
The Reasons Might be Different –

Why Students and Teachers Don’t Use Visualization Tools

Maria Knobelsdorf
University of Oldenburg

Department of Computer Science

26111 Oldenburg, Germany

+49 441 798 2990

knobelsdorf@uni-oldenburg.de

Essi Isohanni
Tampere University of Technology

Insinöörinkatu 42 B 37

33720 Tampere, Finnland

+358 40 8490717

essi.isohanni@tut.fi

Josh Tenenberg
University of Washington, Tacoma

Computer Science and Systems

Tacoma, WA 9802-3100, USA

+1 253 692 5800

jtenenberg@uw.edu

ABSTRACT
In this paper, we address the problem that most teachers and

students tend not to use existing visualization tools for teaching

and learning programming, respectively, although visualization

tools are one of the most investigated research fields in Computer

Science Education. We discuss possible reasons of the problem

mentioned above as well as directions for future research based on

Activity Theory, a theoretical framework from developmental

psychology. Therefore, this is a philosophical paper, with the

purpose of briefly presenting those aspects of Activity Theory that

are most relevant to the development of program visualization

tools, and pursuing the implications of this theory for deepening

our understanding of how these tools impact teaching and

learning.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:

Computers and Education - Computer and Information Science

Education

General Terms
Human Factors

Keywords
Program Visualization Tools, Activity Theory, Theoretical

Framework, Educational Effectiveness

1. INTRODUCTION
When teaching programming, most teachers use visualizations in

order to illustrate and specify concepts and ideas. In general, this

seems to be an obvious and sense-making educational approach,

since programming concepts are abstract constructions that mostly

lack matching objects from everyday life and therefore cause

students to have many difficulties in understanding. In

consequence, an immense amount of software development and

empirical research has been done over the past 30 years in the

field of educational software tools for displaying and visualizing

algorithms and programming [47]. As a result, the range of

visualization tools is impressive, with tools available for learning

most of the languages used to teach introductory programming as

well as data structures and algorithms [30][36][40]. Although

being one of the most investigated research fields in Computer

Science Education, the field has been facing the problem that

teachers and students don’t use the visualization tools when

teaching and learning programming, respectively. Several

research approaches have been suggested and accomplished to

address this problem, and among these student engagement was

particularly focused. Still, the problem remains unsolved.

In this paper, we propose that in order to solve this problem a

deeper understanding is required. For this reason, we suggest to

use a theoretical framework which helps to analyze and reflect the

role of visualization tools. With theoretical framework we mean

an ontological and epistemological characterization of a domain

of discourse. In a research field, the elements of discourse and

how they are understood and interrelated determine which

research questions are posed and in consequence how data

collection and analysis are structured [9].

The awareness for discussing and explicitly incorporating

theoretical frameworks was already advocated by Hundhausen

more than a decade ago when discussing the problem described

above with regard to algorithm visualizations (AV): “The

solution, I contend, is to address the problem not at the surface,

but at its roots. In other words, instead of tweaking our current

design, pedagogy, and evaluation methods, we need to rethink the

theory of effectiveness in which they are rooted. Only by

proceeding from an alternative theoretical position - one that

sheds new light on why AV technology is pedagogically valuable

- do we have any hope of overcoming the obstacles that have

stood in the way of AV technology’s becoming a viable

pedagogical aid” ([12] , p. 5ff). In a recent publication, Sorva

discussed visual program simulation tools with regard to

cognitivist and constructivist learning theories and demonstrated

the high amount of issues both theoretical approaches bring into

question ([45], p. 212ff). But this kind of epistemological and

ontological characterizations of the field remains unquestioned in

most of recently conducted studies and a theoretical debate is still

missing. If we want to understand the problem mentioned above

better, we need to focus on the theoretical assumptions research in

this field stands on.

As an alternative to a cognitivist understanding of visualization

tools, Hundhausen ([12], p. 33ff) suggested the situated learning

approach by Lave and Wenger [23]. In this paper, we propose

Activity Theory as another possible theoretical framework for

understanding cognitive processes involved in using tools such as

program visualizations. Stemming from the work of Vygotsky in

the 1920’s, Activity Theory has been successfully used as a

theoretical framework in the field of Human-Computer-

Interaction [17]. By promoting its use within the field of program

visualization tools for educational purposes, we hope to not only

deepen our insight into the design, understanding, and use of

visualization tools, but to reconsider many of the questions that

Computer Science Education researchers ask about their

development and use. This paper, then, is neither a research study

nor an experience report. It is explicitly a philosophical paper,

with the purpose of briefly presenting those aspects of Activity

Theory most relevant to the development of program visualization

tools, and pursuing the implications of this theory for deepening

our understanding of how these tools impact teaching and

learning.

We begin the argumentation by giving in Section 2 an overview

of the current problems in the research field of program

visualization tools. Then, we introduce Activity Theory and its

main concepts in Section 3. Drawing upon the framework of

Activity Theory, we interpret in Section 4 visualizations tools and

examine the previously introduced problems. The paper concludes

in Section 5.

2. Problems in the Field of Visualization
Tools
The field of educational software tools for displaying and

visualizing algorithms and programming is a subfield of software

visualization ([45], p. 140ff). This field evolved in the early

1980’s, starting with development and research of algorithm

visualizations. The focus then shifted in the mid 1990’s towards

program visualization tools [47]. In this paper, we will talk about

visualization tools as referring to those educational software tools

that display, simulate, and visualize programming concepts.

Because algorithm and program visualization tools are regarded to

be part of the same visualizations research family, we will refer to

related work from both fields.

In this section, we discuss each of the two subproblems mentioned

in the introduction of this paper, specially focusing on what has

been suggested and done to solve these problems.

2.1 Teachers Do not Use the Visualizations
The first problem is that most of programming teachers do not

tend to use the existing visualization tools in teaching

programming [1][48]. Hundhausen et al. claim that visualizations

are mostly used by those teachers who were also involved in the

development of the respective tool [13]. According to Naps et al.,

the most common reasons that teachers report for this situation are

related to the practical aspects of the visualization technology

[32]. According to that, it produces too much overhead for the

teachers to incorporate the visualization tool in their work, for

instance, searching for good examples, learning to use the tools,

and adapting the materials to one’s own teaching approach. In

addition to these practical reasons, teachers doubt if visualizations

are educationally effective [13] [32]. In the following subsections

we will discuss work related to these reasons.

