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ABSTRACT
Financial markets are highly complex adaptive systems. 
This paper deals with the application of simulators in 
software architectures for back-testing and automating 
financial market trading strategies. It characterizes traits 
and problems of algorithmic trading and describes the 
established use of simulators in back-testing and auto-
mated trading. A new approach in the form of a hier-
archical software architecture is introduced, containing 
simulators as integral parts in all layers, using them both 
during back-testing and automated trading. In addition 
to the software architecture the opening objects of in-
vestigation are outlined. Finally, the potential of gener-
alizing the application domains of our approach beyond 
financial market trading strategies is pointed out.

INTRODUCTION
Financial markets are highly complex adaptive systems 
(Maboussin  2002,  Darley  and  Outkin  2007,  Haldane 
2009), where a multitude of institutional and individual 
investors exchange financial goods like stocks,  bonds, 
currencies  or  commodities.  The  financial  markets 
provide  liquidity  as  well  as  buy and  sell  quotes,  en-
abling market participants to find trading partners, ex-
change asset valuation and to finally agree upon a trade 
price.  The effective trade prices  are recorded as  price 
histories,  remaining  accessible  in  a  machine-readable 
form, as a basis for subsequent research.

Simulation in Financial Markets

Dynamic simulation has been applied to the field of fin-
ancial markets mainly in two ways:

1. Description, reproduction, explanation, organization 
and forecasting of market behavior as a whole.

Beginning with macro-economic market models in 
continuous system dynamics style (Sharp and Price 
1984), recent research has emphasized the role of in-
dividual market participants. Thus modeling of fin-
ancial  markets  has  turned  towards  discrete  event 

models  (Jacobs  et  al.  2004)  and  shifted  to  multi 
agent based approaches (Arthur et al. 1997, Lux and 
Marchesi 2000, Levy et al. 2000, Hommes 2006, Le-
Baron 2006), especially during the last decade.

2. Research, test and optimization of investors' trading 
strategies.

Independently, academics, financial institutions and 
individual  investors  have  analyzed  and  simulated 
numerous trading strategies in order to answer ques-
tions on the profitability and risk of systematic trad-
ing.

This paper addresses the second aspect of application of 
simulation methods in financial markets.

Algorithmic Trading

Around 1900,  Charles  Dow published  the  assumption 
that financial markets quickly discount for all news, and 
thereby  prices  reflect  the  available  information  cor-
rectly.  His  further  hypothesis  that  prices  do  move  in 
trends with certain characteristics lead to the develop-
ment of technical analysis (Hamilton 1922, Rhea 1932, 
Schaefer 1960).

Technical analysis solely relies on market price histories 
and  examines  price  series  for  trends,  patterns,  anom-
alies, etc. in order to support – or suggest – investment 
decisions. As this is a pure quantitative task, computers 
have increasingly been used in the field of algorithmic 
investment analysis and decision making over the last 
thirty years. Today, automated trading accounts for 61 
percent of the U.S. stock market activity and 70 percent 
of individual trades (Kearns et al. 2010).

Back-testing

For the  purpose of  this  paper,  a  trading  strategy  is  a 
formally  specified,  systematic  sequence  of  actions  at 
financial markets. An automated trading strategy is im-
plemented algorithmically by a computer, without dis-
cretionary influence or other – intuitive – human inter-
ventions.

Before put into action in real markets, trading strategies 
are generally back-tested against historical price series. 
This makes it possible to determine statistical perform-
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ance measures of a strategy, e.g. the historical risk/re-
turn profile, without losing real money.

Back-testers are an application-specific type of discrete 
event  simulators  designed  to  develop,  offline-test,  de-
bug,  evaluate  and  optimize  financial  market  trading 
strategies under conditions nearly identical to real mar-
kets. Finally, they allow to connect a tested strategy to 
an online broker or to an exchange in order to have it 
automatically traded.

