} \text{ mit } h(\circlearrowleft) = h(\circ) = 1.$



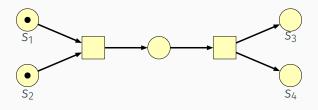
Definition 4: P/T-Netz



Definition 4: P/T-Netz

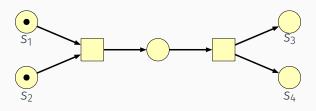
Ein P/T-Netz ist ein Tupel $N = (P, T, F, W, m_0)$ mit:

· einer endlichen Menge P von Plätzen (Stellen),



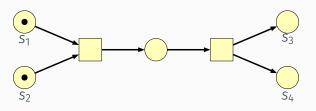
Definition 4: P/T-Netz

- · einer endlichen Menge P von Plätzen (Stellen),
- einer endlichen Menge T von **Transitionen** mit $P \cap T = \emptyset$,



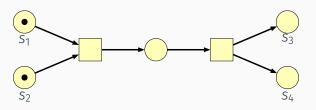
Definition 4: P/T-Netz

- einer endlichen Menge P von Plätzen (Stellen),
- einer endlichen Menge T von **Transitionen** mit $P \cap T = \emptyset$,
- einer Flussrelation $F \subseteq (P \times T) \cup (T \times P)$,



Definition 4: P/T-Netz

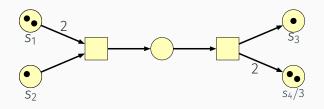
- · einer endlichen Menge P von Plätzen (Stellen),
- einer endlichen Menge T von **Transitionen** mit $P \cap T = \emptyset$,
- einer Flussrelation $F \subseteq (P \times T) \cup (T \times P)$,
- einer Kantenbewertung $W: (P \times T) \cup (T \times P) \to \mathbb{N}$ mit $W(x,y) = 0 \iff (x,y) \notin F$



Definition 4: P/T-Netz

- · einer endlichen Menge P von Plätzen (Stellen),
- einer endlichen Menge T von **Transitionen** mit $P \cap T = \emptyset$,
- einer Flussrelation $F \subseteq (P \times T) \cup (T \times P)$,
- einer Kantenbewertung $W: (P \times T) \cup (T \times P) \to \mathbb{N}$ mit $W(x,y) = 0 \iff (x,y) \notin F$
- und einer **Anfangsmarkierung** $m_0: P \to \mathbb{N}$.

Erweiterung der Definition für Kapazitäten

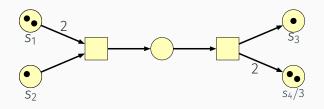


Definition 5: P/T-Netz mit Kapazitäten

Ein P/T-Netz mit Kapazitäten ist ein Tupel $N = (P, T, F, W, K, m_0)$ mit:

- einem P/T-Netz $N' = (P, T, F, W, m_0)$,
- einer Kapazitätsfunktion $K: P \to \mathbb{N} \cup \{\infty\}$
- und $m_0(p) \le K(p)$ für alle $p \in P$.

Erweiterung der Definition für Kapazitäten



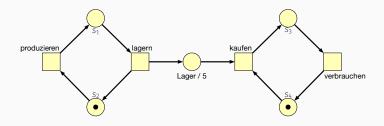
Definition 5: P/T-Netz mit Kapazitäten

Ein P/T-Netz mit Kapazitäten ist ein Tupel $N = (P, T, F, W, K, m_0)$ mit:

- einem P/T-Netz $N' = (P, T, F, W, m_0)$,
- einer Kapazitätsfunktion $K: P \to \mathbb{N} \cup \{\infty\}$
- und $m_0(p) \le K(p)$ für alle $p \in P$.