2.1.1 The Practical Problems
Visualization tool developers have charted teachers’ needs to

tackle the practical problems. Naps et al. identified teachers as the

key persons to enhance the use of visualizations in class rooms

and thus provide an extensive list of instructions on how to

address teachers’ needs when developing visualization tools [32].

For example, they suggested that visualization tools should enable

platform independence, capture larger programming concepts, and

be mapped to existing teaching and learning resources. For

disseminating visualization tools they suggested an outline of a

standard web site, whereas for sample items they recommend to

included them in evaluation instruments intended to measure

teachers’ and students’ satisfaction with the tool. Shaffer et al.

analyzed a collection of over 500 visualizations and concluded

also that it should be improved how material is disseminated,

propagating known best practices, and informing developers about

what kinds of materials are needed [43]. To make this

improvement happen, Shaffer et al. promote an online educational

community whose purpose is to better focus the future directions

of tool development and use[42] [44].

Another aspect of how teachers perceive visualization tools is

related to their attitudes. In a phenomenographic study, Levy et al.

described teachers’ attitudes towards a visualization tool using

four categories [26]. Two of them described a positive attitude

towards the tool and the other two a negative attitude. In addition

to the simple negative orientation, the other negative category

described that the teachers experienced the tool in a conflicting

manner: they were enthusiastic about the tool but still reluctant to

use it. Levy et al. investigated the reasons for the teachers’

attitudes in a further quantitative survey using a theory of planned

behavior [25]. They concluded that teachers feel they are not in

control when using a visualization tool and they are not confident

with this situation.

2.1.2 The Educational Effectiveness of Visualizations
There are many studies on the educational effectiveness of

visualizations. Gurka and Citrin summarized the results of these

studies to be “markedly mixed” [11]. With this they mean that

some of the studies demonstrated that visualizations were

pedagogically advantageous for learning, some that they were not,

and some that the advantage was partial. Apparently, such results

are not convincing teachers to stop doubting the tools’ educational

effectiveness.

Hundhausen et al. took a closer look below the surface of the

“markedly mixed” results and conducted a meta-study comprising

24 empirical studies about visualization tools’ educational

effectiveness [13]. The main result of this meta-study was the

insight that students’ utilization patterns of visualization tools

have a much greater impact on their learning success – and

therefore on the tool’s educational effectiveness – than the quality

of the visualizations. As a consequence, Hundhausen et al.

suggested investigating the educational effectiveness of

visualization with a focus on students’ engagement. Also Stasko

and Hundhausen suggested that research on visualizations should

be more student-oriented, i.e., researchers should study how

students use visualizations in order to develop tools and materials

according to discovered needs [47].

2.2 Students Do not Use the Visualizations
Either
The second problem is that even if visualization tools are

introduced to students in lecture and they grasp their importance

as a learning tool, they still do not seek to use them to study and

explore concepts outside class ([4], p. 393). A survey conducted

by Naps et al. pointed out that one of the key obstacles in the

adoption of visualizations is that from the learners’ perspective

the visualization technology may not be educationally beneficial

[32].

There are not many studies reporting how often students use the

visualizations provided to them. One reason for this can be that in

many cases visualizations are used in class as a compulsory

material so there is no data about how many students would use it

in a self-directed way. An international survey handling different

kinds of program visualizations revealed numbers of times

students used program visualizations during a programming

course when it was voluntary for them ([21], see Figure 2): out of

335 respondents, approximately a fourth had not used them at all.

Most of the students used them only a couple of times and less

than a third of the respondents had used them for more than 5

times. This gives some perspective on what the user rate of

visualizations might be in general.

Stasko and Hundhausen present the history of the visualization

field noting that both, the development of visualization tools and

research on their usage, have been technically oriented and

focusing on the tools rather than the users, especially in the

infancy of this area [47]. Later on, there has been a change of

direction towards a more student-oriented approach in both of

them. However, the technically oriented opening can be seen as a

reason for not making a hit with the students. In the following two

subsections, we will summarize what has been done in both of

these fields to move towards a user-oriented direction.

2.2.1 Visualization Tool Development
Many of the visualization tools were developed by expert

programmers or teachers of programming [47]. For novice

programmers this can lead to difficulties in using them. To gain an

understanding on how fundamental problems this can create, we

take an eye-tracking study by Bednarik et. al. as an example [5].

This study revealed that expert and novice programmers use

different visual attention strategies when using a visualization

tool. Thus, it can be difficult for an expert to understand how the

tool should be designed in order to support novice programmers’

way of using it.

Stasko and Hundhausen requested that in the future visualization

tools should be developed using a learner-centered design process

and usability specialists as designers instead of CS teachers [47].

In addition, instead of developing tools and materials according to

the technical visions of the developers’, the field should study

how students use visualizations and develop tools and materials

according to their needs. Shaffer et al. also demanded more

fundamental research on how to develop and use visualizations

[24]. In consequence, usability studies have been conducted for

some visualization tools to overcome the mentioned problem [20].

This certainly improves the usability of the tools, but still keeps

the expert perspective in the tool development.

2.2.2 Research on Visualizations
The shift to students’ perspective in the research on program

visualizations goes back to the meta-study by Hundhausen et al.

[13] whose main result was the insight that students’ utilization

patterns of visualization tools have a much greater impact on their

learning success – and therefore, on the tool’s educational

effectiveness – than the quality of the visualizations. As a

consequence, Hundhausen et al. suggested investigating the

educational effectiveness of visualizations focusing specifically

on student engagement.