Modern commercially offered back-testers are typically 
structured as shown in Fig. 1 (Kocur 1999, SmartQuant 
2006, Rightedge 2010):

Figure 1: Common Architecture for Back-testing
and Automated Trading

A strategy formulated in a proprietary or general pro-
gramming language is provided with market data. This 
includes  trade  prices,  trading  volume or  ask  and  bid 
quotes, in elementary form as ticks or equidistantly ag-
gregated  to  bars.  Market  data  is  either  received  and 
transferred directly from the market or recorded before-
hand and then replayed afterwards. In the latter case we 
can  differentiate  between  the  less  common  real-time 
synchronous playback and the as fast as possible-pro-
cedure known from discrete event simulation, where the 
simulation clock advances to the time stamp of the next 
historical market data. In both cases the (missing) con-
nection to the markets is transparent from the strategy's 
point of view.
If the strategy algorithm calls for action at the market, 
typically a  buy or  sell  order  is  created.  This  order  is 
transferred to an internal trade simulator, which decides 
on the basis of the market data whether,  when and at 
which price orders of the strategy are executed in the 
simulation.  The  trade  simulator  notifies  the  strategy 
about order status changes and order executions. In ad-
dition  it  keeps  a  virtual  brokerage  account  for  the 
strategy, which is accessible for the strategy at any time.
The order executions are recorded in a  transaction his-
tory,  as  a  foundation  for  an  extensive  reporting.  The 
equity curve describes the development of total equity 
over time. Along with the transaction history,  it forms 
the basis for other performance indicators, allowing an 
estimation of the ratio of risk vs. return.

The operational mode delineated above is called simula-
tion mode, because the results of strategy behavior are 
simulated  with  regard  to  the  trading  account;  the 
strategy does not interact with the real market.
It should be stressed that we do not simulate the behavi-
or of the market itself or the reaction of the market on 
the strategy decisions made. On the one hand, there are 
no reliable formal models for financial market behavior 
available;  on the other hand, the impact of individual 
market participants is usually so small that one can ab-
stract from their influence.

If it is decided that a strategy should trade at the market 
automatedly, the trade simulator is switched to interac-
tion mode. In this mode it sends orders of the strategy to 
a broker or directly to exchanges. Conversely, the simu-
lator immediately returns received order states and exe-
cutions  to  the  strategy.  The  simulator  runs  in  bypass 
mode in terms of order processing, however, it keeps a 
record of the transaction history as well as a copy of the 
trading account data, enabling unchanged continuation 
of reporting.
From the strategy's point of view it is transparent wheth-
er it is trading in simulation or in interaction mode.

In  the  standard  architecture  a  strategy  always  trades 
against a simulator as counterparty. Usually the simulat-
or does not contribute anything to the strategy.

Changing Environments

The following citation of a practitioner illuminates one 
of the difficulties of automated algorithmic trading:

One  cannot  stick  to  the  rules,  because  the  rules  do  
change every six months. (Ridpath 1997)

According to this, any trading strategy – as a rule-based 
behavior  –  is  subject  to  the  risk of  obsolescence and 
consequently of limited applicability.
The  approach  of  permanent  self-adaptation  to  market 
development encounters the problem that reasonable be-
havior  rules  may not  be  identifiable  for  any environ-
mental setting. Beyond that the non-applicability of cur-
rent  rules  can  only  be  recognized  in  hindsight,  after 
losses already have been incurred. We can further argue 
that ongoing self-adaptation by continually developing 
new suitable  behavior  strategies  may simply take  too 
long, leaving no satisfactory period of use.

Multiple Strategies For Multiple Market Aspects

It  can be observed that  certain characteristic  financial 
market  phases  or  price  movements  are  apparently re-
appearing, so that  typical  terms have been established 
for  naming them.  Relating to  price  direction,  expres-
sions  such  as  crash,  sideways  market or  uptrend are 
used.  For  coarse-granular  price  formations  terms  like 
head-shoulder or  triangle exist, whereas  fine-granular 
candlestick patterns bear names  like  hammer  or  morn-
ing star. Periodicity of phenomena has e.g. been phrased 
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presidential cycle,  moreover concepts like January ef-
fect or window dressing refer to yearly recurring devel-
opments. Besides Huang (2009) denominates a number 
of historical financial market anomalies each of which 
could be used in a profitable manner for several years. 

Considering  the  only rudimentally listed  multitude  of 
potentially recurring phenomena and phases at financial 
markets,  it  cannot be excluded in general  that  trading 
strategies may be profitable at times, provided they are 
adjusted to their respective temporary trading environ-
ment.

The imprudent attempt to cope all market phases with 
the same single strategy is problematic: Given the multi-
faceted history of the target markets, the strategy had to 
incorporate (too) many degrees of freedom to consist-
ently prove successful during back-testing. Practical ex-
perience shows that this approach ever leads to over-fit-
ted  systems failing after  a  short  time,  as  soon as  the 
market starts behaving different from the past.

