Probability Theory

Def'd in terms of a probability space or sample space S (or 2), a
set whose elements s € S (or w € 2) are called elementary events.

View elementary events as possible outcomes of an experiment.

Examples:

e flip a coin: S = {head, tail}
e roll a die: §={1,2,3,4,5,6}

e pick a random pivot in Alp...,r]:
S={p,p+1,...,7}

We're talking only about discrete prob. spaces (unlike S = [0, 1]),
usually finite



An event is a subset of the prob. space

Examples:
e roll a die; A ={2,4,6} C {1,2,3,4,5,6} is the event of having an
even outcome

e flip two distinguishable coins:
S ={HH,HT,TH, TT}, and A = {TT,HH} C S is the event of
having the same outcome with both coins

We say S (the entire sample space) is a certain event, and 0 (the
empty event) is a null event

We say events A and B are mutually exclusive if ANB = ()



AXioms

A probability distribution P() on S is mapping from events of S to
reals s.t.

1. P(A)>0 forall ACS
2. P(S) =1 (normalisation)

3. P(A) + P(B) = P(AU B) for any two mutually exclusive events
A and B, i.e., with AN B = 0.

Generalisation: for any finite sequence of pairwise mutually exclu-
sive events A4, Ao, ...

P (U Az') = ZP(AZ')

P(A) is called probability of event A



A bunch of stuff that follows:

1. P(0) =0

2. If AC B then P(A) < P(B)

3. With A =S — A, we have P(A) = P(S) — P(A) =1 - P(A)

4. For any A and B (not necessarily mutually exclusive),

P(AUB)

P(A) + P(B) — P(AN B)
< P(A)+ P(B)

Considering discrete sample spaces, we have for any event A

P(A)= ) P(s)

sEA

If S is finite, and P(s € S) = 1/|S|, then we have uniform probability

distribution on S (that's what's usually referred to as ‘picking an
element of S at random’’)



Conditional probabilities
When you already have partial knowledge

Example: a friend rolls two fair dice (prob. space is {(z,y) : =,y €
{1,...,6}}) tells you that one of them shows a 6. What's the proba-
bility for a 6 — 6 outcome??

Information eliminates outcomes without any 6, i.e., all combinations
of 1 through 5. There are 52 = 25 of them. The original prob. space
has size 62 = 36, thus we're left with 36 — 25 = 11 events where at
least one 6 is involved.

These are equally likely, thus the sought probability must be 1/11.

T he conditional probability of event A given that another event B
OCCUrs is
P(AN B)

P(B)

P(A|B) =

given P(B) # 0



In example:

A
B

{(6,6)}

{(6,z) 1z e{l,...,6}} U

{(z,6) :x€{1,...,6}}

with |B] = 11 (the (6,6) is in both parts) and thus P(AN B) =
P({(6,6)}) =1/36 and

_ P(AnB) 1/36 1
P(A|B) = P(B) ~ 11/36 11




Independence

We say two events are independent if
P(ANnB)=P(A)-P(B)
equivalent to (if P(B) # 0) to

def PGANB) _ P(A)-P(B)
P(A|B) = PB) —  PB) = P(4)

Events A1, Ao, ..., Ay are pairwise independent if
P(A;NA;) = P(A;) - P(A;j)

forall 1 <1< 7 <n.

They are (mutually) independent if every k-subset A;
E<nand 1< <ip < - <1 <n satisfies

P(A;; N---NA; ) = P(A;) - P(A;,)

?/1’..

LA,

(%

2 <



Random variables

Reminder: we're talking discrete probability spaces
(makes things easier)

A random variable (r.v.) X is a function from a probability space S
to the reals, i.e., it assigns some value to elementary events

Event “X = 2" is def'd to be {s € S: X(s) =z}
Example: roll three dice

o S={s=(s1,82,53) | s1,82,83 € {1,2,...,6}}
S| = 63 = 216 possible outcomes

e Uniform distribution: each element has prob 1/|S| = 1/216

e Let r.v. X be sum of dice, i.e.,
X(s) = X(s1,52,53) =51 + 52+ 53



P(X =7)=15/216 because

115
124
133
142
151

Important: With r.v. X,

214 313 412 511
223 322 421

232 331

241

writing P(X) does not make any sense;

P(X = something) does, though (because it’'s an event)

Clearly, P(X =x) >0 and Y}, P(X = x) = 1 (from probability axioms)

If X and Y arer.v. then P(X = x and Y = y) is called joint prob. dis-

tribution of X and Y.
P(Y =y)

P(X =ux)

Y P(X =z and Y =y)
xr

Y P(X =z and Y =y)
Y



R.v. X,Y are independent if Vz,y, events “X = 2" and Y = ¢ are
independent

Recall: A and B are independent iff P(ANB) = P(A) - P(B).
Now: X,Y are independent iff Vx, vy,