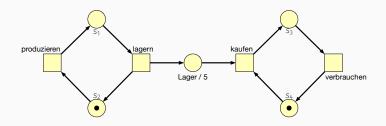
auch ω statt ∞

Beispiel zur formalen Definition



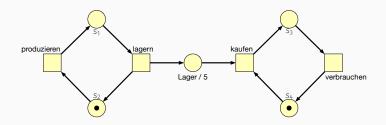
- P =
- T =
- F =

Beispiel zur formalen Definition



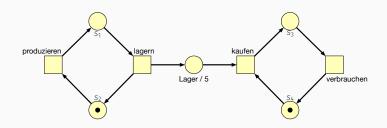
```
    P = {S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub>, S<sub>4</sub>, Lager}
    T = {lagern, produzieren, kaufen, verbrauchen}
    F = {(produzieren, S<sub>1</sub>), (S<sub>1</sub>, lagern), (lagern, S<sub>2</sub>), (S<sub>2</sub>, produzieren), (lagern, Lager), (Lager, kaufen), (verbrauchen, S<sub>4</sub>), (S<sub>4</sub>, kaufen)}
```

Beispiel zur formalen Definition



- W ist gegeben durch:
- m_0 ist gegeben durch:
- K ist gegeben durch:

Beispiel zur formalen Definition



• *W* ist gegeben durch:

$$W(x,y) = 1$$
 für alle $(x,y) \in F$ und $W(x,y) = 0$ sonst

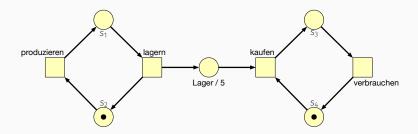
• m_0 ist gegeben durch:

$$m_0(s_2) = m_0(s_4) = 1 \text{ und } m_0(s_1) = m_0(s_3) = m_0(Lager) = 0$$

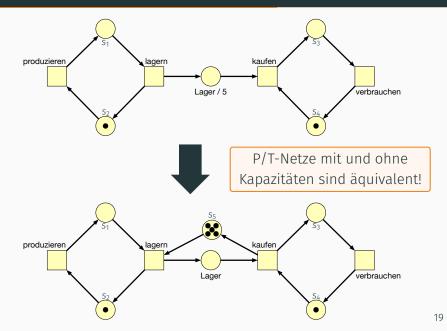
• K ist gegeben durch:

$$K(Lager) = 5 \text{ und } K(s_1) = K(s_2) = K(s_3) = K(s_4) = \infty$$

Modellierungsmächtigkeit: Sind Kapazitäten wirklich notwendig?



Modellierungsmächtigkeit: Sind Kapazitäten wirklich notwendig?



Gegeben:

- ein P/T-Netz (mit Kapazitäten) $N = (P, T, F, W, K, m_0)$,
- eine Transition $t \in T$ und
- eine Markierung m_1 .

Gegeben:

- ein P/T-Netz (mit Kapazitäten) $N = (P, T, F, W, K, m_0)$,
- eine Transition $t \in T$ und
- eine Markierung m_1 .

Definition 6: Aktivierung

Die Transition t ist aktiviert in m_1 , falls für alle $p \in P$ folgendes gilt:

Gegeben:

- ein P/T-Netz (mit Kapazitäten) $N = (P, T, F, W, K, m_0)$,
- eine Transition $t \in T$ und
- eine Markierung m_1 .

Definition 6: Aktivierung

Die Transition t ist aktiviert in m_1 , falls für alle $p \in P$ folgendes gilt:

- (a) $m_1(p) \geq W(p,t)$ und
- (b) $m_1(p) W(p,t) + W(t,p) \le K(p)$.

Gegeben:

- ein P/T-Netz (mit Kapazitäten) $N = (P, T, F, W, K, m_0)$,
- eine Transition $t \in T$ und
- eine Markierung m_1 .

Definition 6: Aktivierung

Die Transition t ist aktiviert in m_1 , falls für alle $p \in P$ folgendes gilt:

- (a) $m_1(p) \geq W(p,t)$ und
- (b) $m_1(p) W(p,t) + W(t,p) \le K(p)$.

