
A HIERARCHICAL SIMULATION BASED SOFTWARE ARCHITECTURE
FOR BACK-TESTING AND AUTOMATED TRADING

Arne Koors and Bernd Page
Department of Informatics

University of Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

E-mail: {koors, page}@informatik.uni-hamburg.de

KEYWORDS
Simulation, Software Architecture, Back-Testing, Auto-
mated Trading Systems, Financial Markets

ABSTRACT
Financial markets are highly complex adaptive systems.
This paper deals with the application of simulators in
software architectures for back-testing and automating
financial market trading strategies. It characterizes traits
and problems of algorithmic trading and describes the
established use of simulators in back-testing and auto-
mated trading. A new approach in the form of a hier-
archical software architecture is introduced, containing
simulators as integral parts in all layers, using them both
during back-testing and automated trading. In addition
to the software architecture the opening objects of in-
vestigation are outlined. Finally, the potential of gener-
alizing the application domains of our approach beyond
financial market trading strategies is pointed out.

INTRODUCTION
Financial markets are highly complex adaptive systems
(Maboussin 2002, Darley and Outkin 2007, Haldane
2009), where a multitude of institutional and individual
investors exchange financial goods like stocks, bonds,
currencies or commodities. The financial markets
provide liquidity as well as buy and sell quotes, en-
abling market participants to find trading partners, ex-
change asset valuation and to finally agree upon a trade
price. The effective trade prices are recorded as price
histories, remaining accessible in a machine-readable
form, as a basis for subsequent research.

Simulation in Financial Markets

Dynamic simulation has been applied to the field of fin-
ancial markets mainly in two ways:

1. Description, reproduction, explanation, organization
and forecasting of market behavior as a whole.

Beginning with macro-economic market models in
continuous system dynamics style (Sharp and Price
1984), recent research has emphasized the role of in-
dividual market participants. Thus modeling of fin-
ancial markets has turned towards discrete event

models (Jacobs et al. 2004) and shifted to multi
agent based approaches (Arthur et al. 1997, Lux and
Marchesi 2000, Levy et al. 2000, Hommes 2006, Le-
Baron 2006), especially during the last decade.

2. Research, test and optimization of investors' trading
strategies.

Independently, academics, financial institutions and
individual investors have analyzed and simulated
numerous trading strategies in order to answer ques-
tions on the profitability and risk of systematic trad-
ing.

This paper addresses the second aspect of application of
simulation methods in financial markets.

Algorithmic Trading

Around 1900, Charles Dow published the assumption
that financial markets quickly discount for all news, and
thereby prices reflect the available information cor-
rectly. His further hypothesis that prices do move in
trends with certain characteristics lead to the develop-
ment of technical analysis (Hamilton 1922, Rhea 1932,
Schaefer 1960).

Technical analysis solely relies on market price histories
and examines price series for trends, patterns, anom-
alies, etc. in order to support – or suggest – investment
decisions. As this is a pure quantitative task, computers
have increasingly been used in the field of algorithmic
investment analysis and decision making over the last
thirty years. Today, automated trading accounts for 61
percent of the U.S. stock market activity and 70 percent
of individual trades (Kearns et al. 2010).

Back-testing

For the purpose of this paper, a trading strategy is a
formally specified, systematic sequence of actions at
financial markets. An automated trading strategy is im-
plemented algorithmically by a computer, without dis-
cretionary influence or other – intuitive – human inter-
ventions.

Before put into action in real markets, trading strategies
are generally back-tested against historical price series.
This makes it possible to determine statistical perform-

Proceedings 25th European Conference on Modelling and
Simulation ©ECMS Tadeusz Burczynski, Joanna Kolodziej
Aleksander Byrski, Marco Carvalho (Editors)
ISBN: 978-0-9564944-2-9 / ISBN: 978-0-9564944-3-6 (CD)

ance measures of a strategy, e.g. the historical risk/re-
turn profile, without losing real money.

Back-testers are an application-specific type of discrete
event simulators designed to develop, offline-test, de-
bug, evaluate and optimize financial market trading
strategies under conditions nearly identical to real mar-
kets. Finally, they allow to connect a tested strategy to
an online broker or to an exchange in order to have it
automatically traded.

