Randomised Algorithms
 Sheet 6

Due date: 15.12.2020

Exercise 1.

We have seen in the lecture that packet routing in hypercube using randomized algorithm needs fewer than $14 n$ steps with probability at least $1-1 / N$ to deliver all packets. Show that the expected number of steps within which all packets are delivered is less than $15 n$.

Exercise 2.

Consider the following randomized version of Insertion - sort, where we first compute a random permutation and then apply the normal Insertion - sort algorithm:

```
Algorithm 1: Rand-Insertion-sort(A)
    Result: Sorts an array \(A[1 \cdots n]\) in non-decreasing order
    Random Permutation(A);
    for \(j \leftarrow 2\) to \(n\) do
        key \(\leftarrow \mathrm{A}[\mathrm{j}] ; \mathrm{i} \leftarrow \mathrm{j}-1 ;\)
        while \((j>0)\) and \((A[i]>k e y)\) do
            \(\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}] ; \mathrm{i} \leftarrow \mathrm{i}-1 ;\)
        end
        \(\mathrm{A}[\mathrm{i}+1] \leftarrow\) key;
    end
```

Analyze the expected number of comparisons made by the algorithm. (An asymptotic analysis is not sufficient: You should analyze the exact number of expected comparisons.)

Exercise 3.

Given an $n \times n$ matrix A all of whose entries are 0 and 1 . Find a column vector $b \in\{-1,+1\}^{n}$ that minimize $\|A b\|_{\infty}$. (Hint: For $1 \leq i \leq n$ set $b_{i}=1$ with probability $1 / 2$ and the same for $b_{i}=-1$.)

Exercise 4.

Consider the following weighted version of $M A X-S A T$ problem. Each clause has a positive weight and the goal is to maximize the weights of the satisfied clauses. Show that there is a truth assignment satisfying clauses the sum of whose of weights is at least half of the total weights.

Exercise 5.

Suppose that we have n jobs to distribute among m processors. For simplicity, we assume that m divides n . A job takes 1 step with probability 1 and $k>1$ with probability 1 p. use Chernoff bounds to determine upper (and lower bounds) that holds with high probability (more than $1-1 / n^{c}$ for $c \geq 1$) on when all jobs will be completed if we randomly assign exactly n / m jobs to each processor.

Exercise 6.

You are hosting a web service. Whenever someone visits your website an algorithm called $L V-A L G$ is executed. It has expected running time of 2 seconds.
(a) Give a bound on the probability that the actual running time of $L V-A L G$ exceeds 1 hour.
(b) What is the expected number of visitors before one of them has to wait 1 hour for $L V-A L G$ to finish?
(c) Now consider the following algorithm, which we call $L V-A L G-W i t h-R e s t a r t:$ Start running $L V-A L G$. If the algorithm terminates within 4 seconds, then we are done and so we stop. But if not, we abort the execution and start all over again. (Thus $L V-A L G$ is repeated until we get a run terminating within 4 seconds.) Give a bound on the probability that the running time of $L V-A L G-W i t h-$ Restart exceeds 2 minutes. (Assume that testing whether algorithm runs for 4 seconds, aborting the execution and restarting does not take any time.)
(d) What is the expected number of visitors before one of them has to wait for more than 2 minutes if we use the $L V-A L G-W i t h-R e s t a r t s ?$

If you have any question regarding the problems, please do not hesitate to contact us.