Wir schreiben $m_1 \stackrel{t}{\rightarrow}$.

Gegeben:

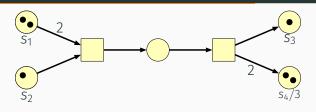
- ein P/T-Netz (mit Kapazitäten) $N = (P, T, F, W, K, m_0)$,
- eine Transition $t \in T$ und
- eine Markierung m_1 .

Definition 6: Aktivierung

Die Transition t ist **aktiviert** in m_1 , falls für alle $p \in P$ folgendes gilt:

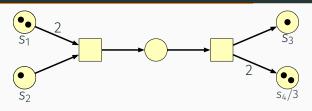
- (a) $m_1(p) \geq W(p,t)$ und
- (b) $m_1(p) W(p,t) + W(t,p) \le K(p)$.

Wir schreiben $m_1 \stackrel{t}{\rightarrow}$.



Definition 7: Schalten

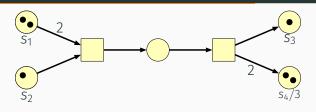
Sei $N = (P, T, F, W, K, m_0)$ ein P/T-Netz, $t \in T$ eine Transition und m_1, m_2 Markierungen. Die Transition t schaltet m_1 zu m_2 , falls



Definition 7: Schalten

Sei $N = (P, T, F, W, K, m_0)$ ein P/T-Netz, $t \in T$ eine Transition und m_1, m_2 Markierungen. Die Transition t schaltet m_1 zu m_2 , falls

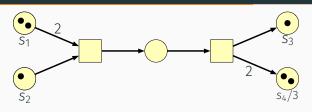
(a) t in m_1 aktiviert ist und



Definition 7: Schalten

Sei $N = (P, T, F, W, K, m_0)$ ein P/T-Netz, $t \in T$ eine Transition und m_1, m_2 Markierungen. Die Transition t schaltet m_1 zu m_2 , falls

- (a) t in m_1 aktiviert ist und
- (b) $\forall p \in P : m_2(p) = m_1(p) W(p, t) + W(t, p)$ gilt.



Definition 7: Schalten

Sei $N = (P, T, F, W, K, m_0)$ ein P/T-Netz, $t \in T$ eine Transition und m_1, m_2 Markierungen. Die Transition t schaltet m_1 zu m_2 , falls

- (a) t in m_1 aktiviert ist und
- (b) $\forall p \in P : m_2(p) = m_1(p) W(p,t) + W(t,p)$ gilt.

Wir schreiben $m_1 \stackrel{t}{\rightarrow} m_2$ und nennen m_2 Folgemarkierung von m_1 .

Eine Schaltfolge ist ein endliches Wort

$$W = t_1 t_2 t_3 \dots t_n$$

mit $t_i \in T$ für alle $i \in \{1, ..., n\}$ und $n \in \mathbb{N}$.

Eine Schaltfolge ist ein endliches Wort

$$W = t_1 t_2 t_3 \dots t_n$$

mit $t_i \in T$ für alle $i \in \{1, ..., n\}$ und $n \in \mathbb{N}$.

Definition 8: Schalten einer Schaltfolge

Eine **Schaltfolge** w **schaltet** m zu m', falls

Eine Schaltfolge ist ein endliches Wort

$$W = t_1t_2t_3 \dots t_n$$

mit $t_i \in T$ für alle $i \in \{1, ..., n\}$ und $n \in \mathbb{N}$.

Definition 8: Schalten einer Schaltfolge

Eine Schaltfolge w schaltet m zu m', falls

(a) entweder $w = \lambda$ (leeres Wort mit n = 0) und m = m'

Eine Schaltfolge ist ein endliches Wort

$$W = t_1t_2t_3 \dots t_n$$

mit $t_i \in T$ für alle $i \in \{1, ..., n\}$ und $n \in \mathbb{N}$.