Modern commercially offered back-testers are typically
structured as shown in Fig. 1 (Kocur 1999, SmartQuant
2006, Rightedge 2010):

Figure 1: Common Architecture for Back-testing
and Automated Trading

A strategy formulated in a proprietary or general pro-
gramming language is provided with market data. This
includes trade prices, trading volume or ask and bid
quotes, in elementary form as ticks or equidistantly ag-
gregated to bars. Market data is either received and
transferred directly from the market or recorded before-
hand and then replayed afterwards. In the latter case we
can differentiate between the less common real-time
synchronous playback and the as fast as possible-pro-
cedure known from discrete event simulation, where the
simulation clock advances to the time stamp of the next
historical market data. In both cases the (missing) con-
nection to the markets is transparent from the strategy's
point of view.
If the strategy algorithm calls for action at the market,
typically a buy or sell order is created. This order is
transferred to an internal trade simulator, which decides
on the basis of the market data whether, when and at
which price orders of the strategy are executed in the
simulation. The trade simulator notifies the strategy
about order status changes and order executions. In ad-
dition it keeps a virtual brokerage account for the
strategy, which is accessible for the strategy at any time.
The order executions are recorded in a transaction his-
tory, as a foundation for an extensive reporting. The
equity curve describes the development of total equity
over time. Along with the transaction history, it forms
the basis for other performance indicators, allowing an
estimation of the ratio of risk vs. return.

The operational mode delineated above is called simula-
tion mode, because the results of strategy behavior are
simulated with regard to the trading account; the
strategy does not interact with the real market.
It should be stressed that we do not simulate the behavi-
or of the market itself or the reaction of the market on
the strategy decisions made. On the one hand, there are
no reliable formal models for financial market behavior
available; on the other hand, the impact of individual
market participants is usually so small that one can ab-
stract from their influence.

If it is decided that a strategy should trade at the market
automatedly, the trade simulator is switched to interac-
tion mode. In this mode it sends orders of the strategy to
a broker or directly to exchanges. Conversely, the simu-
lator immediately returns received order states and exe-
cutions to the strategy. The simulator runs in bypass
mode in terms of order processing, however, it keeps a
record of the transaction history as well as a copy of the
trading account data, enabling unchanged continuation
of reporting.
From the strategy's point of view it is transparent wheth-
er it is trading in simulation or in interaction mode.

In the standard architecture a strategy always trades
against a simulator as counterparty. Usually the simulat-
or does not contribute anything to the strategy.

Changing Environments

The following citation of a practitioner illuminates one
of the difficulties of automated algorithmic trading:

One cannot stick to the rules, because the rules do
change every six months. (Ridpath 1997)

According to this, any trading strategy – as a rule-based
behavior – is subject to the risk of obsolescence and
consequently of limited applicability.
The approach of permanent self-adaptation to market
development encounters the problem that reasonable be-
havior rules may not be identifiable for any environ-
mental setting. Beyond that the non-applicability of cur-
rent rules can only be recognized in hindsight, after
losses already have been incurred. We can further argue
that ongoing self-adaptation by continually developing
new suitable behavior strategies may simply take too
long, leaving no satisfactory period of use.

Multiple Strategies For Multiple Market Aspects

It can be observed that certain characteristic financial
market phases or price movements are apparently re-
appearing, so that typical terms have been established
for naming them. Relating to price direction, expres-
sions such as crash, sideways market or uptrend are
used. For coarse-granular price formations terms like
head-shoulder or triangle exist, whereas fine-granular
candlestick patterns bear names like hammer or morn-
ing star. Periodicity of phenomena has e.g. been phrased

Performance
Equity Curve
Risk/Return
Transactions

Market

Orders Executions

Trade
Simulator

 Strategy

Market

(interaction mode)

Prices Volume Quotes

Orders Executions

presidential cycle, moreover concepts like January ef-
fect or window dressing refer to yearly recurring devel-
opments. Besides Huang (2009) denominates a number
of historical financial market anomalies each of which
could be used in a profitable manner for several years.

Considering the only rudimentally listed multitude of
potentially recurring phenomena and phases at financial
markets, it cannot be excluded in general that trading
strategies may be profitable at times, provided they are
adjusted to their respective temporary trading environ-
ment.

The imprudent attempt to cope all market phases with
the same single strategy is problematic: Given the multi-
faceted history of the target markets, the strategy had to
incorporate (too) many degrees of freedom to consist-
ently prove successful during back-testing. Practical ex-
perience shows that this approach ever leads to over-fit-
ted systems failing after a short time, as soon as the
market starts behaving different from the past.

Sticking to a single strategy, a reduction of the degrees
of freedom promises more general robustness. Restrict-
ing the existing specializations in a largely uniform
manner may indeed lead to a robust, but otherwise con-
sistently mediocre and therefore unattractive strategy.

