
Probability Theory

Def’d in terms of a probability space or sample space S (or Ω), a
set whose elements s ∈ S (or ω ∈ Ω) are called elementary events.

View elementary events as possible outcomes of an experiment.

Examples:

• flip a coin: S = {head, tail}

• roll a die: S = {1,2,3,4,5,6}

• pick a random pivot in A[p . . . , r]:
S = {p, p+ 1, . . . , r}

We’re talking only about discrete prob. spaces (unlike S = [0,1]),
usually finite



An event is a subset of the prob. space

Examples:

• roll a die; A = {2,4,6} ⊂ {1,2,3,4,5,6} is the event of having an
even outcome

• flip two distinguishable coins:
S = {HH,HT, TH, TT}, and A = {TT,HH} ⊂ S is the event of
having the same outcome with both coins

We say S (the entire sample space) is a certain event, and ∅ (the
empty event) is a null event

We say events A and B are mutually exclusive if A ∩B = ∅



Axioms

A probability distribution P () on S is mapping from events of S to
reals s.t.

1. P (A) ≥ 0 for all A ⊆ S

2. P (S) = 1 (normalisation)

3. P (A) + P (B) = P (A ∪ B) for any two mutually exclusive events
A and B, i.e., with A ∩B = ∅.

Generalisation: for any finite sequence of pairwise mutually exclu-
sive events A1, A2, . . .

P

⋃
i

Ai

 =
∑
i

P (Ai)

P (A) is called probability of event A



A bunch of stuff that follows:

1. P (∅) = 0

2. If A ⊆ B then P (A) ≤ P (B)

3. With Ā = S −A, we have P (Ā) = P (S)− P (A) = 1− P (A)

4. For any A and B (not necessarily mutually exclusive),

P (A ∪B) = P (A) + P (B)− P (A ∩B)

≤ P (A) + P (B)

Considering discrete sample spaces, we have for any event A

P (A) =
∑
s∈A

P (s)

If S is finite, and P (s ∈ S) = 1/|S|, then we have uniform probability
distribution on S (that’s what’s usually referred to as “picking an
element of S at random”)



Conditional probabilities

When you already have partial knowledge

Example: a friend rolls two fair dice (prob. space is {(x, y) : x, y ∈
{1, . . . ,6}}) tells you that one of them shows a 6. What’s the proba-
bility for a 6− 6 outcome?

Information eliminates outcomes without any 6, i.e., all combinations
of 1 through 5. There are 52 = 25 of them. The original prob. space
has size 62 = 36, thus we’re left with 36 − 25 = 11 events where at
least one 6 is involved.

These are equally likely, thus the sought probability must be 1/11.

The conditional probability of event A given that another event B
occurs is

P (A|B) =
P (A ∩B)

P (B)

given P (B) 6= 0



In example:

A = {(6,6)}
B = {(6, x) : x ∈ {1, . . . ,6}} ∪

{(x,6) : x ∈ {1, . . . ,6}}

with |B| = 11 (the (6,6) is in both parts) and thus P (A ∩ B) =

P ({(6,6)}) = 1/36 and

P (A|B) =
P (A ∩B)

P (B)
=

1/36

11/36
=

1

11



Independence

We say two events are independent if

P (A ∩B) = P (A) · P (B)

equivalent to (if P (B) 6= 0) to

P (A|B)
def
=

P (A ∩B)

P (B)
=
P (A) · P (B)

P (B)
= P (A)

Events A1, A2, . . . , An are pairwise independent if

P (Ai ∩Aj) = P (Ai) · P (Aj)

for all 1 ≤ i < j ≤ n.

