## BKA <br> Sheet 7

## Due date: 29 June

Definition 1 (Maximum-Cover). Set $S$ and set $M=\left\{S_{1} \mid S_{i} \subset S, i \leq m\right\}$ are given. The objective is to choose $k$ elements out of $M$ such that the number of covered elements is maximal. This problem is NP-Complete.

Consider the two following algorithms for approximating the Maximum-Cover problem.

## Exercise 1.

Initially, arbitrarily choose a subset of $M$ with size $k$. Replace one set out this subset with an element of $M$ such that the number of covered elements is increased. Repeat until there is no more change.
Show that this gives a 2 -approximation of the optimal solution.

## Exercise 2.

Start with an empty set. Repeat until there is no more change: greedily add an element to the set such that the number of covered elements of $S$ is maximized.
Show that this gives a $\frac{e}{e-1}$-approximation of the optimal solution.
Definition 2 (Vertex-Coloring Problem). Given an undirected graph $G=(V, E)$ with $|V|=n$, color its vertices with the minimum number of colors so that the two endpoints of each edge receive distinct colors.

## Exercise 3.

Give a greedy algorithm for coloring $G$ with $\Delta+1$ colors, where $\Delta$ is the maximum degree of a vertex.

## Exercise 4.

Give an algorithm for coloring a 3-colorable graph with $\mathcal{O}(\sqrt{n})$ colors. (Hint: For any vertex $v$, the induced subgraph on its neighbors, $N(v)$, is bipartite, and hence optimally colorable. If $v$ has degree more than $\sqrt{n}$, color $v \cup N(v)$ using 3 distinct colors. Continue until every vertex has degree less equal to $\sqrt{n}$. Then use your algorithm of the last question!)