Following the meta-study, Naps et al. explored the role of

visualizations and the corresponding student engagement in CSE

and proposed an Engagement Taxonomy (ET) with a general

research framework for further inquiry [33]. The ET defines

different levels of engagement, for instance, the level responding

means answering questions concerning the visualization presented

by the system; meanwhile, the level viewing describes non-active

involvement. The different engagement levels describe single

situations or activities. Their research framework proposes

hypotheses contrasting these engagement levels (e.g. “Responding

results in significantly better learning outcomes than viewing”),

indicates these hypotheses can be tested, and recommends a

classical experimental study that is based on three steps: pre-test,

use of materials, and post-test. A great number of controlled

studies have been conducted following this research framework;

summarizing them Urquiza-Fuentes and Velázquez-Iturbide

presented a review where they analyze 33 evaluation studies of

visualization tools with regard to the different levels of the ET

[49]. All these studies emerge from the general question how to

better engage students with visualizations testing the use of

visualization on different levels of the ET.

The ET was developed mostly normatively in order to describe

possible engagement levels that can be tested in experiment

studies but this leaves possible other forms of student engagement

outside the scope. The experimental framework also limits to a

single use session whereas learning programming is a long-term

process. Thus, it does not capture the students’ perspective of

using visualizations completely. It focuses on student engagement

but not on the student perspective.

There are also studies addressing the students’ perspective on

visualizations that use other approaches than the ET, for example

[15][16][22][29][27]. These studies have been conducted e.g.

interviewing or observing students and using qualitative methods

to analyze this data. Some of these studies reported students’

behavior when using visualization tools with a category system

and some were more concentrated on the usability of a

visualization tool. In summary, this work gives interesting insights

into students’ use of visualizations and widens the students’

perspective on the use of visualizations. However, the ultimate

reasons for the low usage rate of visualizations have apparently

not been found since the state of affairs has not changed.

2.3 Concluding Remarks
All this work aiming to solve the mentioned problems has

certainly improved the quality of visualizations, extended possible

practices of using them in class, and the support given to teachers’

regarding their usage. However, these efforts seem to be not

helpful enough since visualization tools are still not used widely

by teachers and students.

We suggest that before trying to solve the mentioned problems we

need to analyze further their possible reasons. For this matter, a

theoretical perspective is reasonable because it questions the

ontological and epistemological characterization of the domain of

discourse, see also ([12], p. 5ff).

3. ACTIVITY THEORY
Activity Theory is a psychological theory about the relationships

between human beings and their goal-directed activities. The

theory has its roots in Russian cultural-historical psychology from

the 1920’s by Vygotsky [50], and was developed further by

Leontiev [24]. There are many similar theories that have been

elaborated over the last three decades and that have built on these

historical foundations that go by the names situated learning [23],

sociocultural learning [37][53], distributed intelligence [35],

among others. For our purposes in this paper, we focus on the

primary concepts from Activity Theory as originally developed by

Vygotsky and Leontiev and some of the above named extensions

for a better explanation.

Activity Theory has been applied to different fields like for

example Education and Technology, among which the

interpretation by Engeström became quite known [10]. Activity

Theory has been also very influential in Human-Computer-

Interaction (HCI) [8][17] as the focus in this field of research has

shifted towards activities of people using technology over the past

twenty years. Here, it was “recognized that technology use is not a

mechanical input-output relation between a person and a machine;

a much richer depiction of the user’s situation is needed for design

and evaluation. However, it is unclear how to formulate that

depiction in a way that is not purely ad hoc. Here is where activity

theory helps: by providing orienting concepts and perspectives.”

([34], p. 8). Based mostly on these both depictions, Berglund

introduced this framework to Computer Science Education ([7], p.

45ff).

Although, there are many differences between HCI and the field

of EVs, we find the same distinct relationship between an artifact

and persons who interact with them and these are respectively: the

visualization and students using it for programming, teachers

using it in instruction, and tool-developers building it for former’s

uses. We will introduce Activity Theory for the same purpose as it

was applied in HCI. As a theoretical framework it will help us to

conceptualize this relationship and to reflect the problems

discussed in section 2.

As an account of human activity and psychological development,

Activity Theory represents a paradigm change from many other

kinds of psychological frameworks, such as constructivism [14] or

cognitivism [52]. Some of the concepts that will be introduced

next do not have straightforward mappings to these other

psychological theories, and must be understood as part of a larger,

but different, theoretical whole. Such a paradigm shift in

psychological theory may engender the kinds of cognitive

dissonance for the reader as those felt by an experienced

imperative programmer on first encountering an object-oriented

language. Therefore, it might be difficult for readers with a strong

background in CS and cognitivism to adopt and appreciate this

way of thinking. But, the sophisticated lens that the Activity

Theory approach offers is worth the endeavor because it helps us

to develop a richer conception of what it means to teach and learn

programming and algorithms with visualizations.

3.1 Activities and Tools
Activity, the main concept in Activity Theory, denotes the

interaction of a person with the world he or she lives in. Activity

Theory emerges from the assumption that people are goal-

directed, and that they carry out activity as a means to achieve

their goals. The term goal refers to a desired state of the world,

and the term activity denotes sequences of action—both mental

and physical—that people carry out by their own volition.

Activity Theory differentiates between internal and external

activities, but emphasizes that both are highly connected to each

other and to the subject of activity, as well.

According to Activity Theory, activities involve the use of tools

[37]. The term tool denotes not only material objects used to

affect the material world, such as pencils, hammers, automobiles,

and steam shovels. It also denotes symbolic objects used to affect

the mental world of the self and others, such as “language; various

systems for counting; mnemonic techniques; algebraic symbol

systems; works of art; writing; schemes, diagrams, maps, and

mechanical drawings” and similar ([51], p. 137). Although

physical and symbolic tools are distinguished here with respect to

their domains of use, physical tools can also come to have

symbolic importance beyond the purely functional.

Activity Theory posits that almost all human activity is said to be

mediated by tools and that people rarely act directly on the world,

see [53], [51] and ([17], p. 42ff). Saying that activity is mediated

makes the assumption that action cannot be separated from the

milieu in which it is carried out ([53], p. 18). For example, pencil

and paper, an abacus, and an electronic calculator all are different

tools for summing a set of numbers. The related external activities

with these tools are different as are the internal activities which

are inextricably bound to the particular tools a person chooses to

use for summing numbers. Because of their role in human goal-

directed activity, tools are sometimes referred to as mediational

means [53], i.e. they are not incidental to activity, nor do they

simply enable it. Rather, they are inseparable from activity,

serving as the point of contact between person and world.