They are (mutually) independent if every k-subset Ai1, . . . , Aik, 2 ≤
k ≤ n and 1 ≤ i1 < i2 < · · · < ik ≤ n satisfies

P (Ai1 ∩ · · · ∩Aik) = P (Ai1) · · ·P (Aik)



Random variables

Reminder: we’re talking discrete probability spaces
(makes things easier)

A random variable (r.v.) X is a function from a probability space S
to the reals, i.e., it assigns some value to elementary events

Event “X = x” is def’d to be {s ∈ S : X(s) = x}

Example: roll three dice

• S = {s = (s1, s2, s3) | s1, s2, s3 ∈ {1,2, . . . ,6}}
|S| = 63 = 216 possible outcomes

• Uniform distribution: each element has prob 1/|S| = 1/216

• Let r.v. X be sum of dice, i.e.,
X(s) = X(s1, s2, s3) = s1 + s2 + s3



P (X = 7) = 15/216 because

115 214 313 412 511
124 223 322 421
133 232 331
142 241
151

Important: With r.v. X, writing P (X) does not make any sense;
P (X = something) does, though (because it’s an event)

Clearly, P (X = x) ≥ 0 and
∑
x P (X = x) = 1 (from probability axioms)

If X and Y are r.v. then P (X = x and Y = y) is called joint prob. dis-
tribution of X and Y .

P (Y = y) =
∑
x
P (X = x and Y = y)

P (X = x) =
∑
y
P (X = x and Y = y)



R.v. X,Y are independent if ∀x, y, events “X = x” and “Y = y” are
independent

Recall: A and B are independent iff P (A ∩B) = P (A) · P (B).

Now: X,Y are independent iff ∀x, y,

P (X = x and Y = y) = P (X = x) · P (Y = y)

Intuition:

A = “X = x′′ = “X = x and Y =?′′

B = “Y = y′′ = “X =? and Y = y′′

A ∩B = “X = x and Y = y′′



Welcome to. . . expected values of r.v.

Also called expectations or means

Given r.v. X, its expected value is

E[X] =
∑
x
x · P (X)

Well-defined if sum is finite or converges absolutely

Sometimes written µX (or µ if context is clear)

Example: roll a fair six-sided die, let X denote expected outcome

E[X] = 1 · 1/6 + 2 · 1/6 + 4 · 1/6 +

5 · 1/6 + 6 · 1/6

= 1/6 · (1 + 2 + 3 + 4 + 5 + 6)

= 1/6 · 21

= 3.5



Another example: flip three fair coins
For each head you win $4, for each tail you lose $3
Let r.v. X denote your win. Then the probability space is

{HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}
and

E[X] = 12 · P (3H) + 5 · P (2H)−
−2 · P (1H)− 9 · P (0H)

= 12 · 1/8 + 5 · 3/8− 2 · 3/8− 9 · 1/8

=
12 + 15− 6− 9

8
=

12

8
= 1.5

which is intuitively clear: each single coin contributes an expected win
of 0.5

Important: Linearity of expectations

E[X + Y ] = E[X] + E[Y ]

whenever E[X] and E[Y ] are defined

True even if X and Y are not independent



Some more properties

Given r.v. X and Y with expectations, constant a

• E[aX] = aE[X]

(note: aX is a r.v.)

• E[aX + Y ] = E[aX] + E[Y ] = aE[X] + E[Y ]

• if X,Y independent, then

E[XY ] =
∑
x

∑
y
xyP (X = x and Y = y)

=
∑
x

∑
y
xyP (X = x)P (Y = y)

=

(∑
x
xP (X = x)

)∑
y
yP (Y = y)


= E[X]E[Y ]



Variance

The expected value of a random variable does not tell how “spread out” the variables
are.

Example: Two variables X and Y .

P(X=1/4)=P(X=3/4)=1/2
P(Y=0)=P(Y=1)=1/2

Both random variables have the same expected value!

The variance measures the expected difference between the expected value of the
variable and an outcome.

V [X] = E[(X − E[X])2]
= E[X2 − 2XE[X] + E2[X]]
= E[X2]− E2[X]

V [αX] = α2V [X] and
V [X + Y ] = V [X] + V [Y ]

Standard deviation σ(X) =
√
V [X]
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Tail Inequalities

Measures the deviation of a random variable from its expected value.