Sticking to a single strategy, a reduction of the degrees 
of freedom promises more general robustness. Restrict-
ing  the  existing  specializations  in  a  largely  uniform 
manner may indeed lead to a robust, but otherwise con-
sistently mediocre and therefore unattractive strategy.

Alternatively,  reducing the degrees  of  freedom select-
ively  may  allow  to  preserve  certain  specializations, 
while behavior patterns for other market phases may be 
lost  completely.  As a consequence the profit  and loss 
phases of such a trimmed strategy will alternate in an 
unpredictable manner, hindering practical applicability. 
As an example we mention a remaining trend-following 
component of a strategy, causing false signals and sub-
sequent losses in trendless markets.

The  problems  described  brought  institutional  market 
participants such as investment banks or hedge funds to 
proceed to merge several specialized strategies into one 
single architecture. Accordingly, back-testers and auto-
mated trading systems have to be designed for an inter-
play of  multiple  strategies.  This  will  be  discussed  in 
more detail in the next section.

STATE OF THE ART
Given multiple specialized strategies for different mar-
ket aspects, the question arises on which specialists' ad-
vice to invest the capital. For this purpose a superordin-
ated  selection  strategy  could  form an  opinion  on  the 
general  market  situation  and  in  further  consequence 
choose a basic  strategy that  appears  suitable  (Chande 
1997), see Fig. 2.

This  intuitive  two-layered  approach  is  problematic  in 
the sense that the selection strategy has to be correct in 
its opinion of a currently suitable basic strategy. While 
an intermediate failure of a chosen basic strategy may 

be realized by a drawdown of the equity curve, there are 
no context-specific confirmations which basic strategy 
to choose next, apart from the context-free rules of the 
selection strategy.

Figure 2: Multiple Basic Strategies with Superordinated 
Selection Strategy

Another weak point is that only the concatenated total 
sequence of the basic strategies can be analyzed, how-
ever, not the single basic strategies themselves: There is 
no equity curve attributable to the non-active strategies, 
therefore there are no individual evaluation possibilities. 
Finally, it is also unclear which part of the outcome res-
ults from the basic strategies and which from the selec-
tion strategy. Thus, reporting can only relate to the total 
complex in an indifferent manner.

In portfolio trading multiple specialized basic strategies 
trade in parallel on a shared trading account as shown in 
Fig. 3 (e.g. WealthLab 2007, Janeczko 2010).

Figure 3: Multiple Basic Strategies with one Shared 
Trading Account

The shared account constitutes a synchronization point 
and results in undesired problems: If the total free cash 
is already exhausted by other strategies, no further trade 
signals can be realized. Thus, not every basic strategy 
can be applied in a guaranteed and independent manner.
The  reporting  concerns  the  transactions  of  all  basic 
strategies  together.  It  evaluates  the  dynamic  strategy 
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mix on the highest level; however, the genuine contribu-
tion and quality of single strategies cannot be identified 
in  a  reliable manner due to  the strategy blockage de-
scribed above.

Institutional  investors  such  as  investment  banks  and 
hedge funds often trade a double-digit number of basic 
strategies  on  around  hundred  markets  simultaneously, 
easily  leading  to  thousand  or  more  effective 
strategy/market  combinations.  Every  basic  strategy 
owns  one  separate  trading account  per  market  and  is 
subject  to  a  central  superordinated risk  management 
(Fig. 4).

Figure 4: Multiple Basic Strategies with Separated Trad-
ing Accounts and Superordinated Risk Management

The risk management monitors each basic strategy in re-
gard to performance by means of the individual report-
ing. It pauses strategies that are temporarily unsuccess-
ful or reduces their position size, respectively.

At  this,  the  risk  management  also  considers  relations 
between the basic strategies with reference to correla-
tion of the equity curves, i.e. whether two strategies in 
combination  increase  total  risk,  are  independent  from 
each other or reduce risk when run in parallel.

As  in  the  aforementioned  selection  strategy  approach 
this is  a  two-layered architecture,  but  here each basic 
strategy can be rated and weighted individually without 
mutual interference. In addition, a global reporting can 
be generated at the aggregate level.