Alternatively, reducing the degrees of freedom select-
ively may allow to preserve certain specializations,
while behavior patterns for other market phases may be
lost completely. As a consequence the profit and loss
phases of such a trimmed strategy will alternate in an
unpredictable manner, hindering practical applicability.
As an example we mention a remaining trend-following
component of a strategy, causing false signals and sub-
sequent losses in trendless markets.

The problems described brought institutional market
participants such as investment banks or hedge funds to
proceed to merge several specialized strategies into one
single architecture. Accordingly, back-testers and auto-
mated trading systems have to be designed for an inter-
play of multiple strategies. This will be discussed in
more detail in the next section.

STATE OF THE ART
Given multiple specialized strategies for different mar-
ket aspects, the question arises on which specialists' ad-
vice to invest the capital. For this purpose a superordin-
ated selection strategy could form an opinion on the
general market situation and in further consequence
choose a basic strategy that appears suitable (Chande
1997), see Fig. 2.

This intuitive two-layered approach is problematic in
the sense that the selection strategy has to be correct in
its opinion of a currently suitable basic strategy. While
an intermediate failure of a chosen basic strategy may

be realized by a drawdown of the equity curve, there are
no context-specific confirmations which basic strategy
to choose next, apart from the context-free rules of the
selection strategy.

Figure 2: Multiple Basic Strategies with Superordinated
Selection Strategy

Another weak point is that only the concatenated total
sequence of the basic strategies can be analyzed, how-
ever, not the single basic strategies themselves: There is
no equity curve attributable to the non-active strategies,
therefore there are no individual evaluation possibilities.
Finally, it is also unclear which part of the outcome res-
ults from the basic strategies and which from the selec-
tion strategy. Thus, reporting can only relate to the total
complex in an indifferent manner.

In portfolio trading multiple specialized basic strategies
trade in parallel on a shared trading account as shown in
Fig. 3 (e.g. WealthLab 2007, Janeczko 2010).

Figure 3: Multiple Basic Strategies with one Shared
Trading Account

The shared account constitutes a synchronization point
and results in undesired problems: If the total free cash
is already exhausted by other strategies, no further trade
signals can be realized. Thus, not every basic strategy
can be applied in a guaranteed and independent manner.
The reporting concerns the transactions of all basic
strategies together. It evaluates the dynamic strategy

Performance

Market

Orders Executions

Trade
Simulator

Basic
Strategy

Market

Basic
Strategy

Basic
Strategy

Selection
Strategy

. . .

Orders Executions

Ord Exec Ord/ExecOrd/Exec

Prices Volume Quotes

Performance

Market

Trade
Simulator

Basic
Strategy

Market

Prices Volume Quotes

Basic
Strategy

Basic
Strategy . . .

Orders Executions

Ord Exec Ord/ExecOrd/Exec

mix on the highest level; however, the genuine contribu-
tion and quality of single strategies cannot be identified
in a reliable manner due to the strategy blockage de-
scribed above.

Institutional investors such as investment banks and
hedge funds often trade a double-digit number of basic
strategies on around hundred markets simultaneously,
easily leading to thousand or more effective
strategy/market combinations. Every basic strategy
owns one separate trading account per market and is
subject to a central superordinated risk management
(Fig. 4).

Figure 4: Multiple Basic Strategies with Separated Trad-
ing Accounts and Superordinated Risk Management

The risk management monitors each basic strategy in re-
gard to performance by means of the individual report-
ing. It pauses strategies that are temporarily unsuccess-
ful or reduces their position size, respectively.

At this, the risk management also considers relations
between the basic strategies with reference to correla-
tion of the equity curves, i.e. whether two strategies in
combination increase total risk, are independent from
each other or reduce risk when run in parallel.

As in the aforementioned selection strategy approach
this is a two-layered architecture, but here each basic
strategy can be rated and weighted individually without
mutual interference. In addition, a global reporting can
be generated at the aggregate level.

The risk management affects the total result in a signi-
ficant manner. Since it takes a unique role in the archi-
tecture, it is a critical weakness. Two or more parallel
risk management strategies are not feasible; their com-
bination (and, or, …) may be too restrictive or too tol-
erant, resulting in mutual blockage or annulment of risk
management decisions, respectively.
Thus, a multiple, superimposed risk management would
be in danger of complete failure, whereas a single risk
management is a risk factor itself.

