BKA
 Sheet 8

Due date: 6 July

Definition 1 (Weighted set cover). Given a universe U of n elements, a collection of subsets of $U, S=\left\{S_{1}, S_{2}, \cdots, S_{k}\right\}$ and a cost function $c: S \rightarrow Q^{+}$, find a minimum cost subset of S covering all elements of U.

Definition 2. Let $w: V \rightarrow Q^{+}$be the function assigning weights to the vertices of the given graph $G=(V, E)$. A function assigning vertex weights is degree-weighted if there is a constant $c>0$ such that the weight of each vertex $v \in V$ is $w(v)=c \cdot \operatorname{deg}(v)$.

Exercise 1.

Assume $O P T$ is the optimal solution for the weighted vertex cover problem (defined analogously to the weighted set cover problem) over $G=(V, E)$. Show that if the cost function $c: V \rightarrow Q^{+}$is degree-weighted, we have $\sum_{v \in V} w(v) \leq 2 \cdot O P T$.

Definition 3. Let w be a weight function on the graph G. Remove all vertices of degree zero from G and compute $c=\min _{v}\{w(v) / \operatorname{deg}(v)\}$ (where v goes over the remaining vertices). Then $t(v)=c \cdot \operatorname{deg}(v)$ is the largest degree-weighted function in w , and $w^{\prime}(v)=w(v)-t(v)$ is the residual weight function.

Exercise 2.

Consider the following layer algorithm for the vertex set cover problem on $G=(V, E)$. Let $G_{0}=G$, and let D_{0} be the set of degree-zero vertices in G_{0}. Compute the largest degree-weighted function in w. Let W_{0} be the vertices having zero residual weight, and include these vertices in the vertex cover. Let G_{1} be the graph induced on $V-\left(D_{0} \cup W_{0}\right)$. Now, repeat the entire process on G_{1} with respect to the residual wright function. The algorithm terminates when all vertices are of degree zero; let G_{k} denote this graph. The process is schematically shown in the following picture. Show this algorithm achieves an approximation guarantee of factor 2 for the vertex cover problem, assuming arbitrary vertex weights.

Let t_{0}, \ldots, t_{k-1} be the degree-weighted functions defined on graphs G_{0}, \ldots, G_{k-1}. The vertex cover chosen is $C=W_{0} \cup \ldots \cup W_{k-1}$. Clearly, $V-C=D_{0} \cup \ldots \cup D_{k}$.

Exercise 3.

What is the approximation factor of the following algorithm for the weighted set cover problem?

Algorithm 2.2 (Greedy set cover algorithm)

1. $C \leftarrow \emptyset$
2. While $C \neq U$ do

Find the most cost-effective set in the current iteration, say S.
Let $\alpha=\frac{\operatorname{cost}(S)}{|S-C|}$, i.e., the cost-effectiveness of S.
Pick S, and for each $e \in S-C$, set price $(e)=\alpha$.
$C \leftarrow C \cup S$.
3. Output the picked sets.

Exercise 4.

Give a tight example for the greedy set cover algorithm.
Definition 4 (Shortest superstring). Given a finite alphabet \sum, and a set of n strings, $S=\left\{s_{1}, \ldots, s_{n}\right\} \subseteq \sum^{+}$, find a shortest string sthat contains each s_{i} as a substring. Without loss of generality, we may assume that no string s_{i} is a substring of another $s_{j}, j \neq i$.

Exercise 5.

Show the following algorithm gives a two factor approximation for shortest superstring problem.

1. Construct a set cover instance \mathcal{S} as follows:

- Let the universe of elements be the set of n strings $\left\{s_{1}, \ldots, s_{n}\right\}$.
- For $s_{i}, s_{j} \in S$ and $k>0$, if the last k symbols of s_{i} are the same as the first k symbols of s_{j}, let $\sigma_{i j k}$ be the string obtained by overlapping these k positions of s_{i} and s_{j}. Let M be the set of all defined $\sigma_{i j k}$.
- For any string, let $\operatorname{set}(\pi)=\{s \in S \mid s$ is a substring of $\pi\}$.
- Let the subsets of S in the set cover instance be $\{\operatorname{set}(\pi) \mid \pi \in S \cup M\}$.

2. Use the greedy set cover algorithm to find a cover for the instance \mathcal{S}. Let $\operatorname{set}\left(\pi_{1}\right), \operatorname{set}\left(\pi_{2}\right), \cdots, \operatorname{set}\left(\pi_{k}\right)$ be the sets picked by this cover.
3. Concatenate the string $\pi_{1}, \pi_{2}, \cdots, \pi_{k}$ in any order and output the result