The risk management affects the total result in a signi-
ficant manner. Since it takes a unique role in the archi-
tecture, it is a critical weakness. Two or more parallel 
risk management strategies are not feasible; their com-
bination (and,  or, …) may be too restrictive or too tol-
erant, resulting in mutual blockage or annulment of risk 
management decisions, respectively.
Thus, a multiple, superimposed risk management would 
be in danger of complete failure, whereas a single risk 
management is a risk factor itself.

A NEW APPROACH
In the following, a multi-layered software architecture 
for  back-testing  and  automated  trading  is  introduced, 
where each strategy is assigned a separate simulator (see 
Fig.  5).  Instead  of  a  monolithic  risk management  we 
provide  a  hierarchically  organized  strategy  evaluation 
with subsequent imitation, combination or synthesis of 
analyzed strategy behavior. 

Figure 5: Introduced Software Architecture

Basic Strategies

Similar to the last-mentioned approach of the previous 
section, every trading strategy is assigned an own simu-
lator, leading to individual and independent measurabil-
ity. Our approach is novel in the sense that also in inter-
action mode of the overall system, each basic strategy 
only trades against its own local simulator in simulation 
mode.

Beyond that,  each basic strategy is  provided with the 
same initial starting capital again after each completed 
transaction. Instead of the equity curve (containing the 
starting capital and accumulating recent profits or losses 
as  a  percentage)  evaluation  is  based  on  the  absolute 
profit curve, adding only the net results of the transac-
tions during trading. 

In this way each basic strategy can add up an unlimited 
loss without going bankrupt. It is important to maintain 
the strategies in order to avoid thinning out the strategy 
pool during longer loss periods. Thus, rarely applicable 
strategies for only sporadic stock market phases remain 
within the strategy spectrum.

The profit curve of a strategy rises when it captures an 
aspect of the market successfully (e.g. a trend, a price 
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pattern or an inefficiency) and implements it into profit-
able trading sequences.  However,  if  it  fails,  the profit 
curve will decrease.  Nevertheless, a strategy with high 
absolute loss should be considered in times of tempor-
ary loss  reduction,  because  then  it  is  apparently in  a 
profitable  phase.  Thus  not  the  absolute  value  of  the 
profit curve is of interest, but merely its slope (i.e. the 
first derivation or its momentum, respectively).

The basic strategies are not restricted by a superior in-
stance, such as selection strategies or risk management, 
but are trading at their own discretion against their own 
simulator anytime. Hence strategy quality is reflected in 
profit curves unaffectedly and under realistic conditions, 
without risking real losses.

As usual,  the simulator records the profit curve, addi-
tional performance indicators and the transaction history 
for each strategy. The trade orders and executions con-
tained in the transaction history can be regarded as the 
external behavior of a strategy – thus it is possible to re-
late a strategy's behavior to its profit curve. From this 
vantage  point,  the transaction history allows other  in-
stances to access and further use strategy behavior.

Evaluation Strategies

Instead of a single conventional risk management as in 
the above-mentioned approach, the presented software 
architecture  provides  a  complete  superordinated  layer 
with several evaluation strategies.

The aim of the evaluation strategies is to recognize and 
prevent errors of strategies of the subordinated layer and 
to adopt and possibly further develop successful behavi-
or on the contrary. Considering the basic failure possib-
ilities  of  the  subordinated  strategies,  the  evaluation 
strategies are serving as risk filter to the benefit of in-
creased robustness and error tolerance.

For this purpose the evaluation strategies of a layer rate 
the strategies of the subordinated layer in parallel and 
independently. Subsequently they carry out own trading 
decisions  based  upon  the  subordinated  strategies  and 
pass them on to their own local trade simulator.

According  to  their  task  and  in  contrast  to  basic 
strategies,  evaluation  strategies  do  not  receive  market 
data. Instead they analyze the profit curves and perform-
ance indicators of the strategies of the subordinated lay-
er and assess their quality by means of individual, dif-
ferent  valuation standards.  Apart  from total  yield  and 
statistical  measures  for  the risk/return profile,  the fre-
quency, amount and recovery time of drawdowns and 
upswings  can  be  computed  and  weighted  on an  indi-
vidual basis. 

The evaluation strategies also have access to the trans-
action histories of the strategies of the subordinated lay-
er. Apart from quality, they are thereby able to investig-

ate the behavior responsible for the observed results and 
to further use this behavior as orientation.