Definition 8: Schalten einer Schaltfolge

Eine Schaltfolge w schaltet m zu m', falls

- (a) entweder $w = \lambda$ (leeres Wort mit n = 0) und m = m'
- (b) oder $w = (u \cdot t)$ für $u \in T^*$ und $t \in T$, so dass $m \xrightarrow{u} m_1$ und $m_1 \xrightarrow{t} m'$ für eine Markierung m_1 gilt.

Eine Schaltfolge ist ein endliches Wort

$$W = t_1t_2t_3 \dots t_n$$

mit $t_i \in T$ für alle $i \in \{1, ..., n\}$ und $n \in \mathbb{N}$.

Definition 8: Schalten einer Schaltfolge

Eine Schaltfolge w schaltet m zu m', falls

- (a) entweder $w = \lambda$ (leeres Wort mit n = 0) und m = m'
- (b) oder $w = (u \cdot t)$ für $u \in T^*$ und $t \in T$, so dass $m \xrightarrow{u} m_1$ und $m_1 \xrightarrow{t} m'$ für eine Markierung m_1 gilt.

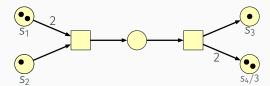
Wir schreiben $m \xrightarrow{w} m'$ oder $m \xrightarrow{*} m'$ (falls konkretes w unwichtig).

4) 🦓 Reaping the Fruits!

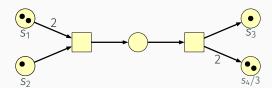
Eigenschaften von Markierungen & Transitionen

Definition 9

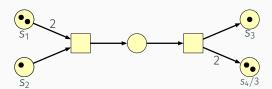
· m ist erreichbar, wenn



 m ist erreichbar, wenn es eine Schaltfolge w gibt mit m₀ ^w→ m. Die Menge aller erreichbaren Markierungen eines Netzes N wird mit R(N) bezeichnet.



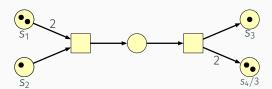
- m ist erreichbar, wenn es eine Schaltfolge w gibt mit m₀ ^w→ m. Die Menge aller erreichbaren Markierungen eines Netzes N wird mit R(N) bezeichnet.
- $t \in T$ ist aktivierbar, wenn



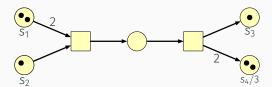
- m ist erreichbar, wenn es eine Schaltfolge w gibt mit m₀ ^w→ m. Die Menge aller erreichbaren Markierungen eines Netzes N wird mit R(N) bezeichnet.
- $t \in T$ ist aktivierbar, wenn es eine erreichbare Markierung m gibt mit $m \stackrel{t}{\rightarrow}$.



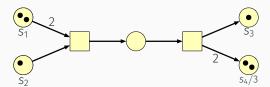
- m ist erreichbar, wenn es eine Schaltfolge w gibt mit m₀ ^w→ m. Die Menge aller erreichbaren Markierungen eines Netzes N wird mit R(N) bezeichnet.
- $t \in T$ ist aktivierbar, wenn es eine erreichbare Markierung m gibt mit $m \stackrel{t}{\rightarrow}$.
- $t \in T$ ist tot, wenn



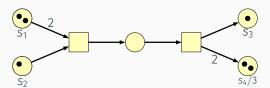
- m ist erreichbar, wenn es eine Schaltfolge w gibt mit m₀ ^w→ m. Die Menge aller erreichbaren Markierungen eines Netzes N wird mit R(N) bezeichnet.
- $t \in T$ ist aktivierbar, wenn es eine erreichbare Markierung m gibt mit $m \stackrel{t}{\rightarrow}$.
- $t \in T$ ist tot, wenn t nicht (mehr) aktivierbar ist.