3.2 Internalization and Externalization
Tools mediate activities because they embody a certain meaning

for how to use them and which kind of purpose or goal can be

achieved with them. Using them, a person adopts this implicitly

embodied knowledge within the activity that he or she carries out

with the tool. For example, the specific form of a hammer embeds

knowledge about the ergonomic properties of the human body as

well as physical properties of the external world, such as force and

momentum. In consequence, nailing activities that are mediated

by a hammer will be shaped through the tool’s incorporated

knowledge. This issue becomes crucial in the process of

internalization, a concept that is introduced next.

3.2.1 Internal–External Dimension
Internalization is a concept in Activity Theory that refers to a

process by which the tool’s embodied knowledge is internalized

through a person’s activities, being first external and then internal

activities. More precisely, internal activities are derived from

external activities, and both are mediated by the specific tool in

use ([17], p. 56). Let’s consider for example the task of finding

the way in a new city using a map. In the beginning, the mediation

is highly visible because it incorporates first the external activity

of looking at the map, reading its symbols and pictures, and

connecting this information to the environment of the city. This is

what Vygotsky distinguishes as external mediation (and the tool’s

function as external mediator): the map mediates an individual’s

external and internal activities. After a while when a person

internalized the map’s concepts, he or she will stop to use the map

and does not practice the external activities with this tool

anymore. He or she will be able to move through the city due to

the internalized concepts and understanding developed through

external mediation by the map. But his or her internal activities

will still remain mediated because they have been mediated by the

map and through the external activities. This is what Vygotsky

distinguishes as internal mediation and the tool’s function as

internal mediator ([17], p. 43ff).

As Kaptelinin and Nardi point out internalization is not a carbon

copy or a simple transfer from previously external to internal

activities. Intenalization must be understood as “redistribution

between external and internal components of activity”. In

consequence “internal activities cannot be understood if they are

analyzed in isolation from external activities, because there are

mutual transformations between the two kinds of activities.” ([17],

p. 69)

Externalization on the other hand means the process of

transforming internal activities into external ones by creating tools

that can be used for further mediation. What starts as ideas inside

the mind of a person can thus become part of the surround that the

person uses for subsequent activity or for collaboration between

several people. Externalizing thought in a perceivable form (a

sketch, a model, a prototype, an outline, a draft) is therefore much

more than simple cognitive offloading. This is because these

externalized artifacts are available to the perceptual system, thus

giving rise to iterated perceptual-cognitive loops that are not

possible with purely (internal) mental representations.

3.2.2 Individual–Social Dimension
Mediation includes not only the introduced internal-external

dimension. Tools do not simply arise de novo in the hands and

minds of individual actors. Rather, they are provided to

individuals by the surrounding culture, accreting over time and,

passed from one generation to the next. As Pea points out tools

“represent some individual’s or some community’s decision that

the means thus offered should be reified, made stable, as a quasi-

experiment form, for use by others. In terms of cultural history,

these tools and the practices of the user community that

accompany them are major carriers of patterns of previous

reasoning” ([35], p. 53). Cultural practices of tool use evolve in

tandem with the evolution of the tool. For example, just as the

materials and form of hammers have evolved over time [3], so

have hammer-mediated activities changed; if the tool changes, so

must its use. Therefore, tools represent socially distributed

cultural entities that implicitly embed collective knowledge of

their use in context.

According to Vygotsky, an individual first performs a particular

tool-mediated activity in collaboration with or guided by others

that already have certain tool-using skills. With gained

experience, the individual transforms activities from what was

initially social to one that are performed individually. The same

way, they contribute to the social activity in the process of

externalization [50]. This is an active transaction between the

social and the individual dimension of activity.

3.3 Concluding Remarks
One of the most important aspects of the principle of mediation

and one of the main ways that Activity Theory departs from

cognitivism, is that what is internalized during an activity depends

crucially on the mediational means used to carry out the activity.

Mental processes, tool use, and interaction with the world are

tightly bound together and this is especially true for activities of

learning: “A fundamental assumption in a sociocultural

understanding of human learning is precisely this: learning is

always learning to do something with cultural tools (be they

intellectual and/or theoretical). This has the important implication

that when understanding learning we have to consider that the unit

that we are studying is people in action using tools of some kind

(see Wertsch, 1991, 1998; Säljö 1996). The learning is not only

inside the person, but in his or her ability to use a particular set of

tools in productive ways and for particular purposes.” ([41], p.

147).

4. VISUALIZATION TOOLS IN LIGHT OF
ACTIVITY THEORY
In this section, we will interpret the role of visualization tools for

learning and teaching programming with the introduced concepts

of Activity Theory. For this matter, we will consider in the next

subsections first the activity of learning programming with

visualization tools, and second the process of creating

visualizations for the purpose of teaching programming. Drawing

from this interpretation, we discuss the two problems introduced

in Section 2 and give implications for future research directions.

4.1 Visualizations as Mediational Means for
Learning Programming
With regard to Activity Theory, we can conceptualize students’

process of learning programming to be activities in which students

interact with a specific world in order to achieve certain goals.

Being set in an introductory programming course, this world will

include not only the physical environment like classrooms, labs,

or the library, but specifically the interaction with other

individuals that are met in this world like professors, tutors, and

other students. The specified goals will be for example attending

regularly class, doing programming assignments or homework,

and passing tests and exams.

According to Activity Theory, every tool in use, being physical

like a pen and paper or non-physical like a timetable, will mediate

the students’ activities of learning in a certain way. From this

point of view, we can understand visualizations to be symbolic

tools that embody an implicit understanding of programming

concepts for the purpose of mediating students’ programming-

related activities. This means that visualizations can be seen as an

external mediator for learning programming. In consequence,

using a visualization tool represents a dynamic process of

internalizing programming concepts; as students get better in

programming, the external activities of using the visualizations

transform into a mental process of internal activities.

