Probability Theory

Def'd in terms of a probability space or sample space S (or Ω), a set whose elements $s \in S$ (or $\omega \in \Omega$) are called elementary events.

View elementary events as possible outcomes of an experiment.

Examples:

- flip a coin: $S=\{$ head, tail $\}$
- roll a die: $S=\{1,2,3,4,5,6\}$
- pick a random pivot in $A[p \ldots, r]$:

$$
S=\{p, p+1, \ldots, r\}
$$

We're talking only about discrete prob. spaces (unlike $S=[0,1]$), usually finite

An event is a subset of the prob. space

Examples:

- roll a die; $A=\{2,4,6\} \subset\{1,2,3,4,5,6\}$ is the event of having an even outcome
- flip two distinguishable coins:
$S=\{H H, H T, T H, T T\}$, and $A=\{T T, H H\} \subset S$ is the event of having the same outcome with both coins

We say S (the entire sample space) is a certain event, and \emptyset (the empty event) is a null event

We say events A and B are mutually exclusive if $A \cap B=\emptyset$

Axioms

A probability distribution $P()$ on S is mapping from events of S to reals s.t.

1. $P(A) \geq 0$ for all $A \subseteq S$
2. $P(S)=1$ (normalisation)
3. $P(A)+P(B)=P(A \cup B)$ for any two mutually exclusive events A and B, i.e., with $A \cap B=\emptyset$.

Generalisation: for any finite sequence of pairwise mutually exclusive events A_{1}, A_{2}, \ldots

$$
P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
$$

$P(A)$ is called probability of event A

A bunch of stuff that follows:

1. $P(\emptyset)=0$
2. If $A \subseteq B$ then $P(A) \leq P(B)$
3. With $\bar{A}=S-A$, we have $P(\bar{A})=P(S)-P(A)=1-P(A)$
4. For any A and B (not necessarily mutually exclusive),

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& \leq P(A)+P(B)
\end{aligned}
$$

Considering discrete sample spaces, we have for any event A

$$
P(A)=\sum_{s \in A} P(s)
$$

If S is finite, and $P(s \in S)=1 /|S|$, then we have uniform probability distribution on S (that's what's usually referred to as "picking an element of S at random')

Conditional probabilities

When you already have partial knowledge

Example: a friend rolls two fair dice (prob. space is $\{(x, y): x, y \in$ $\{1, \ldots, 6\}\}$) tells you that one of them shows a 6 . What's the probability for a 6-6 outcome?

Information eliminates outcomes without any 6, i.e., all combinations of 1 through 5. There are $5^{2}=25$ of them. The original prob. space has size $6^{2}=36$, thus we're left with $36-25=11$ events where at least one 6 is involved.

These are equally likely, thus the sought probability must be $1 / 11$.

The conditional probability of event A given that another event B occurs is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

given $P(B) \neq 0$

In example:

$$
\begin{aligned}
A= & \{(6,6)\} \\
B= & \{(6, x): x \in\{1, \ldots, 6\}\} \cup \\
& \{(x, 6): x \in\{1, \ldots, \sigma\}\}
\end{aligned}
$$

with $|B|=11$ (the $(6,6)$ is in both parts) and thus $P(A \cap B)=$ $P(\{(6,6)\})=1 / 36$ and

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 36}{11 / 36}=\frac{1}{11}
$$

Independence

We say two events are independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

equivalent to (if $P(B) \neq 0$) to

$$
P(A \mid B) \stackrel{\text { def }}{=} \frac{P(A \cap B)}{P(B)}=\frac{P(A) \cdot P(B)}{P(B)}=P(A)
$$

Events $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise independent if

$$
P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) \cdot P\left(A_{j}\right)
$$

for all $1 \leq i<j \leq n$.
They are (mutually) independent if every k-subset $A_{i_{1}}, \ldots, A_{i_{k}}, 2 \leq$ $k \leq n$ and $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ satisfies

$$
P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdots P\left(A_{i_{k}}\right)
$$

Random variables

Reminder: we're talking discrete probability spaces (makes things easier)

A random variable (r.v.) X is a function from a probability space S to the reals, i.e., it assigns some value to elementary events