A NEW APPROACH
In the following, a multi-layered software architecture
for back-testing and automated trading is introduced,
where each strategy is assigned a separate simulator (see
Fig. 5). Instead of a monolithic risk management we
provide a hierarchically organized strategy evaluation
with subsequent imitation, combination or synthesis of
analyzed strategy behavior.

Figure 5: Introduced Software Architecture

Basic Strategies

Similar to the last-mentioned approach of the previous
section, every trading strategy is assigned an own simu-
lator, leading to individual and independent measurabil-
ity. Our approach is novel in the sense that also in inter-
action mode of the overall system, each basic strategy
only trades against its own local simulator in simulation
mode.

Beyond that, each basic strategy is provided with the
same initial starting capital again after each completed
transaction. Instead of the equity curve (containing the
starting capital and accumulating recent profits or losses
as a percentage) evaluation is based on the absolute
profit curve, adding only the net results of the transac-
tions during trading.

In this way each basic strategy can add up an unlimited
loss without going bankrupt. It is important to maintain
the strategies in order to avoid thinning out the strategy
pool during longer loss periods. Thus, rarely applicable
strategies for only sporadic stock market phases remain
within the strategy spectrum.

The profit curve of a strategy rises when it captures an
aspect of the market successfully (e.g. a trend, a price

Market

Risk

Volume

Basic
Strategy

Market

Quotes

Basic
Strategy

Basic
Strategy ...

Perf. Sim. Perf. Sim. Perf. Sim....

O. E. O. E.

O. E.O. E.

O. E.

Ord. Exec.

O. E. O. E.Orders Executions

Management

Prices

Market

Volume

Market

QuotesPrices

Performance
Profit Curve
Risk/Return
Transactions

Ord. Exec.

Trade
Simulator

Basic
Strategy

S
B P

S
B P

S
B P

S
B P

...

S
PE

S
PE

S
PE

. . .

. .
 .

. .
 .

. .
 .

S
PE

S
PE

. . .

S

PE

Orders Executions

2

. .
 .

1

0

k-1

k
Layer

Performance
Profit Curve
Risk/Return
Transactions

Ord. Exec.

Trade
Simulator

Evaluation
Strategy

pattern or an inefficiency) and implements it into profit-
able trading sequences. However, if it fails, the profit
curve will decrease. Nevertheless, a strategy with high
absolute loss should be considered in times of tempor-
ary loss reduction, because then it is apparently in a
profitable phase. Thus not the absolute value of the
profit curve is of interest, but merely its slope (i.e. the
first derivation or its momentum, respectively).

The basic strategies are not restricted by a superior in-
stance, such as selection strategies or risk management,
but are trading at their own discretion against their own
simulator anytime. Hence strategy quality is reflected in
profit curves unaffectedly and under realistic conditions,
without risking real losses.

As usual, the simulator records the profit curve, addi-
tional performance indicators and the transaction history
for each strategy. The trade orders and executions con-
tained in the transaction history can be regarded as the
external behavior of a strategy – thus it is possible to re-
late a strategy's behavior to its profit curve. From this
vantage point, the transaction history allows other in-
stances to access and further use strategy behavior.

Evaluation Strategies

Instead of a single conventional risk management as in
the above-mentioned approach, the presented software
architecture provides a complete superordinated layer
with several evaluation strategies.

The aim of the evaluation strategies is to recognize and
prevent errors of strategies of the subordinated layer and
to adopt and possibly further develop successful behavi-
or on the contrary. Considering the basic failure possib-
ilities of the subordinated strategies, the evaluation
strategies are serving as risk filter to the benefit of in-
creased robustness and error tolerance.

For this purpose the evaluation strategies of a layer rate
the strategies of the subordinated layer in parallel and
independently. Subsequently they carry out own trading
decisions based upon the subordinated strategies and
pass them on to their own local trade simulator.

According to their task and in contrast to basic
strategies, evaluation strategies do not receive market
data. Instead they analyze the profit curves and perform-
ance indicators of the strategies of the subordinated lay-
er and assess their quality by means of individual, dif-
ferent valuation standards. Apart from total yield and
statistical measures for the risk/return profile, the fre-
quency, amount and recovery time of drawdowns and
upswings can be computed and weighted on an indi-
vidual basis.

The evaluation strategies also have access to the trans-
action histories of the strategies of the subordinated lay-
er. Apart from quality, they are thereby able to investig-

ate the behavior responsible for the observed results and
to further use this behavior as orientation.

As a result, evaluation strategies derive their own beha-
vior from the strategies of the subordinated layer in or-
der to trade against their own local simulator. In contrast
to the conventional software architectures above, the
subordinated layer is not restricted at the same time.