As a result, evaluation strategies derive their own beha-
vior from the strategies of the subordinated layer in or-
der to trade against their own local simulator. In contrast 
to  the  conventional  software  architectures  above,  the 
subordinated layer is not restricted at the same time.

Since the behavior of evaluation strategies is only ori-
ented towards transaction histories of the strategies of 
the subordinated layer, we can speak of imitation in the 
easiest  case of adopting behavior in a 1:1 manner,  of 
combination if existing behavior is recombined and of 
synthesis  for the case of  generating new, so far unob-
served  behavior  from  the  behavior  of  subordinated 
strategies.

Below  some  examples  for  behavior  strategies  on  the 
evaluation level are outlined: 

1. Imitation: Identify the currently most successful sub-
ordinated strategy and reproduce its transactions.

2. Negation:  Trade contrarily to the transactions of  a 
currently  strongly  loss-making  subordinated 
strategy.

3. Basis for success: Do the currently most successful 
subordinated strategies have a common transaction 
intersection?  If  so,  this  intersection is  possibly re-
sponsible for the success. Reproduce only the con-
gruent transactions.

4. Diversification:  Reproduce  the  transactions  of  the 
conjunction set of the currently most successful sub-
ordinated strategies.

5. Error  prevention: Do the currently least  successful 
subordinated strategies have a common transaction 
intersection?  If  so,  this  intersection  may  be  re-
sponsible for the failure. Avoid these transactions.

6. Insignificance-Filter:  Do transactions exist  that  are 
carried out by the currently most successful subor-
dinated strategies as well as by the least successful 
subordinated strategies? Avoid such transactions, as 
they cannot be causative for the success or failure.

7. Pair  Trading:  Is  there a  subordinated strategy (not 
necessarily  absolutely  successful)  which  is  almost 
always relatively more successful than another sub-
ordinated  strategy?  Reproduce  the  transactions  of 
the first strategy and trade contrarily to the transac-
tions of the second strategy.

8. Mutual  confirmation  and  divergence:  Is  there  a 
group of subordinated strategies whose group mem-
bers traded identically in success periods but incon-
sistently in loss periods? Reproduce the transactions 
as soon as all group members trade identically and 
stop imitation of the group at the first instance of de-
viation of a group member from the common trading 
scheme.



More evaluation strategies have been elaborated that are 
not explicitly outlined in this paper. Generally, relations 
between the strategies of the subordinated layer are ana-
lyzed and own behavior is deduced from these relations, 
using strategy behavior of the subordinated layer.

Evaluation Strategy Layers

The simulators assigned to the evaluation strategies are 
technically  identical  with  the  simulators  of  the  basic 
strategies.  Therefore  trading  decisions  of  each  evalu-
ation strategy are  documented by a  profit  curve,  per-
formance  indicators  and  a  transaction  history as  well 
and hence are rateable on their part.

Since it can hardly be taken for granted that evaluation 
strategies are impeccable, it is obvious to rate them like-
wise.  Accordingly the  proposed  software  architecture 
provides multiple evaluation layers built on each other, 
operating on the profit  curves,  performance indicators 
and transaction histories of their respective subordinated 
layers.
The strategies of each evaluation layer can be identical 
to  those  of  the  subordinated  layer.  Alternatively  it  is 
worth considering to implement adjusted evaluation and 
behavior strategies for each layer.

The number of strategies per evaluation layer need not 
necessarily be constant. It  is also conceivable that the 
number of strategies decreases on each layer, resulting 
in a pyramidal evaluation hierarchy.

The kth upper evaluation layer contains only one single 
strategy representing the total result of the strategy hier-
archy. This strategy always trades against its own local 
simulator, providing profit curve, performance indicat-
ors and transaction history at any time.

If the software architecture is switched from simulation 
mode to interaction mode, the most superior simulator 
records solely the trading orders of  the most superior 
evaluation strategy in its transaction history. It forwards 
only these orders to a broker or directly towards the ex-
changes. External order executions are recorded in the 
transaction history again and returned right away to the 
most superior  strategy.  The profit  curve and perform-
ance indicators  are updated analogously to  simulation 
mode. In global interaction mode, apart from the most 
superior simulator all other simulators remain in local 
simulation mode.

Since the most superior evaluation strategy has direct or 
indirect access to the trading decisions of all lower lay-
ers,  it  can  trade  simultaneously  and  with  diversified 
strategies on distinct markets. It is not at all limited to 
just one sub-strategy in one market.