- m ist erreichbar, wenn es eine Schaltfolge w gibt mit m₀ ^w→ m. Die Menge aller erreichbaren Markierungen eines Netzes N wird mit R(N) bezeichnet.
- $t \in T$ ist aktivierbar, wenn es eine erreichbare Markierung m gibt mit $m \stackrel{t}{\rightarrow}$.
- $t \in T$ ist tot, wenn t nicht (mehr) aktivierbar ist.
- $t \in T$ ist lebendig, wenn



- m ist erreichbar, wenn es eine Schaltfolge w gibt mit m₀ ^w→ m. Die Menge aller erreichbaren Markierungen eines Netzes N wird mit R(N) bezeichnet.
- $t \in T$ ist aktivierbar, wenn es eine erreichbare Markierung m gibt mit $m \stackrel{t}{\rightarrow}$.
- $t \in T$ ist tot, wenn t nicht (mehr) aktivierbar ist.
- $t \in T$ ist lebendig, wenn t immer aktivierbar ist. D. h. \forall erreichbare Markierung $m \exists$ Schaltfolge w mit $m \xrightarrow{wt}$.



· Ein Netz ist lebendig, wenn

• Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.

- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- · Ein Netz ist beschränkt, wenn

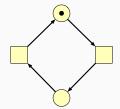
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.

- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist k-beschränkt oder k-sicher, wenn $\forall p \in P : n_p = k$.

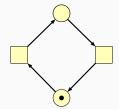
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist k-beschränkt oder k-sicher, wenn $\forall p \in P : n_p = k$.
- · Ein Netz ist rücksetzbar,

- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist k-beschränkt oder k-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.

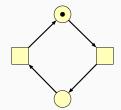
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



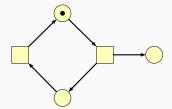
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



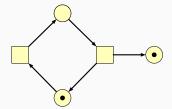
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



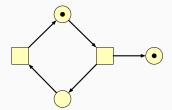
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



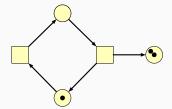
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



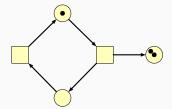
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



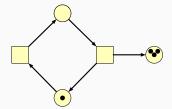
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



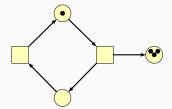
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist k-beschränkt oder k-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



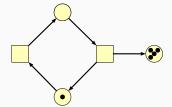
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



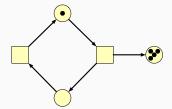
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



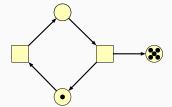
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



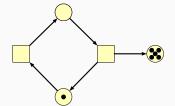
- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist *k*-beschränkt oder *k*-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



- Ein Netz ist lebendig, wenn alle Transitionen lebendig sind.
- Ein Netz ist beschränkt, wenn zu jedem Platz $p \in P$ eine natürliche Zahl n_p existiert, so dass in jeder erreichbaren Markierung nie mehr als n_p Marken auf p liegen.
 - Ein Netz ist k-beschränkt oder k-sicher, wenn $\forall p \in P : n_p = k$.
- Ein Netz ist rücksetzbar, wenn m_0 aus jeder erreichbaren Markierung heraus wieder erreichbar ist.



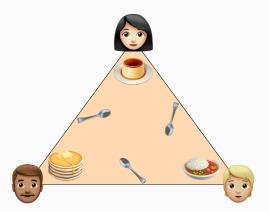
Übung

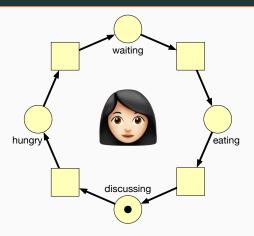
Sind diese Begriffe orthogonal?

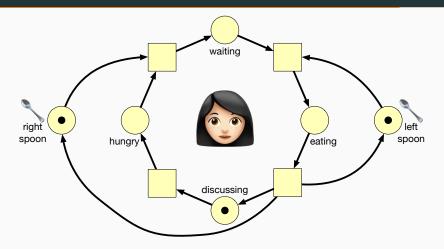
5) 🕅 Let's go Dining!