Since the behavior of evaluation strategies is only ori-
ented towards transaction histories of the strategies of
the subordinated layer, we can speak of imitation in the
easiest case of adopting behavior in a 1:1 manner, of
combination if existing behavior is recombined and of
synthesis for the case of generating new, so far unob-
served behavior from the behavior of subordinated
strategies.

Below some examples for behavior strategies on the
evaluation level are outlined:

1. Imitation: Identify the currently most successful sub-
ordinated strategy and reproduce its transactions.

2. Negation: Trade contrarily to the transactions of a
currently strongly loss-making subordinated
strategy.

3. Basis for success: Do the currently most successful
subordinated strategies have a common transaction
intersection? If so, this intersection is possibly re-
sponsible for the success. Reproduce only the con-
gruent transactions.

4. Diversification: Reproduce the transactions of the
conjunction set of the currently most successful sub-
ordinated strategies.

5. Error prevention: Do the currently least successful
subordinated strategies have a common transaction
intersection? If so, this intersection may be re-
sponsible for the failure. Avoid these transactions.

6. Insignificance-Filter: Do transactions exist that are
carried out by the currently most successful subor-
dinated strategies as well as by the least successful
subordinated strategies? Avoid such transactions, as
they cannot be causative for the success or failure.

7. Pair Trading: Is there a subordinated strategy (not
necessarily absolutely successful) which is almost
always relatively more successful than another sub-
ordinated strategy? Reproduce the transactions of
the first strategy and trade contrarily to the transac-
tions of the second strategy.

8. Mutual confirmation and divergence: Is there a
group of subordinated strategies whose group mem-
bers traded identically in success periods but incon-
sistently in loss periods? Reproduce the transactions
as soon as all group members trade identically and
stop imitation of the group at the first instance of de-
viation of a group member from the common trading
scheme.

More evaluation strategies have been elaborated that are
not explicitly outlined in this paper. Generally, relations
between the strategies of the subordinated layer are ana-
lyzed and own behavior is deduced from these relations,
using strategy behavior of the subordinated layer.

Evaluation Strategy Layers

The simulators assigned to the evaluation strategies are
technically identical with the simulators of the basic
strategies. Therefore trading decisions of each evalu-
ation strategy are documented by a profit curve, per-
formance indicators and a transaction history as well
and hence are rateable on their part.

Since it can hardly be taken for granted that evaluation
strategies are impeccable, it is obvious to rate them like-
wise. Accordingly the proposed software architecture
provides multiple evaluation layers built on each other,
operating on the profit curves, performance indicators
and transaction histories of their respective subordinated
layers.
The strategies of each evaluation layer can be identical
to those of the subordinated layer. Alternatively it is
worth considering to implement adjusted evaluation and
behavior strategies for each layer.

The number of strategies per evaluation layer need not
necessarily be constant. It is also conceivable that the
number of strategies decreases on each layer, resulting
in a pyramidal evaluation hierarchy.

The kth upper evaluation layer contains only one single
strategy representing the total result of the strategy hier-
archy. This strategy always trades against its own local
simulator, providing profit curve, performance indicat-
ors and transaction history at any time.

If the software architecture is switched from simulation
mode to interaction mode, the most superior simulator
records solely the trading orders of the most superior
evaluation strategy in its transaction history. It forwards
only these orders to a broker or directly towards the ex-
changes. External order executions are recorded in the
transaction history again and returned right away to the
most superior strategy. The profit curve and perform-
ance indicators are updated analogously to simulation
mode. In global interaction mode, apart from the most
superior simulator all other simulators remain in local
simulation mode.

Since the most superior evaluation strategy has direct or
indirect access to the trading decisions of all lower lay-
ers, it can trade simultaneously and with diversified
strategies on distinct markets. It is not at all limited to
just one sub-strategy in one market.

The most superior evaluation strategy has – in contrast
to all others – access on its own profit curve, perform-
ance indicators and transaction history, due to the ab-
sence of a higher instance to analyze them. Thus it can

also carry out self-control in interaction mode and dis-
continue its own (i.e. the overall) online trading tempor-
arily in case of undesirably strong drawdowns of the
profit curve. In such phases the strategy could switch
back to simulation mode on a temporary basis, avoiding
real losses. Awaiting the end of its own unprofitable
phase by observation of the profit curve updated in sim-
ulation mode, it could return to the market in interaction
mode afterwards.