4.2 Visualizations as Mediational Means for
Teaching Programming
Let’s consider now the process in which a teacher creates program

visualizations for a pedagogical purpose, no matter if this happens

on the blackboard during class or is supported by a specific

visualization tool. This activity requires understanding of the

visualized programming concepts as well as the ability to create a

specific visual model that represents them. With regard to Activity

Theory, this can be understood as an internal activity that is

externalized by creating an external mediator. From this point of

view, program visualizations represent for teachers externalized

programming concepts. We can extend this interpretation and

state that teaching activities in general are mediated by external

mediators like language, visualizations, among others, as well as

physical tools like blackboard, programming environments, slides,

and many others.

While tools are used by students for internalizing programming

concepts, teachers use tools to externalize the latter. During their

own learning process, teachers internalized a rich understanding

of programming concepts. Teaching, they choose tools that serve

them as external mediators. Concerning the social-individual

dimension, while introducing a visualization tool and its usage

during class a teacher distributes tools that represent to students

socially shaped and preserved cultural entities. After class, when

students first start to interact with the tool they perform the social

and external activity as it had been introduced to them.

4.3 Why Students Do not Use Visualizations
Tools
In section 2.2 we introduced the problem that students don’t use

visualization tools when learning programming. In the next two

subsections, we will discuss two possible reasons for the problem

and suggest implications for future research directions.

4.3.1 Internalization is not Stimulated Enough
One reason why the majority of students don’t use visualizations

regularly when learning programming although their benefit was

proven in research studies may be that the students’

internalization process with the tool has not been stimulated

enough and students tend to use the tool only from time to time,

not knowing how to support their programming activities with it.

This argument can be supported with the research studies that

proved the tools’ educational effectiveness.

The evaluation of a visualization tool is mostly conducted in

purposefully designed learning situations for controlled

experimentation. Interpreting learning programming with

visualization tools being an internalization process, this means

that the social distribution of the visualization tool might be much

higher and more intensive than in a regular programming course.

Depending on the amount of students that attend a regular

programming course, the social dimension of activities between

students and teachers is less intensive: students are expected to

work individually on their computers, having contact with the

instructor or teacher once or twice per week. In addition, when

teachers don’t promote the visualization tool as intensively as

during a research study, it might be even less accepted among

students. In summary, a significant difference between research

study and regular class situation can be assumed. The

consequence of all this is that the internalization process with the

tool is not stimulated enough like it happens during a research

study.

This interpretation suggests different directions in the course setup

and instructions on how visualizations should be used in order to

stimulate the internalization process with the tool. First of all, the

social distribution must be more emphasized; just presenting the

tool once or twice during class or lecture is probably not enough

to demonstrate the tools function in the process of internalization.

Efforts suggested by Naps et. al. [32] and described in subsection

2.1.1 are plausible with regard to the social-individual dimension

of internalization. Furthermore, it appears to be not enough to

develop a visualization tool and to test its educational

effectiveness as well as its usability. It is also important to

investigate how students’ internalization process with the tool can

be stimulated appropriately. But this requires a research approach

that would focus on possible different stages of the internalization

process students might undergo when using visualization tools for

learning programing.

Such research approach would be a very different than the one

taken with the Engagement Taxonomy introduced in subsection

2.2.2. Instead of testing possible approaches of how students can

be stimulated to more engagement with the visualization tool

according to the different engagement levels, the purpose would

be to detect the different stages in which student engagement with

the tool rises and declines with the regard to the tool’s role as

external and internal mediator.

4.3.2 Internalization Already Happened
Another reason why students don’t use visualizations although

their benefit was proven in research studies might be that the

internalization already happened. Activity Theory lends support to

the view that the mediator might be advantageous for its user

mostly during the process of internalization. Finding it helpful

during internalization, the student does not necessarily need the

visualizations any longer when proceeding, because external

conceptualizations of programming transform into internal

activities. Then the tool becomes an internal mediator and is

physically not needed anymore.

Research studies investigate the educational benefit of a

visualization tool in a single use session as part of a controlled

experiment. From the perspective of Activity Theory, this means

that only different stages of the internalization process are

evaluated instead of the internalization itself. In addition, studies

that investigate if students are using and benefiting from

visualizations usually inquire students directly about their usage

patterns and habits and very often by the end of the course in

order to let students reflect their learning process. But when the

benefit of visualizations is to become internalized and not used

anymore such direct inquiry might be misleading, especially when

students are not aware of the principles of internalization.

Therefore, in order to investigate if students were using and

benefiting from the tool, it would be more appropriate to

investigate their programming activities during the whole course

in order to grasp all the different stages of internalization. By the

end of the course it would be also important to inquire their

internal mental models of programming concepts by asking them

to externalize their internal activities and check how much this

resembles the visualizations. This could be done using language

by asking students to describe how they understand a

programming concept or using visualizations by asking them to

draw pictures. But other kind of externalization would be surly

possible, as well. This kind of student inquiry would reveal a

more differentiated picture about students’ real usage and benefit

of visualization tools.

4.4 Why Teachers Do not Use Visualizations
In section 2.1 we introduced the problem that teachers don’t use

visualization tools when teaching programming. In the next three

subsections, we will discuss three possible reasons for the

problem and suggest implications for future research directions.

4.4.1 Changing Meditational Means for Assessment
Let’s assume that teachers are right and the same visualization

tools that were beneficial for students in experimental studies are

not beneficial for students in common programming courses.

Beside possible reasons already discussed in the previous

subsection, how can this be explained? The introduced concepts

of Activity Theory suggest an explanation of this biased situation.

In Sec. 2.1.2 we reported on the meta-study by Hundhausen et. al.

which revealed that students’ utilization patterns of visualization

tools have a much greater impact on their learning success – and

therefore on the tool’s educational effectiveness – than the quality

of the visualizations. The fact that students’ activities with a

specific mediator are more relevant than just the mediator seems

obvious from the perspective of Activity Theory, where person,

tool and activity are regarded to be an inseparable unit. In

addition, the internalization of what novice students are learning is

adapted to the mediating tools involved. This implies that

changing a specific mediator requires the ability to transfer what

was learnt from one context of activities to others. This is

specifically important to the way students are tested or assessed

by the end of a programming course.

