BKA
 Sheet 4

Due date: 25 May

Exercise 1.

For a set S , let $\mathbb{P}(S)$ denote the set of all subsets of S . Also A and B are two sets. Justify your answers.
(a) Is $\mathbb{P}(\mathbb{N})$ countable?
(b) A and B are countable. Is $A \times B$ countable?
(c) $A \subset B$ and B is countable. Is A countable?

Definition 1. Let A be a language. The operation star (${ }^{*}$) is defined as follow: $A^{*}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in A\right\}$

Exercise 2.

Prove that the
(a) Turing decidable languages
(b) Turing recognizable languages
are closed under *.

Exercise 3.

Let Σ be an input alphabet and Γ be a (suitable) band alphabet. Let furthermore $\mathcal{M}=\{\langle M\rangle \mid M$ is a TM with input alphabet Σ and band alphabet $\Gamma\}$. From the book we know that \mathcal{M} is countable. Therefore there exists a bijective function $g: \mathcal{M} \rightarrow \mathbb{N}$ from the Turing machines to the natural numbers. Show that the function $p: \mathcal{M} \rightarrow \mathbb{N}$ with $p(\langle M\rangle)=\min \left\{g\left(\left\langle M^{\prime}\right\rangle\right) \mid\left\langle M^{\prime}\right\rangle \in \mathcal{M}\right.$ and $\left.L(M)=L\left(M^{\prime}\right)\right\}$ is not computable.

