Routing in a Parallel Computer

November 7, 2017

(ロ)、(型)、(E)、(E)、 E) の(()

Model

model parallel machine as a graph

- ► N nodes
- nodes: processing elements
- unique identifier in 1, ..., N
- edges: communication links
- communication in synchronous steps
- in each step, send at most one packet over a link

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Permutation Routing Problem

- Each processor initially contains one packet destined for some processor in the network.
- Let v_i denote the packet originating at processor i.
- We denote its destination by d(i).
- d(i) forms a permutation of $\{1, ..., N\}$.
- How many steps are necessary and sufficient to route an arbitrary permutation request?

Oblivious Algorithms

- Oblivious strategy: The route chosen for each packet does not depend on the routes of other packets.
- That is, the path from i to d(i) is a function of i and d(i) only.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Lower Bound

Theorem (Theorem 4.4, MR95)

For any deterministic oblivious permutation routing algorithm on a network of N nodes each of out-degree d, there is an instance of permutation routing requiring $\Omega(\sqrt{N/d})$ steps.

Hypercubes

- ► A popular network for parallel processing is the Boolean hypercube.
- ▶ $N = 2^n$ nodes
- connected in the following manner:
 - ▶ Let $(i_0, ..., i_{n-1}) \in \{0, 1\}^n$ be the (ordered) binary representation of node i
 - ► There is a directed edge from node *i* to node *j* if and only if their binary representations differ in exactly one position.
- \blacktriangleright Every node in the hypercube has $n=\log_2 N$ directed outgoing edges.
- Theorem 4.4 then tells us that for any deterministic oblivious routing algorithm on the hypercube, there is a permutation requiring $\Omega(\sqrt{N/n})$ steps.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Bit-Fixing Algorithm

- source and destination addresses are n-bit vectors
- scan the bits of d(i) from left to right
- compare them with the address of the current location of the packet.
- Send the packet along the edge corresponding to the left-most bit in which the current position and d(i) differ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A Randomized Oblivious Algorithm

- ▶ Phase 1: Pick a random intermediate destination $\sigma(i)$ from $\{1, ..., n\}$. Packet v_i travels to node $\sigma(i)$.
- **Phase 2:** Packet v_i travels from $\sigma(i)$ on to its destination d(i).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Each phase uses the bit-fixing strategy to determine its route.
- Nodes use a FIFO queue to store incoming packets.

Analysis

 Observation: View each route in Phase 1 as a directed path in the hypercube from the source to the intermediate destination. Once two routes separate, they do not rejoin.

Lemma

Let the route of v_i follow the sequence of edges $\rho = (e_1, e_2, ..., e_k)$. Let S be the set of packets (other than v_i) whose routes pass through at least one of $\{e_1, e_2, ..., e_k\}$. Then, the delay incurred by v_i is at most |S|.

Theorem

Theorem

With probability at least 1 - 1/N, every packet reaches its destination in 14n or fewer steps.

(ロ)、(型)、(E)、(E)、 E) の(()