The most superior evaluation strategy has – in contrast 
to all others – access on its own profit curve, perform-
ance indicators and transaction history,  due to the ab-
sence of a higher instance to analyze them. Thus it can 

also carry out self-control in interaction mode and dis-
continue its own (i.e. the overall) online trading tempor-
arily in  case  of  undesirably strong drawdowns  of  the 
profit  curve.  In  such phases the strategy could switch 
back to simulation mode on a temporary basis, avoiding 
real  losses.  Awaiting  the  end  of  its  own  unprofitable 
phase by observation of the profit curve updated in sim-
ulation mode, it could return to the market in interaction 
mode afterwards.

Of course the most superior evaluation strategy can also 
implement  selection,  diversification  and  control  func-
tions in the sense of classical risk management. In this 
respect  conventional  architectures  as  described  in  the 
preceding section state of the art merely represent lim-
ited special cases of the general hierarchical architecture 
introduced here.

OBJECTS OF INVESTIGATION
A number of issues arise from the software architecture 
described  above.  First  of  all  we  have  to  investigate 
whether our presented approach is able to gain addition-
al value in the case of identical basic strategies, com-
pared to conventional architectures. This would be the 
case if the evaluation strategies created additional bene-
fit, e.g. in terms of an improved risk/return profile or a 
more reliable compliance of specified minimal or max-
imal performance indicators.

Beyond that it should be explored to what extent a gen-
eral relation between the three success factors quality of  
basic  strategies,  quality  of  evaluation  strategies and 
number of evaluation layers can be established. For ex-
ample, is it possible to compensate for poorer evaluation 
strategies by an increased number of evaluation layers?

Furthermore it has to be clarified how many evaluation 
layers  are  adequate,  subject  to  the  market  data  fre-
quency and the intended trade frequency. Each addition-
al evaluation layer means an extra layer of indirection 
against market data and potentially complicates precise 
reactions. Since (bad) success of subordinated strategies 
can  only be  recognized  after  a  certain  time  for  sure, 
each  additional  evaluation  layer  introduces  an  extra 
latency. This can mean that changes in behavior of the 
basic strategies are detected by the most superior evalu-
ation  strategy  with  high  delay,  in  such  a  way  that 
chances are used behind time and risks are identified 
and limited too late.

Besides  it  has  to  be  examined whether  all  evaluation 
strategies are equally suitable for each evaluation layer 
or whether some strategy types are more adequate for 
the lower or higher layers, respectively. In addition we 
have to check whether basic strategies can also be re-
used in the evaluation layers appropriately.

Cross-references to other research areas have to be fur-
ther elaborated:



• The hierarchy of processing layers bears a structural 
resemblance to Neural Networks (NN), in particular 
with  multilayer  perceptrons  (MLP,  Rumelhart  and 
McClelland 1986). While neurons are structured rel-
atively simple and in a homogeneous manner, each 
strategy node of our architecture has an individual 
and independent algorithm and an assigned simulat-
or at its disposal. Despite differences in detail, meth-
ods and insights from the field of Neural Networks 
and MLP may be applicable.

• The use of several, complementary basic and evalu-
ation strategies accommodates the request to access 
an adequate behavior spectrum under as many dif-
fering environmental conditions as possible. There-
fore an adaptation of strategies is only desirable if 
improved diversity  and  optimized  coverage  of  the 
problem  space  can  be  achieved.  For  this  purpose 
Learning  Classifier  Systems,  especially  eXtended 
Classifier Systems (XCS, Wilson 1995) could be in-
tegrated into the software architecture.

• For  the  beginning,  Learning has  deliberately been 
left  out  of  consideration.  With  a  fixed  number  of 
strategies, learning always means forgetting previous 
behavior in favor of newly acquired approaches. If 
market  phases  specialized  on  by certain  strategies 
are absent for a longer time, a replacement of „old“ 
strategies and an overestimation of the more recent 
past  (an  “after  the event”-learning)  impends.  Thus 
there is a risk that the behavior pool unwantedly fo-
cuses  on the  historical  short  term horizon and  the 
capability for adequate reactions is lost, provided per 
se  profitable  market  phases  randomly  recur  only 
after a longer break. It has to be examined to what 
extend these concerns can be met by a suitable selec-
tion and parametrization of learning methods.