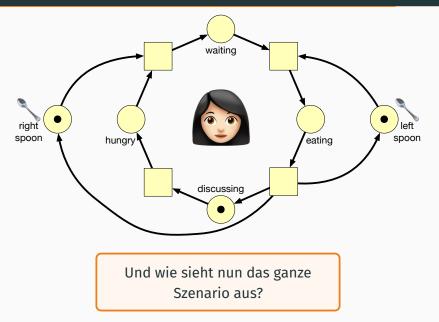
Szenario: Dining Philosophers

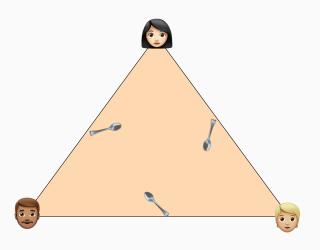
- es sitzen drei Philosoph*inn*en an einem Tisch
- · zwischen je zwei Sitzplätzen liegt ein Löffel
- · die drei Diskutierenden werden von Zeit zu Zeit hungrig
- · zum Essen benötigt eine Person zwei Löffel
 - · müssen nacheinander genommen werden
- · nach dem Essen werden beide Löffel zurück gelegt

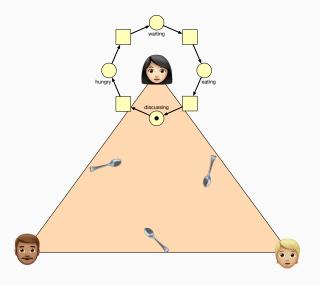


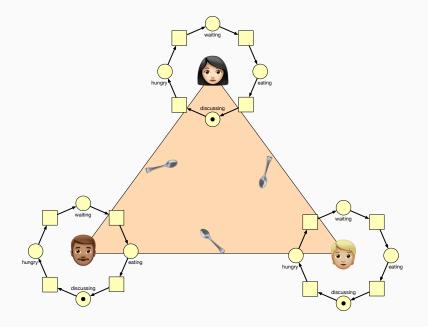


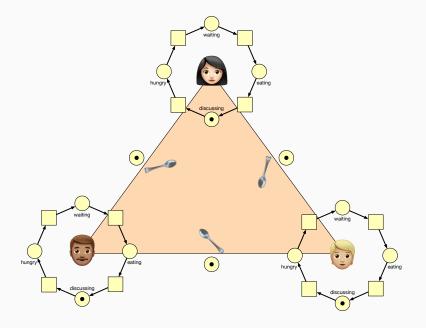


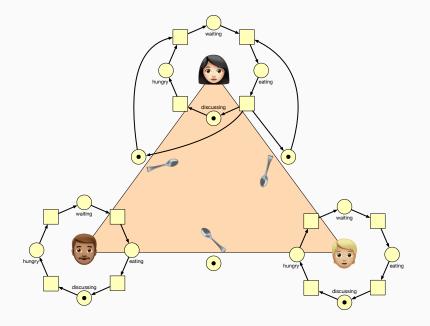


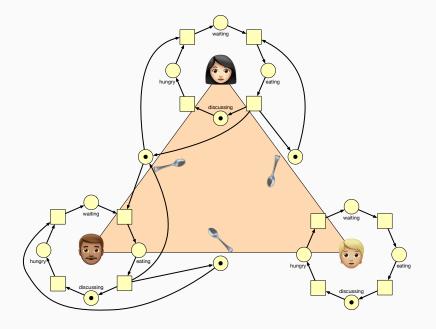


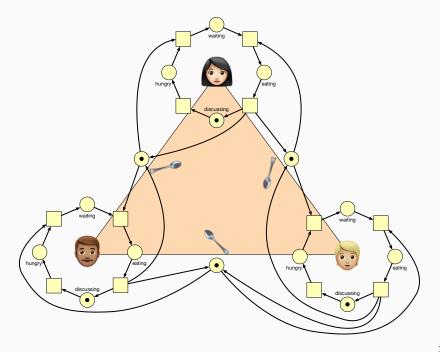


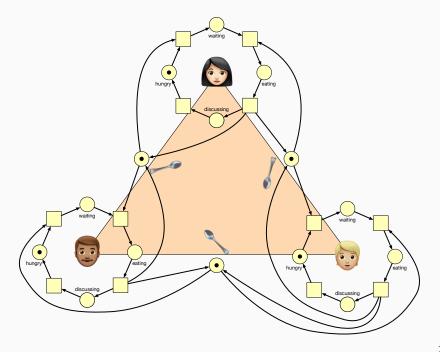


