Assignment Sheet 2

Petra Berenbrink Dominik Kaaser

November 7, 2017

Exercise 4. (from last sheet)

In the lecture, we proved the standard Chernoff bound for the sum $X=\sum_{i=1}^{n} X_{i}$ of n independent 0-1 random variables X_{i}. That bound requires the exact expectation $\mu:=\mathbb{E}[X]$, which is often not available. Prove the following generalized Chernoff bound which holds for an arbitrary upper bound $\mu_{H} \geq \mu$ on the expectation:

$$
\operatorname{Pr}\left[X \geq(1+\delta) \cdot \mu_{H}\right] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu_{H}}
$$

Exercise 6. (from last sheet)
The HVV Transportation Referendum is a poll that asks Hamburg's population whether they support an increased ticket price to extend the transportation system. Let p denote the actual (currently unknown) fraction of people who support this referendum. Our goal is to get an estimate X of p that is within $\phi \in(0,1)$ of the true value with a sufficiently high probability. That is, we want

$$
\operatorname{Pr}[|X-p| \leq \phi]>1-\varepsilon
$$

where $\phi, \varepsilon \in(0,1)$ are small constants. We compute the estimate X by choosing N people from Hamburg uniformly at random and set X to the fraction of these people that support the referendum. How large should we choose N in order to guarantee the above error probability? Use Chernoff bounds to find an expression for N (in terms of ϕ and ε). How large should we choose N in order to guarantee that X is with 95% probability correct up to $\pm 2 \%$?

Exercise 7.

Consider the deterministic bit-fixing routing algorithm on the n-dimensional hypercube and suppose n is even. The transpose permutation π : $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ maps a bit string $a b \in\{0,1\}^{n}$, with $a, b \in\{0,1\}^{n / 2}$ to $(b, a) \in\{0,1\}^{n}$. Show that the bit-fixing algorithm needs $\Omega\left(2^{n / 2}\right)$ steps to route π.

Exercise 8.

Consider the following modification to the bit-fixing routing algorithm for routing a permutation on the hypercube. Suppose that, instead of fixing the bits in order from 1 to n, each packet chooses a random order, independently, and fixes the bits in that order. Show that there exists a permutation for which this algorithm requires $2^{\Omega(n)}$ steps with high probability.

Exercise 9.

Theorem 4.7 [MR95] for the randomized packet routing algorithm states that with probability at least $1-1 / N$, every packet reaches its destination in $14 n$ or fewer steps. Show that the expected number of steps within which all packets are delivered is less than $15 n$.