1. Markov inequality
Let Y be a non-negative random variable.Then for all t > 0

P [Y ≥ t] ≤ E[Y ]/t and P [Y ≥ kE[Y ]] ≤ 1/k.

Proof:Define a function f(y) by f(y) = 1 if y ≥ t and 0 otherwise.

Note: E[f(X)] =
∑

x f(x) · P [X = x].

Hence, P [Y ≥ t] = E[Y ]. Since f(y) ≤ y/t for all y we get

E[f(Y )] ≤ E[Y/t] = E[Y ]/t

This is the best possible bound bound if we only know that Y is non-negative.

But the Markov inequality is quite weak!

Example: throw n balls into n bins.
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Tail Inequalities

1. Chebyshev’s Inequality
Let X be a random variable with expectation µX and standard deviation σX.
Then for any t > 0,

P [|X − µX| ≥ tσX] ≤ 1/t2.

Proof: First, note that

P [|X − µX| ≥ tσX] = P [(X − µX)2 ≥ t2σ2
X].

The random variable Y = (X − µX)2 has expectation σ2
X (def. of variation).

Applying the Markov inequality to Y bounds this probability from above by 1/t2.

This bound gives a little bit better results since it uses the “knowledge” of the
variance of the variable.

We will use it later to analyze a randomized selection alg.
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Chernoff Inequality

The first “good Tail Inequality”.

Assumption: sum X of independent random variables counting variables (binomially
distributed X)

Lemma: Let X1, X2 · · · , Xn be independent 0 − 1 variables. P [Xi = 1] = pi with
0 ≤ pi ≤ 1. Then, for X =

∑n
i=1Xi, µ = E[X] =

∑n
i=1 pi, and any δ > 0,

P [X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ
.

Proof: Use of the moment generating function.
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Proof Chernoff bound
For any positive real t,

P [X > (1 + δ)µ] = P [eXt > et(1+δ)µ].

Applying Markov we get

P [X (1 + δ)µ] <
E[etX]

et(1+δ)µ
.

Bound the right hand side:

E[etX] = E[et·
∑n

i=1
Xi] = E

[
n∏
i=1

etXi

]
.

Since the Xi are independent variables, the variables etXi are also independent. We
have

E

[
n∏
i=1

etXi

]
=

n∏
i=1

E
[
etXi
]
, and

P [X > (1 + δ)µ] <

∏n
i=1E[etXi]

et(1+δ)µ
.
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Proof Chernoff bound II

Now note that etXi assumes the value et with probability pi and the value 1 with
probability 1− pi. Hence,

P [X > (1 + δ)µ] <

∏n
i=1 pie

t + (1− pi)
et(1+δ)µ

=

∏n
i=1 1 + pi(et − 1)

et(1+δ)µ

Since 1 + x ≤ ex with x = pi(et − 1) we obtain

P [X > (1 + δ)µ] <

∏n
i=1 e

pi(et−1)

et(1+δ)µ
=
e
∑n

i=1
pi(et−1)

et(1+δ)µ

and finally

P [X > (1 + δ)µ] <
e(et−1)µ

et(1+δ)µ
.

The above has been proved for any positive real t. We are free to chose the t that
results in the best bound. Substituting t = ln(1 + δ) gives the result.
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Coupon Collector Problem

There are n types of coupons and at each trial a coupon is chosen at random.

Each random coupon is equally likley to be any of the n types and the trials are
independent (Kinderschokolade!).

Question: How many trials do I need to have at least one copy of each coupon?

Theorem: With a probability of n−β+1, β · n lnn trials are sufficient.

Proof: Let X be the number of trials required to collect at least one of each coupon.

Let Ci denotes the type of the ith coupon.

We call the ith trial a success if Ci 6∈ C1, C2, . . . , Ci−1.

Epoch i begins with the trial following the ith success and ends with the trial when
the (i+ 1)st success is achieved.

Define Xi, 1 ≤ i ≤ n− 1, to be the number of trials in the ith epoch. Hence,

X =
n−1∑
i=0

Xi.
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Coupon Collector II

Let pi be the probability of a success in epoch i. Then

pi =
n− i
n

.