In the experimental study the assessment might be conducted with

the visualization tool that was also used for stimulating students

learning activities which means that the activity’s mediator

remains the same. The assessment in a regular programming

course instead might use different mediational tools (e.g. pen and

paper) than those students used normally when doing

programming (e.g. visualization tool, specific, programming

environment with debugger). It is obvious that keeping the same

mediator for learning and assessment makes it much easier for

students to accomplish a programming task. A change of

mediators for stimulating learning activities and for assessing

learning outcome can be the reason why teachers don’t observe

visualization tools to be educational effective. This implies that

for further investigations it will be very important to consider this

change of mediators when testing the visualization tool’s benefit

as well as assessing students’ outcome.

4.4.2 Visualization Tools Represent an Unwanted

Standardization
In order to introduce it in a programming course and promote it to

the students, teachers must be engage with the visualization tool

as well. From this point of view, teachers’ engagement with a

visualization tool must be regarded quite differently: Teachers

have to adopt it as a supportive educational tool for their teaching

and acknowledge the externalized concepts by promoting them to

their students. It is clear, that a teacher who was also involved in

developing a visualization tool is highly motivated in using it as

an educational tool because, among other factors, the visualized

concepts are an externalization of his or her understanding and he

or she has a clear understanding of the mediational mean the tool

is supposed to fulfill.

In general, a visualization tool represents an embodiment of

externalized programming concepts. Proposed for teaching it can

be therefore understood as a form of social agreement about how

programming concepts are understood and being therefore a form

of standardization. However, there are many different kinds of

visualizations and there is no consensus among teachers, students,

and developers about what a standardized representation should

look like. Therefore, we can assume that beside organizational

aspects like lack of time, among others, teachers might not

become engaged with a visualization tool because the externalized

programming concepts of the tool’s designers do not match their

own internalized concepts, which they developed when learning

to program themselves. This might be the reason why teachers

feel they are not in control when using a visualization tool and

that they are not confident with this situation, see [25] and section

2.1.1. When asked, teachers might report concrete organizational

problems with visualization tools, but the reasons for overcoming

them are related to such profound problems as not acknowledge

standardization. From this perspective, promoting an online

educational community as suggested by Shaffer et al.[42] [44] and

reported in sec. 2.1.1 is more than just a solution to overcome

teachers’ practical problems with visualization tools. An online

educational community creates a social group that has the

potential to negotiate what is acknowledged to be a standardized

externalization of programming concepts.

4.4.3 Creating and Using Visualizations with a

specific Tool is a Divided Activity
Naps et. al. reported that teachers find using visualization tools to

be very time consuming [32], although these tools were developed

with the argument of being time savers for teachers. Usually,

teachers create a specific visualization during class, for instance

drawing a simple picture on the blackboard and using language as

a further mediator to externalize their understanding. This

teaching activity can be accomplished spontaneously without

extra preparation and it is directly connected to the overall

learning and teaching context in which teacher and students meet.

In order to externalize the same with a visualization tool, teachers

must do this in advance and doing it for the first time, probably

use much more time. Here, they can’t use language as a mediator

to externalize quickly what they mean. Instead they are bound to

what the tool developers provided as possible externalization

features.

In contrast to the directly experienced context, a visualization tool

designer must make assumptions about such possible future

activities with the visualization tool. No matter how profound and

elaborated the tool developers’ knowledge is about learning and

teaching programming, the assumptions address future activities

that will take place without them. The direct chain between a

teacher and his or her own created visualization in a specific

teaching activity is divided between different people, places, and

time. It is rather very difficult for an expert to foresee the needs of

novice programmers and how it will support the internalization as

well as the teaching process involved. It is therefore very

important to study how students and programming teachers use

visualizations and develop tools and materials according to their

needs. Stasko and Hundhausen [47] request that visualization

tools should be developed using a learner-centered design process

and usability specialists as designers. Beside this general research

focus, the question remains if for teachers visualization tools are

better external mediators than other ones like for example pictures

combined with oral explanations.

4.4.4 Concluding Remarks
It might be that visualization tools are better external mediators

than for example pictures combined with oral explanations and

that it is just a question of social negotiation to persuade teachers

using them. But, being just used without a deeper teaching

context, their advantage may never come to its full potential. That

is, for the most visualization tools a fully approved pedagogical

approach is missing that the tool is supporting and accomplishing.

For example, the programming visualization environments BlueJ

and Greenfoot are part of the objects-first pedagogical approach,

see [2] [19] The pedagogical approach gives answer and evidence

to how the specific tool is supposed to be used during class to

support students learning activities and is much more specific in

advocating the tool’s use and benefit than a general claimed

educational effectiveness.

5. CONCLUSION
In this paper, we discussed the problem that teachers and students

don’t use regularly visualization tools for the purpose of teaching

and learning programming. In order to reflect and analyze

possible reasons for this problem, we introduced Activity Theory

including the concepts of activity, tool mediation, and

internalization-externalization as a possible theoretical

framework. We interpreted visualization tools to be mediators of

programming concepts that are supposed to be internalized by the

students and used by teachers as externalizations. Here, we argued

that possible reasons why students don’t use visualization tools

are:

• The internalization process is not stimulated enough

and students tend to use the tool only from time to time,

not really knowing how to mediate their programming

activities with it.

• The internalization process already happened and

therefore the tool became an internal mediator and is

physically not needed anymore.

In addition, we argued that possible reasons why teachers don’t

use visualization tools are:

• The educational benefit proven in research studies is not

replicated in a regular programming course because the

mediators used in the course as well as for assessing

students are changing meanwhile remain the same in the

research experiment.

• Visualization tools are socially not accepted because

they represent a standardized externalization without

being acknowledged by teachers and the rest of the

programming experts.

• Creating and using visualizations with a specific tool is

a divided activity between people, places, and time.

Based on our argumentation, an important direction for future

research in this field is to investigate how students use a

visualization tool regularly for their programming assignments

and how they interact with the tool in the process of

internalization. Furthermore, supporting teachers to include

visualization tools into their teaching activities depends on if they

acknowledge the tools’ to be more useful external mediators than

the one used before.