Event " $X=x$ " is def'd to be $\{s \in S: X(s)=x\}$

Example: roll three dice

- $S=\left\{s=\left(s_{1}, s_{2}, s_{3}\right) \mid s_{1}, s_{2}, s_{3} \in\{1,2, \ldots, 6\}\right\}$
$|S|=6^{3}=216$ possible outcomes
- Uniform distribution: each element has prob $1 /|S|=1 / 216$
- Let r.v. X be sum of dice, i.e.,

$$
X(s)=X\left(s_{1}, s_{2}, s_{3}\right)=s_{1}+s_{2}+s_{3}
$$

$P(X=7)=15 / 216$ because

$$
\begin{array}{lllll}
115 & 214 & 313 & 412 & 511 \\
124 & 223 & 322 & 421 & \\
133 & 232 & 331 & & \\
142 & 241 & & & \\
151 & & & &
\end{array}
$$

Important: With r.v. X, writing $P(X)$ does not make any sense; $P(X=$ something $)$ does, though (because it's an event)

Clearly, $P(X=x) \geq 0$ and $\sum_{x} P(X=x)=1$ (from probability axioms)

If X and Y are r.v. then $P(X=x$ and $Y=y)$ is called joint prob. distribution of X and Y.

$$
\begin{aligned}
& P(Y=y)=\sum_{x} P(X=x \text { and } Y=y) \\
& P(X=x)=\sum_{y} P(X=x \text { and } Y=y)
\end{aligned}
$$

R.v. X, Y are independent if $\forall x, y$, events " $X=x$ " and " $Y=y$ " are independent

Recall: A and B are independent iff $P(A \cap B)=P(A) \cdot P(B)$.

Now: X, Y are independent iff $\forall x, y$,

$$
P(X=x \text { and } Y=y)=P(X=x) \cdot P(Y=y)
$$

Intuition:

$$
\begin{aligned}
A & =" X=x^{\prime \prime}=" X=x \text { and } Y=? " \\
B & =" Y=y^{\prime \prime}=" X=? \text { and } Y=y^{\prime \prime} \\
A \cap B & =" X=x \text { and } Y=y^{\prime \prime}
\end{aligned}
$$

Welcome to... expected values of r.v.

Also called expectations or means

Given r.v. X, its expected value is

$$
E[X]=\sum_{x} x \cdot P(X)
$$

Well-defined if sum is finite or converges absolutely
Sometimes written μ_{X} (or μ if context is clear)
Example: roll a fair six-sided die, let X denote expected outcome

$$
\begin{aligned}
E[X]= & 1 \cdot 1 / 6+2 \cdot 1 / 6+4 \cdot 1 / 6+ \\
& 5 \cdot 1 / 6+6 \cdot 1 / 6 \\
= & 1 / 6 \cdot(1+2+3+4+5+6) \\
= & 1 / 6 \cdot 21 \\
= & 3.5
\end{aligned}
$$

Another example: flip three fair coins
For each head you win $\$ 4$, for each tail you lose $\$ 3$
Let r.v. X denote your win. Then the probability space is $\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}$, THT,TTH,TTT $\}$
and

$$
\begin{aligned}
E[X]= & 12 \cdot P(3 \mathrm{H})+5 \cdot P(2 \mathrm{H})- \\
& -2 \cdot P(1 \mathrm{H})-9 \cdot P(0 \mathrm{H}) \\
= & 12 \cdot 1 / 8+5 \cdot 3 / 8-2 \cdot 3 / 8-9 \cdot 1 / 8 \\
= & \frac{12+15-6-9}{8}=\frac{12}{8}=1.5
\end{aligned}
$$

which is intuitively clear: each single coin contributes an expected win of 0.5

Important: Linearity of expectations

$$
E[X+Y]=E[X]+E[Y]
$$

whenever $E[X]$ and $E[Y]$ are defined
True even if X and Y are not independent

Some more properties

Given r.v. X and Y with expectations, constant a

- $E[a X]=a E[X]$
(note: $a X$ is a r.v.)
- $E[a X+Y]=E[a X]+E[Y]=a E[X]+E[Y]$
- if X, Y independent, then

$$
\begin{aligned}
E[X Y] & =\sum_{x} \sum_{y} x y P(X=x \text { and } Y=y) \\
& =\sum_{x} \sum_{y} x y P(X=x) P(Y=y) \\
& =\left(\sum_{x} x P(X=x)\right)\left(\sum_{y} y P(Y=y)\right) \\
& =E[X] E[Y]
\end{aligned}
$$

Variance

The expected value of a random variable does not tell how "spread out" the variables are.

