Randomised Approximation Sheet 1

Due date: 17.11.2020

Exercise 1.

We have a six-sided dice which comes to side i with probability proportional to i. What is the probability of having even number in one roll?

Exercise 2.

Suppose that a fair coin is flipped n times. For $k>0$, find an upper bound on the probability that there is a sequence of $\log _{2} n+k$ consecutive heads.

Exercise 3.

A group of n men enter a restaurant and check their hats. The hat-checker is absent minded, and upon leaving, she redistributes the hats back to the men at random.
(a) What is the probability P_{n} that no man gets his correct hat, and how does P_{n} behave as n approaches infinity?
(b) What is the expected number of men that get the correct hat?

Exercise 4.

Give examples of events where $\operatorname{Pr}(A \mid B)<\operatorname{Pr}(A), \operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$ and $\operatorname{Pr}(A \mid B)>$ $\operatorname{Pr}(A)$.

Exercise 5.

Suppose that we flip a fair coin n times to obtain n random bits. Consider all $m=\binom{n}{2}$ pairs of these bits in some order. Let Y_{i} be the exclusive-or of the i th pair of bits, and let $Y=\sum_{i=1}^{m} Y_{i}$ be the number of Y_{i} that equal 1.

- Show that each Y_{i} is 0 with probability $1 / 2$ and 1 with probability $1 / 2$.
- Show that the Y_{i} are not mutually independent.
- Show that the Y_{i} satisfy the property that $E\left[Y_{i} Y_{j}\right]=E\left[Y_{i}\right] E\left[Y_{j}\right]$.
- Find $\operatorname{Var}[Y]$.

Exercise 6.

Prove that $E\left[X^{k}\right] \geq E[X]^{k}$ for any even integer $k \geq 1$.

Exercise 7.

We roll a standard fair die over and over. What is the expected number of rolls until the first pair of consecutive sixes appears? (Hint: The answer is not 36.)

If you have any question regarding the problems, please do not hesitate to contact us.

