Routing in a Parallel Computer

November 7, 2017

Model

- model parallel machine as a graph
- N nodes
- nodes: processing elements
- unique identifier in $1, \ldots, N$
- edges: communication links
- communication in synchronous steps
- in each step, send at most one packet over a link

The Permutation Routing Problem

- Each processor initially contains one packet destined for some processor in the network.
- Let v_{i} denote the packet originating at processor i.
- We denote its destination by $d(i)$.
- $d(i)$ forms a permutation of $\{1, \ldots, N\}$.
- How many steps are necessary and sufficient to route an arbitrary permutation request?

Oblivious Algorithms

- Oblivious strategy: The route chosen for each packet does not depend on the routes of other packets.
- That is, the path from i to $d(i)$ is a function of i and $d(i)$ only.

Lower Bound

Theorem (Theorem 4.4, MR95)
For any deterministic oblivious permutation routing algorithm on a network of N nodes each of out-degree d, there is an instance of permutation routing requiring $\Omega(\sqrt{N / d})$ steps.

Hypercubes

- A popular network for parallel processing is the Boolean hypercube.
- $N=2^{n}$ nodes
- connected in the following manner:
- Let $\left(i_{0}, \ldots, i_{n-1}\right) \in\{0,1\}^{n}$ be the (ordered) binary representation of node i
- There is a directed edge from node i to node j if and only if their binary representations differ in exactly one position.
- Every node in the hypercube has $n=\log _{2} N$ directed outgoing edges.
- Theorem 4.4 then tells us that for any deterministic oblivious routing algorithm on the hypercube, there is a permutation requiring $\Omega(\sqrt{N / n})$ steps.

The Bit-Fixing Algorithm

- source and destination addresses are n-bit vectors
- scan the bits of $d(i)$ from left to right
- compare them with the address of the current location of the packet.
- Send the packet along the edge corresponding to the left-most bit in which the current position and $d(i)$ differ.

A Randomized Oblivious Algorithm

- Phase 1: Pick a random intermediate destination $\sigma(i)$ from $\{1, \ldots, n\}$. Packet v_{i} travels to node $\sigma(i)$.
- Phase 2: Packet v_{i} travels from $\sigma(i)$ on to its destination $d(i)$.
- Each phase uses the bit-fixing strategy to determine its route.
- Nodes use a FIFO queue to store incoming packets.

Analysis

- Observation: View each route in Phase 1 as a directed path in the hypercube from the source to the intermediate destination. Once two routes separate, they do not rejoin.

Lemma

Let the route of v_{i} follow the sequence of edges $\rho=\left(e_{1}, e_{2}, \ldots, e_{k}\right)$. Let S be the set of packets (other than v_{i}) whose routes pass through at least one of $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$. Then, the delay incurred by v_{i} is at most $|S|$.

Theorem

Theorem
With probability at least $1-1 / N$, every packet reaches its destination in $14 n$ or fewer steps.

