Assignment Sheet 6

Petra Berenbrink Dominik Kaaser

January 2, 2017

Exercise 19.

Consider the two-state Markov chain with the following transition matrix.

$$
P=\left(\begin{array}{cc}
p & 1-p \\
1-p & p
\end{array}\right)
$$

Find a simple expression for $P_{0,0}^{t}$.

Exercise 20.

Consider a process $X_{0}, X_{1}, X_{2}, \ldots$ with two states. The process is governed by two matrices, P and Q. If the time k is even, the transition probabilities are P. Otherwise, they are Q. Explain why this process does not satisfy the definition of a time-homogeneous Markov chain. Give an equivalent process (with a larger state space) that satisfies the definition.

Exercise 21.

Prove that the communicating relation defines an equivalence relation.

Exercise 22.

Prove that if one state in a communicating class is transient (respectively, recurrent) then all states in that class are transient (respectively, recurrent).

Exercise 23.

An $n \times n$ matrix P is called stochastic if all entries are nonnegative and the sum of each row is 1 . It is called doubly stochastic if, additionally, the sum of the entries in each column is 1 . Show that the uniform distribution is a stationary distribution for any Markov chain represented by a doubly stochastic matrix.