It is of particular interest whether a fixed minimal set of 
evaluation strategies and layers can be determined, util-
izing the basic strategies independently of their specific 
form in an optimal manner in terms of a specified ob-
jective function. 

STATUS OF WORK
The theoretical  foundation  of  the  introduced  software 
architecture has been elaborated and generalized beyond 
the concrete strategy domain of financial markets.

On  basis  of  the  public  domain  simulation  software 
DESMO-J, a special simulator for financial market trad-
ing strategies has been created (FiSSMo) allowing back-
testing as well as automated trading of basic strategies 
(Golombek  2010).  (DESMO-J  is  a  simulation  frame-
work for discrete event simulation, which has been de-
veloped in the research group of Prof. B. Page at  the 
Department  of  Informatics  at  the  University of  Ham-
burg, Germany (Page and Kreutzer 2005), see www.des-
mo-j.de.)

A superordinated software framework providing the de-
scribed hierarchy of simulators both in general and par-
ticularly  with  regard  to  financial  market  trading 
strategies is currently under development (MESSiE).

At the same time a walk forward optimizer for DES-
MO-J is  implemented,  allowing dynamic  re-optimiza-
tion of model strategies in parallel to simulation experi-
ments  (Felgendreher  2011).  For  this  the  simulation 
framework  DESMO-J  was  extended  by storage,  reset 
and resume of any simulation states during experimental 
run time (Janz 2010) as well as support of handling syn-
chronization to wall clock time (Klückmann 2009).
The walk forward optimizer on one hand is intended to 
contrast the multi-layered approach with a „flat“ altern-
ative by relinquishing the evaluation layers and introdu-
cing adaption by periodic or success dependent re-op-
timization merely of the basic strategies. 
On the other hand it will be integrated into the superor-
dinated software framework MESSiE, in order to assess 
the usefulness of dynamic adaptation in the strategy lay-
ers.

The basic strategy simulator FiSSMo works comparable 
to other modern back-testers as SmartQuant (2006) or 
RightEdge (2010). It  produces the same results as the 
aforementioned commercial software, but has more ex-
pressive power and is more flexible in its architecture. 
Thus it can implement a wider range of basic strategies.
The superordinated software framework MESSiE is in 
an early stage of development. We have planned a num-
ber of experiments and will conduct, validate and evalu-
ate them as soon as the software is available in a de-
pendable manner.  Results  will  be published  in  a  sub-
sequent paper.

SUMMARY AND OUTLOOK
In our paper we report on the development of a novel 
hierarchical software architecture where simulators es-
tablish an integral component. Basic strategies adjusted 
on special aspects of the application domain (here: fin-
ancial market trading) are each assigned a separate sim-
ulator, determining success curves, performance indicat-
ors  and  action  histories  for  their  simulated  behavior. 
These intermediate results  are  constantly updated and 
analyzed  by  superior  evaluation  strategies  on  several 
hierarchical  layers.  Each  evaluation  strategy  imitates, 
combines  or  synthesizes  the  behavior  patterns  of  the 
strategies of the subordinated layer against its own sim-
ulator.  Finally,  in  interaction  mode  the  most  superior 
evaluation strategy is connected with the real environ-
ment by its simulator.

A number of interesting issues concerning the character-
istics  and  the  interplay of  basic  strategies,  evaluation 
strategies and number of evaluation layers arise. In ad-
dition  comparisons  with  conventional  approaches 
without evaluation layers or without integral simulators 
have  to  be  drawn.  The  relations  to  Neural  Networks 



have to be considered, and the effects of introducing ad-
aptation by Learning Classifier Systems, Walk-Forward-
Optimization or Learning into the architecture have to 
be investigated.

In  general  the  presented  software  architecture  is  do-
main-independent, even if proving is carried out in the 
field  of  financial  market  trading strategies  initially.  It 
could be of interest to investigate its applicability in oth-
er strategy domains such as navigation in road traffic or 
behavior  in  social  networks.  Due to  comparably high 
numbers of independently and consciously acting indi-
viduals,  similar  phenomena  could  also  exist  in  these 
fields. Therefore the application of the described soft-
ware architecture could make some sense here. A com-
parative study of successful evaluation strategies in dif-
ferent domains could possibly lead to a generalized, do-
main-independent set of evaluation strategies and evalu-
ation layers, capable of generically optimizing given ap-
plication-specific basic strategies.
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