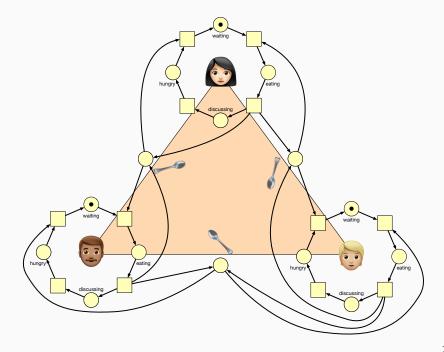


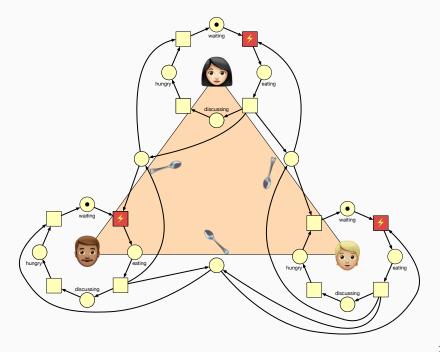


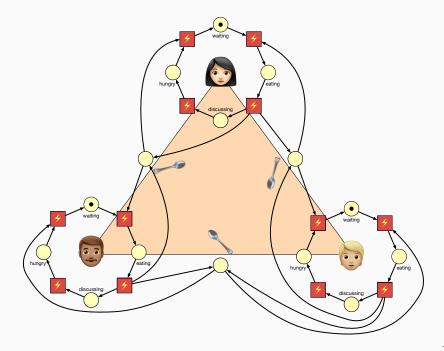


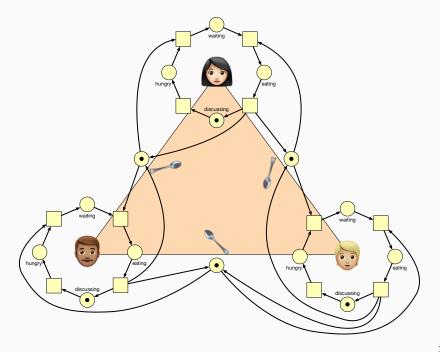


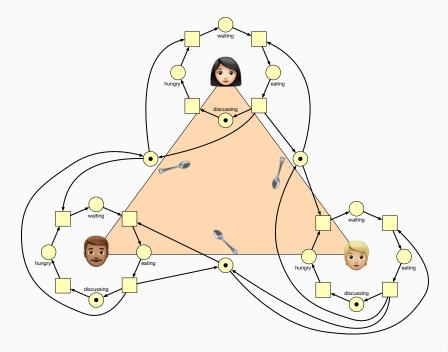












6) 🔳 Zusammenfassung & 🔭 Ausblick

- · eine Modellierungstechnik
- · Visualisierung + mathematische Formalisierung

von vielen!

- · eine Modellierungstechnik
- · Visualisierung + mathematische Formalisierung
- erlaubt präzise Formulierung von Eigenschaften...
- · ...und deren mathematischer Nachweis

von vielen!

oder Widerle

- · eine Modellierungstechnik
- · Visualisierung + mathematische Formalisierung
- erlaubt präzise Formulierung von Eigenschaften...
- · ...und deren mathematischer Nachweis

oder Widerle gung!

