Randomised Algorithms Sheet 10

Due date: 09.02.2021

Exercise 1.

Let G be a 3 -colorable graph.
(a) Show that there exists a coloring of the graph with two colors such that no triangle is monochromatic. (A triangle of a graph G is a subgraph of G with three vertices, which are all adjacent to each other.)
(b) Consider the following algorithm for coloring the vertices of G with two colors so that no triangle is monochromatic. The algorithm begins with an arbitrary 2 -coloring of G. While there are any monochromatic triangles in G, the algorithm chooses one such triangle and changes the color of a randomly chosen vertex of that triangle. Derive an upper bound on the expected number of such recoloring steps before the algorithm finds a 2 -coloring with the desired property.

Exercise 2.

Let X be a Poisson random variable with mean μ representing the number of errors on a page of some book. Each error is independently a grammatical error with probability p and a spelling error with probability $1-p$. If Y and Z are random variables representing the number of grammatical and spelling errors (respectively) on a page of that book, prove that Y and Z are Poisson random variables with means μp and $\mu(1-P)$, respectively. Also, prove that Y and Z are independent.

Exercise 3.

Suppose that balls are thrown randomly into n bin. Show, for some constant c_{1}, that is there are $c_{1} \sqrt{n}$ balls then the probability that no two land in the same bins is at most $1 / e$. Similarly, show for some constant c_{2} (and sufficiently large n) that, if there are $c_{2} \sqrt{n}$ balls, then the probability that no two land in the same bin is at least $1 / 2$. make these constants as close to optimal as possible.

Hint: You may want to use the facts that $e^{-x} \geq 1-x$ and $e^{-x-x^{2}} \leq 1-x$ for $x \leq \frac{1}{2}$.

Exercise 4.

Consider the probability that every bin receives exactly one ball when n balls are thrown randomly into n bins.
(a) Give an upper bound on this probability using the Poisson approximation.
(b) Determine the exact probability of this event.
(c) Show that these two probabilities differ by a multiplicative factor that equals the probability that a Poisson random variable with parameter n takes on the value n. Explain why this is implied by Theorem 5.6 from the book by Mitzenmacher and Upfal.

Blatt 10 Version: February 2, 2021 (14:01 Uhr)

Exercise 5.

If you have any question regarding the problems, please do not hesitate to contact us.