Of course the most superior evaluation strategy can also
implement selection, diversification and control func-
tions in the sense of classical risk management. In this
respect conventional architectures as described in the
preceding section state of the art merely represent lim-
ited special cases of the general hierarchical architecture
introduced here.

OBJECTS OF INVESTIGATION
A number of issues arise from the software architecture
described above. First of all we have to investigate
whether our presented approach is able to gain addition-
al value in the case of identical basic strategies, com-
pared to conventional architectures. This would be the
case if the evaluation strategies created additional bene-
fit, e.g. in terms of an improved risk/return profile or a
more reliable compliance of specified minimal or max-
imal performance indicators.

Beyond that it should be explored to what extent a gen-
eral relation between the three success factors quality of
basic strategies, quality of evaluation strategies and
number of evaluation layers can be established. For ex-
ample, is it possible to compensate for poorer evaluation
strategies by an increased number of evaluation layers?

Furthermore it has to be clarified how many evaluation
layers are adequate, subject to the market data fre-
quency and the intended trade frequency. Each addition-
al evaluation layer means an extra layer of indirection
against market data and potentially complicates precise
reactions. Since (bad) success of subordinated strategies
can only be recognized after a certain time for sure,
each additional evaluation layer introduces an extra
latency. This can mean that changes in behavior of the
basic strategies are detected by the most superior evalu-
ation strategy with high delay, in such a way that
chances are used behind time and risks are identified
and limited too late.

Besides it has to be examined whether all evaluation
strategies are equally suitable for each evaluation layer
or whether some strategy types are more adequate for
the lower or higher layers, respectively. In addition we
have to check whether basic strategies can also be re-
used in the evaluation layers appropriately.

Cross-references to other research areas have to be fur-
ther elaborated:

• The hierarchy of processing layers bears a structural
resemblance to Neural Networks (NN), in particular
with multilayer perceptrons (MLP, Rumelhart and
McClelland 1986). While neurons are structured rel-
atively simple and in a homogeneous manner, each
strategy node of our architecture has an individual
and independent algorithm and an assigned simulat-
or at its disposal. Despite differences in detail, meth-
ods and insights from the field of Neural Networks
and MLP may be applicable.

• The use of several, complementary basic and evalu-
ation strategies accommodates the request to access
an adequate behavior spectrum under as many dif-
fering environmental conditions as possible. There-
fore an adaptation of strategies is only desirable if
improved diversity and optimized coverage of the
problem space can be achieved. For this purpose
Learning Classifier Systems, especially eXtended
Classifier Systems (XCS, Wilson 1995) could be in-
tegrated into the software architecture.

• For the beginning, Learning has deliberately been
left out of consideration. With a fixed number of
strategies, learning always means forgetting previous
behavior in favor of newly acquired approaches. If
market phases specialized on by certain strategies
are absent for a longer time, a replacement of „old“
strategies and an overestimation of the more recent
past (an “after the event”-learning) impends. Thus
there is a risk that the behavior pool unwantedly fo-
cuses on the historical short term horizon and the
capability for adequate reactions is lost, provided per
se profitable market phases randomly recur only
after a longer break. It has to be examined to what
extend these concerns can be met by a suitable selec-
tion and parametrization of learning methods.

It is of particular interest whether a fixed minimal set of
evaluation strategies and layers can be determined, util-
izing the basic strategies independently of their specific
form in an optimal manner in terms of a specified ob-
jective function.

STATUS OF WORK
The theoretical foundation of the introduced software
architecture has been elaborated and generalized beyond
the concrete strategy domain of financial markets.

On basis of the public domain simulation software
DESMO-J, a special simulator for financial market trad-
ing strategies has been created (FiSSMo) allowing back-
testing as well as automated trading of basic strategies
(Golombek 2010). (DESMO-J is a simulation frame-
work for discrete event simulation, which has been de-
veloped in the research group of Prof. B. Page at the
Department of Informatics at the University of Ham-
burg, Germany (Page and Kreutzer 2005), see www.des-
mo-j.de.)

A superordinated software framework providing the de-
scribed hierarchy of simulators both in general and par-
ticularly with regard to financial market trading
strategies is currently under development (MESSiE).

At the same time a walk forward optimizer for DES-
MO-J is implemented, allowing dynamic re-optimiza-
tion of model strategies in parallel to simulation experi-
ments (Felgendreher 2011). For this the simulation
framework DESMO-J was extended by storage, reset
and resume of any simulation states during experimental
run time (Janz 2010) as well as support of handling syn-
chronization to wall clock time (Klückmann 2009).
The walk forward optimizer on one hand is intended to
contrast the multi-layered approach with a „flat“ altern-
ative by relinquishing the evaluation layers and introdu-
cing adaption by periodic or success dependent re-op-
timization merely of the basic strategies.
On the other hand it will be integrated into the superor-
dinated software framework MESSiE, in order to assess
the usefulness of dynamic adaptation in the strategy lay-
ers.