P X=zand Y =y)=P(X ==2x) -P(Y =vy)

Intuition:

“X=2"="X=zand Y =7"
B = “VY=¢y"'=“X=?and Y =y

N
I

ANB = “X=gzandY =y¢"



Welcome to. .. expected values of r.v.
Also called expectations or means

Given r.v. X, its expected value is

EX] =Yz P(X)

Well-defined if sum is finite or converges absolutely
Sometimes written uy (or p if context is clear)

Example: roll a fair six-sided die, let X denote expected outcome

E[X] = 1-1/6+2-1/64+4-1/6+
5.1/64+6-1/6
1/6-(14+2+34+4+5+6)
1/6 - 21

3.5



Another example: flip three fair coins

For each head you win $4, for each tail you lose $3

Let r.v. X denote your win. Then the probability space is
{HHHHHT HTH, THHHTT, THT, TTH,TTT}

and

E[X] = 12-P(3H)+ 5 P(2H) —
—2.P(1H) — 9 - P(0OH)
— 12.1/845-3/8—-2-3/8—-9-1/8
12415-6-9 12

3 3

which is intuitively clear: each single coin contributes an expected win
of 0.5

Important: Linearity of expectations

E[X +Y] = E[X] + E[Y]
whenever E[X] and E[Y] are defined

True even if X and Y are not independent



Some more properties

Given r.v. X and Y with expectations, constant a

o FlaX]| = aF[X]

(note: aX is a r.v.)
e E[aX + Y] = E[aX] + E[Y] = aE[X] + E[Y]

o if X,Y independent, then

E[XY] = > Y zyP(X =z and Y =y)

r y
SN ayP(X = 2)P(Y = y)
r vy

(Za; tP(X = w)) (zy: yP(Y = y))

E[X]E[Y]



variance

The expected value of a random variable does not tell how ‘'spread out’”’ the variables
are.

Example: Two variables X and Y.

P(X=1/4)=P(X=3/4)=1/2
P(Y=0)=P(Y=1)=1/2

Both random variables have the same expected value!

The variance measures the expected difference between the expected value of the
variable and an outcome.

VI[X] E[(X — E[X])?]
E[X? - 2XE[X] + E?[X]]

E[X?] — E?[X]

V]aX] = «?V[X] and
VIX+Y]=VI[X]+ V[Y]

Standard deviation o(X) = /V[X]

Pr 14



Tail Inequalities

Measures the deviation of a random variable from its expected value.

1. Markov inequality

Let Y be a non-negative random variable. Then for all ¢t > 0

P[Y > ] < E[Y]/t and P[Y > kE[Y]] < 1/k.

Proof:Define a function f(y) by f(y) =1 if y >t and 0 otherwise.
Note: E[f(X)] =), f(x) - P[X = z].
Hence, P[Y >t] = E[Y]. Since f(y) <y/t for all y we get

E[f(Y)] < E[Y/t] = E[Y]/¢

This is the best possible bound bound if we only know that Y is non-negative.

But the Markov inequality is quite weak!
Example: throw n balls into n bins.

Pr
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Tail Inequalities

1. Chebyshev’s Inequality

Let X be a random variable with expectation ux and standard deviation ox.
Then for any t > 0,

P[|X — px| > tox] < 1/t2.
Proof: First, note that

P[|X — px| > tox] = P[(X — pux)* > t?o%].

The random variable Y = (X — ux)? has expectation o% (def. of variation).
Applying the Markov inequality to Y bounds this probability from above by 1/t2.

This bound gives a little bit better results since it uses the “knowledge” of the
variance of the variable.

We will use it later to analyze a randomized selection alg.

Pr 16



Chernoff Inequality

The first “good Tail Inequality’.

Assumption: sum X of independent random variables counting variables (binomially
distributed X)

Lemma: Let Xi,X5---,X, be independent 0 — 1 variables. P[X; = 1] = p; with
0<p;<1. Then, for X =" X;, pu=E[X]=> " p;, and any § > 0,

e

0 H
PIX = 40 = (5 555 )

Proof: Use of the moment generating function.

Pr 17



Proof Chernoff bound

For any positive real ¢,
P[X > (1 + §)p] = PleXt > (1],
Applying Markov we get

E[etX]
et(1+5)ﬂ -

PIX (14+6)u] <

Bound the right hand side:

E[eX] = B[22 X = E ﬁ etX”] .

1=1

Since the X; are independent variables, the variables et are also independent. We
have

E

ﬁ etXi] = ﬁ E [etXZ} , and
i=1 i=1

[Ty Ble™]
P[X > (14+8)u] < et(11+5)u .