Example: Two variables X and Y.
$P(X=1 / 4)=P(X=3 / 4)=1 / 2$
$P(Y=0)=P(Y=1)=1 / 2$
Both random variables have the same expected value!
The variance measures the expected difference between the expected value of the variable and an outcome.

$$
\begin{aligned}
V[X] & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}-2 X E[X]+E^{2}[X]\right] \\
& =E\left[X^{2}\right]-E^{2}[X]
\end{aligned}
$$

$V[\alpha X]=\alpha^{2} V[X]$ and
$V[X+Y]=V[X]+V[Y]$

Standard deviation $\sigma(X)=\sqrt{V[X]}$

Tail Inequalities

Measures the deviation of a random variable from its expected value.

1. Markov inequality

Let Y be a non-negative random variable. Then for all $t>0$

$$
P[Y \geq t] \leq E[Y] / t \text { and } P[Y \geq k E[Y]] \leq 1 / k .
$$

Proof:Define a function $f(y)$ by $f(y)=1$ if $y \geq t$ and 0 otherwise.
Note: $E[f(X)]=\sum_{x} f(x) \cdot P[X=x]$.
Hence, $P[Y \geq t]=E[Y]$. Since $f(y) \leq y / t$ for all y we get

$$
E[f(Y)] \leq E[Y / t]=E[Y] / t
$$

This is the best possible bound bound if we only know that Y is non-negative.
But the Markov inequality is quite weak!
Example: throw n balls into n bins.

Tail Inequalities

1. Chebyshev's Inequality

Let X be a random variable with expectation μ_{X} and standard deviation σ_{X}. Then for any $t>0$,

$$
P\left[\left|X-\mu_{X}\right| \geq t \sigma_{X}\right] \leq 1 / t^{2}
$$

Proof: First, note that

$$
P\left[\left|X-\mu_{X}\right| \geq t \sigma_{X}\right]=P\left[\left(X-\mu_{X}\right)^{2} \geq t^{2} \sigma_{X}^{2}\right] .
$$

The random variable $Y=\left(X-\mu_{X}\right)^{2}$ has expectation σ_{X}^{2} (def. of variation). Applying the Markov inequality to Y bounds this probability from above by $1 / t^{2}$.

This bound gives a little bit better results since it uses the "knowledge" of the variance of the variable.

We will use it later to analyze a randomized selection alg.

Chernoff Inequality

The first "good Tail Inequality".
Assumption: sum X of independent random variables counting variables (binomially distributed X)

Lemma: Let $X_{1}, X_{2} \cdots, X_{n}$ be independent $0-1$ variables. $P\left[X_{i}=1\right]=p_{i}$ with $0 \leq p_{i} \leq 1$. Then, for $X=\sum_{i=1}^{n} X_{i}, \mu=E[X]=\sum_{i=1}^{n} p_{i}$, and any $\delta>0$,

$$
P[X \geq(1+\delta) \mu] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

Proof: Use of the moment generating function.

Proof Chernoff bound

For any positive real t,

$$
P[X>(1+\delta) \mu]=P\left[e^{X t}>e^{t(1+\delta) \mu}\right] .
$$

Applying Markov we get

$$
P[X(1+\delta) \mu]<\frac{E\left[e^{t X}\right]}{e^{t(1+\delta) \mu}} .
$$

Bound the right hand side:

$$
E\left[e^{t X}\right]=E\left[e^{t \cdot \sum_{i=1}^{n} X_{i}}\right]=E\left[\prod_{i=1}^{n} e^{t X_{i}}\right] .
$$