Activity Theory is a foundation for further development that took

place over the last decade of research in the field of

developmental psychology. Continuing the theoretical reflection

of visualization tools and their impact for learning programming

is therefore not limited to this theoretical approach only. Other

theories and approaches surly will reveal further aspects to discuss

that might even lead to different implications than the one

proposed and argued for in this paper. We acknowledge such

differentiation of discussion and theory building as it is deepening

our understanding of how these tools impact teaching and

learning.

6. ACKNOWLEDGEMENT
We thank Georg Wittenburg for a careful proofreading of the first

version of this paper and Randy Connolly for providing helpful

comments that improved this paper further.

7. REFERENCES
[1] Baecker, R. 1998. Sorting out sorting: a case study of

software visualization for teaching computer science. In

Software Visualization: Programming as a Multimedia

Experience, Brown, M., Domingue, J., Price B., and Stasko,

J. Ed. The MIT Press, Cambridge, 369-381.

[2] Barnes, D. J. and Kölling, M. 2012. Objects First with Java
A Practical Introduction using BlueJ. Fifth edition, Prentice

Hall / Pearson Education.

[3] Basalla, G. 1989. The Evolution of technology. Cambridge
University Press.

[4] Bazik, J., Tamassia, R., Reiss, S. P., and Dam, A. v. 1998.
Software Visualization in Teaching at Brown University, In

Software Visualization, Stasko, J. T., Domingue, J. B.,

Brown, M. H., and Price, B. A. Ed. The MIT Press,

Cambridge, 383-398.

[5] Bednarik, R. 2007. Methods to Analyze Visual Attention
Strategies: Applications in the Studies of Programming.

Doctoral Thesis. Joensuun yliopisto, University of Joensuu,

Finland.

[6] Bednarik, R., Moreno, A., Myller, N. 2006. Various
Utilizations of an Open-Source Program Visualization Tool,

Jeliot 3. Informatics in Education 5, 2, 195-206.

[7] Berglund, A. 2005. Learning computer systems in a
distributed project course: The what, why, how and where.

Doctoral thesis, Uppsala Dissertations from the Faculty of

Science and Technology nr. 62, Acta Universitatis

Upsaliensis, Uppsala University, Sweden.

[8] Boedker, S. 1989. A Human Activity Approach to User
Interfaces. Human-Computer-Interaction, 4, 171-195.

[9] Daniels, M. and Pears, A. 2012. Models and Methods for
Computing Education Research. In Proc. Australasian

Computing Education Conference. (Melbourne, Australia,

2012). ACE ‘12. ACS, CRPIT, 123, 95-102.

[10] Engeström, Y. 1990. Learning, working and imagining:
twelve studies in activity theory. Orienta-konsultit, Helsinki.

[11] Gurka, J. S. and Citrin, W. 1996. Testing effectiveness of
algorithm animation. In Proceedings of the 1996 IEEE

Symposium on Visual Languages, IEEE Computer Society

Press, Los Alamitos, 182-189.

[12] Hundhausen, C. D. 1999. Toward Effective Algorithm
Visualization Artifacts: Designing for Participation and

Communication in an Undergraduate Algorithms Course.

Doctoral Thesis, University of Oregon.

[13] Hundhausen, C. D., Douglas, S. A. , and Stasko, J. T. 2002.
A meta-study of algorithm visualization effectiveness.

Journal of Visual Languages & Computing, 13, 3, 259–290.

[14] Illeris, K. 2002. The Three Dimensions of Learning. Krieger
Publishing Company.

[15] Isohanni, E. and Knobelsdorf, M. 2010. Behind the curtain:
students’ use of VIP after class. In Proceedings of the Sixth

international workshop on Computing education research,

ICER ’10, ACM Press, New York, 87-96.

[16] Kannusmäki, O., Moreno, A., Myller, N., and Sutinen, E.
2004. What a Novice Wants: Students Using Program

Visualization in Distance Programming Course. In

Proceedings of the 3rd Program Visualization Workshop,

Report CS-RR-407, 126–133.

[17] Kaptelinin, V. and Nardi, B. 2004. Acting with Technology –
Activity Theory and Interaction Design. MIT Press,

Cambridge.

[18] Karavirta, V., Korhonen, A., Malmi, L., and Stalnacke, K.
2004. MatrixPro - A Tool for On-The-Fly Demonstration of

Data Structures and Algorithms. In Proceedings of the Third

Program Visualization Workshop, 26-33.

[19] Kölling, M. 2009. Introduction to Programming with
Greenfoot: Object-Oriented Programming in Java with

Games and Simulations, Pearson Education

[20] Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X.,
Korhonen, A., and Malmi, L. 2005. Multi-perspective study

of novice learners adopting the visual algorithm simulation

exercise system Trakla2. Informatics in Education, 4, 49-68.

[21] Lahtinen, E., Järvinen, H.-M., and Melakoski-Vistbacka, S.
2007. Targeting Program Visualizations. In Proccedings of

the 12th Annual Conference on Innovation & Technology in

Computer Science Education, ITiCSE ‘07, 256-260.

[22] Lattu, M., Meisalo, V., and Tarhio, J. 2000. How a
visualization tool can be used — evaluating a tool in a

research & development project. In Proceedings of the 12th

Annual Conference on the Psychology of Programming

Interest Group, PPIG ’12, 19-32.

[23] Lave, J. and Wenger, E. 1991. Situated Learning: Legitimate
Peripheral Participation. Cambridge University Press.

[24] Leontiev, A. N. 1978. Activity, Consciousness, Personality.
Englewood Cliffs, NJ. Prentice Hall.

[25] Levy, Ben-Bassat, R. and Ben-Ari, M. 2008. Perceived
behavior control and its influence on the adoption of

software tools. SIGCSE Bull. 40, 3,169-173.