Pr 18



Proof Chernoff bound II

Now note that X assumes the value e' with probability p; and the value 1 with
probability 1 — p;. Hence,

H?:l piet + (1 — pi) _ H?:l 1 +pi(€t — 1)

P[X > (1 + 5)#] < et(1+6)pu _ et(1+d)u

Since 1 + z < e with x = p;(e! — 1) we obtain

[T, ere-D 2o ple1)

i=1°¢ —
RICER RICER

PIX>(14+du] <

and finally
e(et_l):u

The above has been proved for any positive real t. We are free to chose the t that
results in the best bound. Substituting ¢t = In(1 4+ §) gives the result.

Pr 19



Coupon Collector Problem

There are n types of coupons and at each trial a coupon is chosen at random.

Each random coupon is equally likley to be any of the n types and the trials are
independent (Kinderschokolade!).

Question: How many trials do I need to have at least one copy of each coupon?

Theorem: With a probability of n=°+1, B -nlnn trials are sufficient.

Proof: Let X be the number of trials required to collect at least one of each coupon.
Let C; denotes the type of the ith coupon.

We call the ¢th trial a success it C; & C1,Co,...,Ci_1.

Epoch 1 begins with the trial following the i:th success and ends with the trial when
the (7 4+ 1)st success is achieved.

Define X;, 1 <:<n—1, to be the number of trials in the :th epoch. Hence,

Pr 20



Coupon Collector 11

Let p; be the probability of a success in epoch 7. Then

n—1
pi —
n

X, iIs geometrically distributed with

1 1 — p;

E[X,]=—=  and Vix,] = —2.

Pi Pi

We have
n—1 n—1 n n—1 1
FIX|=F X;| = . =n —=n-H,.

Note that H, is the nth Harmonic number. It is asymptotically equal to Inn+ ©(1).

Pr 21



Coupon Collector III

Since the X;'s are independent we have

and

n—1
ni n('n,—z)
V[X]=§m=2 QZ——”H

i=1
S 1 1/i? converges to a constant and V[X] = O(n? — nH,).

Now we are ready to apply Chebytschev:
P[X — E[X] > E[X]] = P[X — E[X] > nH,] ~ n? —
With ¢ = 24

VVIX]

and that is far too weak!

H,/nH,

Pr
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Randomized Selection

We use random sampling to select the kth smallest element of an ordereded set S .

Some definitions:

e 7,(t) is the rank of an element t in set S.
e S(;) is the ¢th smallest element of S.

We sample with replacement, meaning that we can chose the same element several
times.

Pr 23



LazySelect

Input: Ordered set S of n elements and an integer k£ < n. output: kth smallest
element of S.

1. x = kn Y4 £ =max{|z — /n],1}, and h = min{[z + /n],n3/4}.
2. Pick n3/% elements form S, chosen i.u.r. with replacement. Call this set R.
3. Sort R in time O(n3/*logn) = O(n).
4. Let a = Ry and b = Ry,). Compare a and b to every element of S and compute
rs(a) and rg(b).
5. Now compute a subset P
o If k<nl/*then P={yeS|y<b},
e clselfk>n—n'* let P={yecS|y>b}
o clseIf ke [n/*n—n*, let P={yeS|a<y<b}.
Check whether S,y € P and |P| < 4n3/% 4 2. If not, repeat steps 1-4 until such
P is found.
6. By sorting P in O(|P|log |P|) steps, identify P,_, (»)+1, Which is Sg,.
Pr 24



Analysis of LazySelect

The idea of the algorithm is to identify two elements a and b such that both of the
following statements hold with high probability (1 — 1/n%):
e The element S, that we seek is in P.
e The set P of elements between a and b is not very large, so that we can sort it
in time O(n).
Theorem With probability 1 — O(n~1/4), LazySelect finds S on the first pass and
thus performs only 2n + o(n) comparisions.

We have to consider three cases, here we consider the case k € [n'/*,n — nl/4 and
P={yeS|a<y<b}. The alnalysis of the other two cases is similar.

Case 1 We fail 1) if a > Sy or b < Syy. This means fewer than £ samples should
be smaller than S,/ at least h samples should be smaller than S.

Let's consider the event a > S(). Let X; = 1 if the «th random sample is at most
Sy, and 0 otherwise (Bernoulli trials).

Let X =3 X,

k
PIX;=1] =~ and E[X] = —,

k k 3/4 3/8
U%:n3/4(—) (1——)§n4 and O'XS%

n n
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Analysis of LazySelect II

Now we are ready to apply Chebyshev bounds on X.

1

Pla > Sy = P[IX — E[X]| > v/n] < P[|X — E[X]| > 2n'/%0,] < peyre

_1
4nt/a”

A similar argument shows that P[b < S¢] <

Case 2) We have to estimate the probability that P contains more than 4n3/4 4 2
elements. This case can be done very similar to case 1) and is a nice question for
your assignments.
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