Since the X_{i} are independent variables, the variables $e^{t X_{i}}$ are also independent. We have

$$
\begin{aligned}
& E\left[\prod_{i=1}^{n} e^{t X_{i}}\right]=\prod_{i=1}^{n} E\left[e^{t X_{i}}\right], \text { and } \\
& P[X>(1+\delta) \mu]<\frac{\prod_{i=1}^{n} E\left[e^{t X_{i}}\right]}{e^{t(1+\delta) \mu}} .
\end{aligned}
$$

Proof Chernoff bound II

Now note that $e^{t X_{i}}$ assumes the value e^{t} with probability p_{i} and the value 1 with probability $1-p_{i}$. Hence,

$$
P[X>(1+\delta) \mu]<\frac{\prod_{i=1}^{n} p_{i} e^{t}+\left(1-p_{i}\right)}{e^{t(1+\delta) \mu}}=\frac{\prod_{i=1}^{n} 1+p_{i}\left(e^{t}-1\right)}{e^{t(1+\delta) \mu}}
$$

Since $1+x \leq e^{x}$ with $x=p_{i}\left(e^{t}-1\right)$ we obtain

$$
P[X>(1+\delta) \mu]<\frac{\prod_{i=1}^{n} e^{p_{i}\left(e^{t}-1\right)}}{e^{t(1+\delta) \mu}}=\frac{e^{\sum_{i=1}^{n} p_{i}\left(e^{t}-1\right)}}{e^{t(1+\delta) \mu}}
$$

and finally

$$
P[X>(1+\delta) \mu]<\frac{e^{\left(e^{t}-1\right) \mu}}{e^{t(1+\delta) \mu}} .
$$

The above has been proved for any positive real t. We are free to chose the t that results in the best bound. Substituting $t=\ln (1+\delta)$ gives the result.

Coupon Collector Problem

There are n types of coupons and at each trial a coupon is chosen at random.
Each random coupon is equally likley to be any of the n types and the trials are independent (Kinderschokolade!).

Question: How many trials do I need to have at least one copy of each coupon?

Theorem: With a probability of $n^{-\beta+1}, \beta \cdot n \ln n$ trials are sufficient.
Proof: Let X be the number of trials required to collect at least one of each coupon.
Let C_{i} denotes the type of the i th coupon.
We call the i th trial a success if $C_{i} \notin C_{1}, C_{2}, \ldots, C_{i-1}$.
Epoch i begins with the trial following the i th success and ends with the trial when the $(i+1)$ st success is achieved.

Define $X_{i}, 1 \leq i \leq n-1$, to be the number of trials in the i th epoch. Hence,

$$
X=\sum_{i=0}^{n-1} X_{i} .
$$

Coupon Collector II

Let p_{i} be the probability of a success in epoch i. Then

$$
p_{i}=\frac{n-i}{n}
$$

X_{i} is geometrically distributed with

$$
E\left[X_{i}\right]=\frac{1}{p_{i}} \quad \text { and } \quad V\left[X_{i}\right]=\frac{1-p_{i}}{p_{i}} .
$$

We have

$$
E[X]=E\left[\sum_{i=0}^{n-1} X_{i}\right]=\sum_{i=0}^{n-1} \cdot \frac{n}{n-i}=n \sum_{i=0}^{n-1} \frac{1}{i}=n \cdot H_{n} .
$$

Note that H_{n} is the nth Harmonic number. It is asymptotically equal to $\ln n+\Theta$ (1).

Coupon Collector III

Since the X_{i} 's are independent we have

$$
V[X]=\sum_{i=0}^{n-1} V\left[X_{i}\right],
$$

and

$$
V[X]=\sum_{i=0}^{n-1} \frac{n i}{(n-i)^{2}}=\sum_{i=1}^{n} \frac{n(n-i)}{i^{2}}=n^{2} \sum_{i=1}^{n} \frac{1}{i^{2}}-n H_{n} .
$$

$\sum_{i=1}^{n} 1 / i^{2}$ converges to a constant and $V[X]=O\left(n^{2}-n H_{n}\right)$.
Now we are ready to apply Chebytschev:

$$
P[X-E[X] \geq E[X]] \approx P\left[X-E[X] \geq n H_{n}\right] \approx n^{2}-H_{n} / n H_{n}
$$

With $t=\frac{n H_{n}}{\sqrt{V[X]}}$.
and that is far too weak!