[26] Levy, Ben-Bassat, R., and Ben-Ari, M. 2007. We work so
hard and they don’t use it: acceptance of software tools by

teachers. In Proceedings of the 12th annual SIGCSE

conference on Innovation and technology in computer

science education, ITiCSE ’07, June 25-27, 2007, Dundee,

Scotland

[27] Lonnberg, J., Malmi, L., and Ben-Ari, M. 2011. Evaluating a
visualisation of the execution of a concurrent program. In

Proceedings of the 11th Koli Calling International

Conference on Computing Education Research, Koli Calling

‘11, ACM Press, New York, 39-48.

[28] Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.,
Seppälä, O., and Silvasti, P. 2004. Visual algorithm

simulation exercise system with automatic assessment:

TRAKLA2. Informatics in Education, 3, 2, 267–288.

[29] Moreno, A. and Joy, M. S. 2006. Jeliot 3 in a Demanding
Educational Setting. In Proceedings of the Fourth Program

Visualization Workshop, Florence, Italy, 51–59.

[30] Moreno, A., Myller, N., Sutinen, E., and Ben-Ari, M. 2004.
Visualizing Programs with Jeliot 3. In Proceedings of the

International Working Conference on Advanced Visual

Interfaces, AVI ’04.

[31] Myller, N., Bednarik, R., Sutinen, E., and Ben-Ari, M. 2009.
Extending the Engagement Taxonomy: Software

Visualization and Collaborative Learning. Trans. Comput.

Educ., 1, 9, 1-27.

[32] Naps, T., Cooper, S., Koldehofe, B., Leska, C., Rößling, G.,
Dann, W., Korhonen, A., Malmi, L., Rantakokko, J., Ross,

R. J., Anderson, J., Fleischer, R., Kuittinen, M., and

McNally. M. 2003. Evaluating the educational impact of

visualization. SIGCSE Bull. 35, 4, 124-136.

[33] Naps, T., Rössling, G., Almstrum, V., Dann, W., Fleischer,
R., Hundhausen, C., Korhonen, A., Malmi, L., McNally, M.,

Rodger, S., and Velazquez-Iturbide, J. 2003. Exploring the

role of visualization and engagement in computer science

education. SIGCSE Bulletin, 35, 2, 131–152.

[34] Nardi, B. A. 1996. Activity Theory and Human-Computer-
Interaction. In Context and Consciousness: Activity Theory

and Human-Computer Interaction, Nardi, B. A., Ed. The

MIT Press, 8-16.

[35] Pea, R. 1993. Practices of distributed intelligence and
designs for education. In Distributed Cognition:

Psychological and Educational Considerations, Salomon, G,

Ed. Cambridge University Press, 47-87.

[36] Rajala, T., Laakso, M. , Kaila, E., and Salakoski, T. 2007.
VILLE A Language-Independent Program Visualization

Tool. In Proceedings of the 7th Koli Calling Conference on

Computer Science Education. Koli ’07.

[37] Rogoff, B. 2003. The Cultural Nature of Human
Development. Oxford University Press.

[38] Romero, P., Boulay, B. du, Cox, R., Lutz, R., and R. Bryant,
R. 2005. Graphical visualizations and debugging: A detailed

process analysis. In Proceedings of the 17th Annual

Workshop of the Psychology of Programming Interest

Group, PPIG ’05, 62-76.

[39] Rössling, G. and Freisleben, B. 2002. ANIMAL A system for
supporting multiple roles in algorithm animation. Journal of

Visual languages and Computing, 1, 3, 341-254.

[40] Sajaniemi, J. and Kuittinen, M. 2004. Visualizing roles of
variables in program animation. Information Visualization, 3,

3, 137–153.

[41] Säljö, R. 1998. Learning as the use of tools: a sociocultural
perspective on the human-technology link. In Learning with

computers, Littleton, K. and Light, P., Ed. Routledge New

York, 144-161.

[42] Shaffer, C. A., Akbar, M., Alon, A., Stewart,M., Edwards, S.
2011. Getting algorithm visualizations into the classroom. In

Proceedings of the 42nd ACM technical symposium on

Computer science education, SIGCSE ‘11. ACM, New York,

129-134.

[43] Shaffer, C. A., Cooper, M. L., Alon, A., Akbar, M., Stewart,
M., Ponce, S., and Edwards, S. H. 2010. Algorithm

Visualization: The State of the Field. Trans. Comput. Educ.

10, 3.

[44] Shaffer, C. A., Naps, T., Rodger, S., and Edwards. S. 2010.
Building an online educational community for algorithm

visualization. In Proceedings of the 41st ACM technical

symposium on Computer science education, SIGCSE ‘10.

ACM Press, New York, 475-476.

[45] Sorva, J. 2012. Visual Program Simulation in Introductory
Programming Education. Doctoral Thesis. Aalto University

publication series DOCTORAL DISSERTATIONS 61/2012,

Aalto University, Finland.

[46] Stasko, J. T. 1990. TANGO: A Framework and System for
Algorithm Animation. Computer, 23, 9, 27-39.

[47] Stasko, J. T. and Hundhausen, C. D. 2004. Algorithm
Visualization. In Computer Science Education Research,

Fincher, S. and M. Petre, Ed. Taylor and Francis, 199-228.

[48] Stasko, J. T. 1997. Using student-built animations as learning
aids. In Proceedings of the ACM Technical Symposiumon

Computer Science Education, ACM Press, 25-29.

[49] Urquiza-Fuentes, J. and Velazquez-Iturbide, J. A. 2009. A
survey of successful evaluations of program visualization

and algorithm animation systems. Trans. Comput. Educ., 9,

1-21.

[50] Vygotsky, L. S. 1978. Mind in Society: The Development of
Higher Psychological Processes: Harvard University Press.

[51] Vygotsky, L. S. 1981. The instrumental method in
psychology. In The concept of activity in Soviet psychology,

Wertsch, J. V., Ed. M. E. Sharpe.

[52] Wallace, B., Ross, A., Davies, J. B., and Anderson, T. 2007.
The Mind, the Body, and the World: Psychology after

Cognitivism? Imprint Academic, Exeter.

[53] Wertsch, J. V. 1993. Voices of the Mind: Sociocultural
Approach to Mediated Action. Harvard University Press.