The basic strategy simulator FiSSMo works comparable
to other modern back-testers as SmartQuant (2006) or
RightEdge (2010). It produces the same results as the
aforementioned commercial software, but has more ex-
pressive power and is more flexible in its architecture.
Thus it can implement a wider range of basic strategies.
The superordinated software framework MESSiE is in
an early stage of development. We have planned a num-
ber of experiments and will conduct, validate and evalu-
ate them as soon as the software is available in a de-
pendable manner. Results will be published in a sub-
sequent paper.

SUMMARY AND OUTLOOK
In our paper we report on the development of a novel
hierarchical software architecture where simulators es-
tablish an integral component. Basic strategies adjusted
on special aspects of the application domain (here: fin-
ancial market trading) are each assigned a separate sim-
ulator, determining success curves, performance indicat-
ors and action histories for their simulated behavior.
These intermediate results are constantly updated and
analyzed by superior evaluation strategies on several
hierarchical layers. Each evaluation strategy imitates,
combines or synthesizes the behavior patterns of the
strategies of the subordinated layer against its own sim-
ulator. Finally, in interaction mode the most superior
evaluation strategy is connected with the real environ-
ment by its simulator.

A number of interesting issues concerning the character-
istics and the interplay of basic strategies, evaluation
strategies and number of evaluation layers arise. In ad-
dition comparisons with conventional approaches
without evaluation layers or without integral simulators
have to be drawn. The relations to Neural Networks

have to be considered, and the effects of introducing ad-
aptation by Learning Classifier Systems, Walk-Forward-
Optimization or Learning into the architecture have to
be investigated.

In general the presented software architecture is do-
main-independent, even if proving is carried out in the
field of financial market trading strategies initially. It
could be of interest to investigate its applicability in oth-
er strategy domains such as navigation in road traffic or
behavior in social networks. Due to comparably high
numbers of independently and consciously acting indi-
viduals, similar phenomena could also exist in these
fields. Therefore the application of the described soft-
ware architecture could make some sense here. A com-
parative study of successful evaluation strategies in dif-
ferent domains could possibly lead to a generalized, do-
main-independent set of evaluation strategies and evalu-
ation layers, capable of generically optimizing given ap-
plication-specific basic strategies.

REFERENCES
Arthur, W.B.; J.H. Holland; B. LeBaron; R. Palmer and P.

Tayler. 1997. "Asset pricing under endogenous expectations
in an artificial stock market". In The economy as an
evolving complex system. Addison-Wesley, Reading, Mass,
15–44.

Chande, T.S. 1997. Beyond technical analysis. How to develop
and implement a winning trading system. Wiley, New York,
116–123.

Darley, V. and A.V. Outkin. 2007. A NASDAQ market simula-
tion. Insights on a major market from the science of com-
plex adaptive systems. World Scientific, Hackensack, NJ.

Felgendreher, K. 2011. Konzeption und Realisierung eines
Walk-Forward-Optimierers für das Simulationsframework
Desmo-J mit exemplarischer Anwendung. Diploma Thesis.
Department of Informatics, University of Hamburg, Ham-
burg, Germany.

Golombek, O. 2010. Entwurf und Implementation eines
simulationsbasierten Frameworks zur Analyse von Finan-
zmarkt-Handelsstrategien. Diploma Thesis. Department of
Informatics, University of Hamburg, Hamburg, Germany.

Haldane, A.G. 2009. Rethinking the financial network. Speech
delivered at the Financial Student Association, Amsterdam,
April 2009.

Hamilton, W.P. 1922. The stock market barometer. Harper, New
York, London.

Hommes, C.H. 2006. "Heterogeneous agent models in economi-
cs and finance". In Handbook of Computational Economics.
Volume 2. Agent-Based Computational Economics. L. Tes-
fatsion and K.L. Judd (Eds.). Elsevier/North-Holland, Ams-
terdam, 1109–1186.

Huang, Z.J. 2009. Real-Time Profitability of Published Anom-
alies: An Out-of-Sample Test. Working Paper. Department
of Finance, University of Wisconsin, Milwaukee. http://ss-
rn.com/abstract=1364813.