Pr

Randomized Selection

We use random sampling to select the k th smallest element of an ordereded set S.

Some definitions:

- $r_{s}(t)$ is the rank of an element t in set S.
- $S_{(i)}$ is the i th smallest element of S.

We sample with replacement, meaning that we can chose the same element several times.

LazySelect

Input: Ordered set S of n elements and an integer $k \leq n$. output: k th smallest element of S.

1. $x=k n^{-1 / 4}, \ell=\max \{\lfloor x-\sqrt{n}\rfloor, 1\}$, and $h=\min \left\{\lceil x+\sqrt{n}\rceil, n^{3 / 4}\right\}$.
2. Pick $n^{3 / 4}$ elements form S, chosen i.u.r. with replacement. Call this set R.
3. Sort R in time $O\left(n^{3 / 4} \log n\right)=O(n)$.
4. Let $a=R_{(\ell)}$ and $b=R_{(h)}$. Compare a and b to every element of S and compute $r_{S}(a)$ and $r_{S}(b)$.
5. Now compute a subset P

- If $k<n^{1 / 4}$ then $P=\{y \in S \mid y \leq b\}$,
- else If $k>n-n^{1 / 4}$, let $P=\{y \in S \mid y \geq b\}$,
- else If $k \in\left[n^{1 / 4}, n-n^{1 / 4}\right]$, let $P=\{y \in S \mid a \leq y \leq b\}$.

Check whether $S_{(k)} \in P$ and $|P| \leq 4 n^{3 / 4}+2$. If not, repeat steps $1-4$ until such P is found.
6. By sorting P in $O(|P| \log |P|)$ steps, identify $P_{k-r_{s}(a)+1}$, which is $S_{(k)}$.

Analysis of LazySelect

The idea of the algorithm is to identify two elements a and b such that both of the following statements hold with high probability ($1-1 / n^{\alpha}$):

- The element $S_{(k)}$ that we seek is in P.
- The set P of elements between a and b is not very large, so that we can sort it in time $O(n)$.

Theorem With probability $1-O\left(n^{-1 / 4}\right)$, LazySelect finds $S_{(k)}$ on the first pass and thus performs only $2 n+o(n)$ comparisions.
We have to consider three cases, here we consider the case $k \in\left[n^{1 / 4}, n-n^{1 / 4}\right.$ and $P=\{y \in S \mid a \leq y \leq b\}$. The alnalysis of the other two cases is similar.
Case 1 We fail 1) if $a>S_{(k)}$ or $b<S_{(k)}$. This means fewer than ℓ samples should be smaller than $S_{(k)} /$ at least h samples should be smaller than $S_{(k)}$.
Let's consider the event $a>S_{(k)}$. Let $X_{i}=1$ if the i th random sample is at most $S_{(k)}$, and 0 otherwise (Bernoulli trials).
Let $X=\sum_{i=1}^{n^{3 / 4}} X_{i}$.

$$
\begin{gathered}
P\left[X_{i}=1\right]=\frac{k}{n} \text { and } E[X]=\frac{k}{n^{1 / 4}} \\
\sigma_{X}^{2}=n^{3 / 4}\left(\frac{k}{n}\right)\left(1-\frac{k}{n}\right) \leq \frac{n^{3 / 4}}{4} \text { and } \sigma_{X} \leq \frac{n^{3 / 8}}{2}
\end{gathered}
$$

Analysis of LazySelect II

Now we are ready to apply Chebyshev bounds on X.

$$
P\left[a>S_{(k)}\right]=P[|X-E[X]| \geq \sqrt{n}] \leq P\left[|X-E[X]| \geq 2 n^{1 / 8} \sigma_{x}\right] \leq \frac{1}{4 n^{1 / 4}} .
$$

A similar argument shows that $P\left[b<S_{(k)}\right] \leq \frac{1}{4 n^{1 / 4}}$.

Case 2) We have to estimate the probability that P contains more than $4 n^{3 / 4}+2$ elements. This case can be done very similar to case 1) and is a nice question for your assignments.