Xi is geometrically distributed with

E[Xi] =
1

pi
and V [Xi] =

1− pi
pi

.

We have

E[X] = E

[
n−1∑
i=0

Xi

]
=

n−1∑
i=0

·
n

n− i
= n

n−1∑
i=0

1

i
= n ·Hn.

Note that Hn is the nth Harmonic number. It is asymptotically equal to lnn+ Θ(1).
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Coupon Collector III

Since the Xi’s are independent we have

V [X] =
n−1∑
i=0

V [Xi],

and

V [X] =
n−1∑
i=0

ni

(n− i)2
=

n∑
i=1

n(n− i)
i2

= n2
n∑
i=1

1

i2
− nHn.

∑n
i=1 1/i2 converges to a constant and V [X] = O(n2 − nHn).

Now we are ready to apply Chebytschev:

P [X − E[X] ≥ E[X]] ≈ P [X − E[X] ≥ nHn] ≈ n2 −Hn/nHn

With t = nHn√
V [X]

.

and that is far too weak!
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Randomized Selection

We use random sampling to select the kth smallest element of an ordereded set S .

Some definitions:

• rs(t) is the rank of an element t in set S.

• S(i) is the ith smallest element of S.

We sample with replacement, meaning that we can chose the same element several
times.
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LazySelect

Input: Ordered set S of n elements and an integer k ≤ n. output: kth smallest
element of S.

1. x = kn−1/4, ` = max{bx−
√
nc,1}, and h = min{dx+

√
ne, n3/4}.

2. Pick n3/4 elements form S, chosen i.u.r. with replacement. Call this set R.

3. Sort R in time O(n3/4 logn) = O(n).

4. Let a = R(`) and b = R(h). Compare a and b to every element of S and compute
rS(a) and rS(b).

5. Now compute a subset P

• If k < n1/4 then P = {y ∈ S | y ≤ b},
• else If k > n− n1/4, let P = {y ∈ S | y ≥ b},
• else If k ∈ [n1/4, n− n1/4], let P = {y ∈ S | a ≤ y ≤ b}.

Check whether S(k) ∈ P and |P | ≤ 4n3/4 + 2. If not, repeat steps 1-4 until such
P is found.

6. By sorting P in O(|P | log |P |) steps, identify Pk−rS(a)+1, which is S(k).
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Analysis of LazySelect
The idea of the algorithm is to identify two elements a and b such that both of the
following statements hold with high probability (1− 1/nα):

• The element S(k) that we seek is in P .

• The set P of elements between a and b is not very large, so that we can sort it
in time O(n).

Theorem With probability 1−O(n−1/4), LazySelect finds S(k) on the first pass and
thus performs only 2n+ o(n) comparisions.

We have to consider three cases, here we consider the case k ∈ [n1/4, n − n1/4 and
P = {y ∈ S | a ≤ y ≤ b}. The alnalysis of the other two cases is similar.

Case 1 We fail 1) if a > S(k) or b < S(k). This means fewer than ` samples should
be smaller than S(k)/ at least h samples should be smaller than S(k).

Let’s consider the event a > S(k). Let Xi = 1 if the ith random sample is at most
S(k), and 0 otherwise (Bernoulli trials).

Let X =
∑n3/4

i=1Xi.

P [Xi = 1] =
k

n
and E[X] =

k

n1/4

σ2
X = n3/4

(
k

n

)(
1−

k

n

)
≤
n3/4

4
and σX ≤

n3/8

2
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Analysis of LazySelect II

Now we are ready to apply Chebyshev bounds on X.

P [a > S(k)] = P [|X − E[X]| ≥
√
n] ≤ P [|X − E[X]| ≥ 2n1/8σx] ≤

1

4n1/4
.

A similar argument shows that P [b < S(k)] ≤ 1
4n1/4.

Case 2) We have to estimate the probability that P contains more than 4n3/4 + 2
elements. This case can be done very similar to case 1) and is a nice question for
your assignments.
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