BKA

Sheet 5
Due date: 08 June

Exercise 1.

(a) Debate the correctness of the following statements.
(i) $\log (n!)=\mathcal{O}(n \log n)$
(ii) $(\log n)^{\frac{2 \log n}{\log \log n}}=\mathcal{O}\left((\log n)^{2}\right)$
(b) Sort the following functions in run time decreasingly.

(i) | Function | f_{1} | f_{2} | f_{3} | f_{4} | f_{5} | f_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run time | $\mathcal{O}\left(3^{n}\right)$ | $\mathcal{O}\left(n^{3}\right)$ | $\mathcal{O}(\log (n!))$ | $\mathcal{O}(\log n)$ | $\mathcal{O}\left(2^{2 n}\right)$ | $\mathcal{O}\left(n^{1 / \log n}\right)$ |

(ii) | Function | g_{1} | g_{2} | g_{3} | g_{4} | g_{5} | g_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Run time | $\mathcal{O}\left(3^{\log n}\right)$ | $\mathcal{O}\left(e^{n}\right)$ | $\mathcal{O}\left(4^{\log n}\right)$ | $\mathcal{O}\left((\log n)^{\log n}\right)$ | $\mathcal{O}((n+1)!)$ | $\mathcal{O}(\sqrt[3]{\log n})$ |

Exercise 2.

Show that P is closed under union, concentration and complement.

Exercise 3.

A triangle in an undirected graph is a 3-clique. Show that $T R I A N G L E \in P$, where TRIANGLE $=\{<G>\mid G$ contains a triangle $\}$.

Exercise 4.

A $2 c n f-$ formula is an AND of clauses, where each clause is an OR of at most two literals. Let $2 S A T=\{\langle\phi\rangle \mid \phi$ is a satisfyable 2cnf-formula $\}$. Show that $S A T \in P$.

Exercise 5.

Prove that 3 -SAT is $\mathcal{N} \mathcal{P}$-complete.

Exercise 6.

Let $3 C N F$ be the set of all satisfiable propositional formulas in CNF with at most 3 literals per clause. Consider now the set $N 3 C N F$ of all formulas in $3 C N F$ in which neither clause contains 3 positive or 3 negative literals. Show that $N 3 C N F$ is $\mathcal{N} \mathcal{P}$ complete.
Hint: Use the $3 C N F$ problem for your reduction.

Exercise 7.

Let $H A L F-C l I Q U E=\{<G>\mid \mathrm{G}$ is an undirected graph having a complete subgraph with at least $\mathrm{m} / 2$ noeds, where m is the number of nodes in G$\}$. Show that $H A L F-C L I Q U E$ is $N P$-complete.
Hint: Use the Clique problem for your reduction.