Jacobs, B.I.; K.N. Levy and H.M. Markowitz. 2004. "Financial
market simulation. In the 21st century". Journal of Portfo-
lio Management, 30th Anniversary Issue, 142–151.

Janeczko, T. 2010. AmiBroker 5.30 User's Guide.
Janz, T. 2010. Prototypische Implementierung einer Verwaltung

von Momentaufnahmen im Simulationsframework Desmo-J.
Bachelor Thesis. Department of Informatics, University of
Hamburg, Hamburg, Germany.

Kearns, J.; W. Kisling and N. Mehta 2010. "Goldman Tops JP-

Morgan as Best Broker as Speed Shakes Up Trading".
http://www.businessweek.com/news/2010-01-29/goldman-
tops-jpmorgan-as-best-broker-as-speed-shakes-up-tradi-
ng.html.

Klückmann, F. 2009. Realzeitsynchrone Simulation – Begriffe,
Anwendungen und exemplarische Umsetzung anhand des
Simulationsframework DESMO-J. Diploma Thesis.
Department of Informatics, University of Hamburg, Ham-
burg, Germany.

Kocur, M. 1999. System-Konzeptionen. Systeme von Han-
delsstrategien an Futures-Märkten. Konzeption und Per-
formance. TM-Börsenverlag, Rosenheim.

LeBaron, B. 2006. "Agent-based computational finance". In
Handbook of Computational Economics. Volume 2. Agent-
Based Computational Economics. L. Tesfatsion and K.L.
Judd (Eds.). Elsevier/North-Holland, Amsterdam, 1187–
1233.

Levy, M.; H. Levy and S. Solomon. 2000. The microscopic
simulation of financial markets. From investor behavior to
market phenomena. Academic Press, San Diego.

Lux, T. and M. Marchesi. 2000. "Volatility clustering in finan-
cial markets. A microsimulation of interacting agents". In-
ternational Journal of Theoretical and Applied Finance 3,
No.4, 675–702.

Mauboussin, M.J. 2002. "Revisiting Market Efficiency: The
Stock Market As A Complex Adaptive System". Journal of
Applied Corporate Finance 14, No.4, 47–55.

Page, B. and W. Kreutzer. 2005. The Java simulation handbook.
Simulating discrete event systems with UML and Java.
Shaker, Aachen.

Rhea, R. 1932. The dow theory. An explanation of its develop-
ment and an aid in speculation. Baron's The national
financial weekly, New York.

Ridpath, M. 1997. Trading reality. Mandarin, London.
RightEdge 2010. RightEdge Help.
Rumelhart, D.E. and J.L. McClelland. 1986. Parallel distrib-

uted processing 1. Explorations in the microstructure of
cognition. MIT Press, Cambridge, Ma.

Schaefer, E.G. 1960. How I helped more than 10,000 investors
to profit in stocks. Prentice-Hall, Englewood Cliffs, N.J.

Sharp, J.A. and D.H.R. Price. 1984. "System dynamics and op-
erational research: An appraisal". European Journal of Op-
erational Research 16, No.1, 1–12.

SmartQuant 2006. Introduction To The SmartQuant System Ar-
chitecture.

Wealth-Lab 2007. Wealth-Lab Developer 4.0 User Guide.
Wilson, S.W. 1995. "Classifier Fitness Based on Accuracy".

Evolutionary computation 3, No.2, 149–175.

AUTHOR BIOGRAPHIES
BERND PAGE holds degrees in Applied Computer
Science from the Technical University of Berlin, Ger-
many, and from Stanford University, USA. As professor
for Applied Computer Science at the University of
Hamburg he researches and teaches in the field of Dis-
crete Event Simulation as well as in Environmental In-
formatics.

ARNE KOORS obtained his diploma degree in Com-
puter Science from the University of Hamburg, Ger-
many, in 1999. Since then he has been working as a
software developer and management consultant in the
manufacturing industry, primarily in the field of fore-
casting and demand planning. Since 2007 he works on
his PhD thesis in the simulation group led by Prof. Page.

	KEYWORDS
	ABSTRACT
	INTRODUCTION
	Simulation in Financial Markets
	Algorithmic Trading
	Back-testing
	Changing Environments
	Multiple Strategies For Multiple Market Aspects

	STATE OF THE ART
	A NEW APPROACH
	Basic Strategies
	Evaluation Strategies
	Evaluation Strategy Layers

	OBJECTS OF INVESTIGATION
	STATUS OF WORK
	SUMMARY AND OUTLOOK
	REFERENCES
	AUTHOR BIOGRAPHIES