Mehr zu Petrinetzen

- · z.B. in Reisig (2010): "Petrinetze Modellierungstechnik, Analysemethoden, Fallstudien"
- · am FB entwickeltes Werkzeug: RENEW

- · eine Modellierungstechnik
- · Visualisierung + mathematische Formalisierung
- erlaubt präzise Formulierung von Eigenschaften...
- · ...und deren mathematischer Nachweis

oder Widerle

von vielen!

Mehr zu Petrinetzen

- · z.B. in Reisig (2010): "Petrinetze Modellierungstechnik, Analysemethoden, Fallstudien"
- · am FB entwickeltes Werkzeug: RENEW

Informatiker \neq Programmierer, HW-Designer, PC-Doktor, Word-Experte, ...

- · eine Modellierungstechnik
- · Visualisierung + mathematische Formalisierung
- erlaubt präzise Formulierung von Eigenschaften...
- · ...und deren mathematischer Nachweis

oder Widerle gung!

von vielen!

Mehr zu Petrinetzen

- · z.B. in Reisig (2010): "Petrinetze Modellierungstechnik, Analysemethoden, Fallstudien"
- · am FB entwickeltes Werkzeug: RENEW

Informatiker ≠ Programmierer, HW-Designer, PC-Doktor, Word-Experte, ...
Informatiker = **Problemlösekünstler!**

••

- · in einem Jahr zu Algorithmen & Datenstrukturen,
- vielleicht im Master zu Methoden des Algorithmenentwurfes
- · oder zu Abschlussarbeiten und anderen Veranstaltungen!

••

- · in einem Jahr zu Algorithmen & Datenstrukturen,
- vielleicht im Master zu Methoden des Algorithmenentwurfes
- · oder zu Abschlussarbeiten und anderen Veranstaltungen!

Zum Schluss ein paar Tipps

· seid engagiert und aktiv

••

- · in einem Jahr zu Algorithmen & Datenstrukturen,
- vielleicht im Master zu Methoden des Algorithmenentwurfes
- · oder zu Abschlussarbeiten und anderen Veranstaltungen!

▼ Zum Schluss ein paar Tipps

- · seid engagiert und aktiv
- · ein Studium ist ein Vollzeitjob
 - ⇒ Behandelt es so!

••

- · in einem Jahr zu Algorithmen & Datenstrukturen,
- vielleicht im Master zu Methoden des Algorithmenentwurfes
- · oder zu Abschlussarbeiten und anderen Veranstaltungen!

Zum Schluss ein paar Tipps

- seid engagiert und aktiv
- · ein Studium ist ein Vollzeitjob
 - ⇒ Behandelt es so!
- "It's dangerous to go alone!"
 - ⇒ Findet Lerngruppen!

••

- · in einem Jahr zu Algorithmen & Datenstrukturen,
- vielleicht im Master zu Methoden des Algorithmenentwurfes
- · oder zu Abschlussarbeiten und anderen Veranstaltungen!

▼ Zum Schluss ein paar Tipps

- · seid engagiert und aktiv
- · ein Studium ist ein Vollzeitjob
 - ⇒ Behandelt es so!
- "It's dangerous to go alone!"
 - ⇒ Findet Lerngruppen!

Aber vor allem:

Habt Spaß!

Literatur

- [1] Wolfgang Reisig. Petrinetze Modellierungstechnik, Analysemethoden, Fallstudien. 1. Aufl. Wiesbaden, 2010. ISBN: 9783834812902, 3834812900.
- [2] Herbert Stachowiak. *Allgemeine Modelltheorie*. Wien, New York, Springer-Verlag, 1973. ISBN: 0387811060, 9780387811062, 3211811060, 9783211811061.