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ABSTRACT 

Quantitative Finance is one of the numerous application 

fields of discrete event simulation. Because of special 

requirements in this area, typically domain specific 

simulation tools are applied, instead of general purpose 

simulators. It appears fruitful and beneficial to provide 

some of the risk metrics common in quantitative finance 

for discrete event simulation in general, in order to 

make use of them in generalised versions in further 

domains. In this paper we describe transfer and 

generalisation of risk metrics from quantitative finance 

to general purpose simulators with regard to Semi-

Variance, Value at Risk, Expected Shortfall and 

Drawdown. 

 

Keywords: risk metrics, discrete event simulation 

 

1. INTRODUCTION 

The field of Quantitative Finance (also called 

Computational Finance or Financial Engineering) deals 

with computer-supported analysis of price histories of 

asset values and the support of investment decisions in 

financial markets. Next to Monte-Carlo-Simulation (i.e. 

mathematical method, that solves complex problems 

from probability theory numerically, based on repetitive 

random experiments following the Law of large 

Numbers, see Metropolis and Ulam (1949)) and related 

methods, discrete event simulation is mainly applied in 

two areas: 

 

 On the one hand, simulating the performance 

of financial markets on micro level, i.e. down 

to the level of single market participants 

(Arthur, Holland, LeBaron, Palmer 1997; Lux 

and Marchesi 2000; Levy, Levy, and Solomon 

2000; Hommes 2006; LeBaron 2006). 

 On the other hand, evaluating particular 

financial market trading strategies by 

simulating, assessing and optimising them in 

different historical market environments 

(Chande 1997, Kocur 1999, van Tharp 2007). 

  

In the context of this paper, we focus on the second 

application area. 

For the evaluation of trading strategies, special 

purpose simulators are applied, so-called back testers. 

Back testers differ from general purpose simulators in 

the following aspects: 

 

1. Instead of common random number generators, 

historical time series are used as data sources 

for security prices. 

2. Entities in the sense of classical simulation 

objects are not required, as only the behaviour 

of defined trading strategies in the context of 

inflowing market data is analysed. From a 

conceptual point of view, these strategies do 

not necessarily have to be represented as 

entities. 

3. Waiting queues and higher modelling 

components such as processing stations or 

transport stations are not explicitly required for 

modelling, due to the immaterial nature of 

financial strategies and their market orders. 

Likewise, synchronization mechanisms for 

different entities are usually not needed. 

4. However, there are extensive requirements on 

the characterisation of trading strategies, in 

particular related to profitability and the risk 

taken. Here, computation of manifold special 

key figures developed in quantitative finance is 

required for an extended reporting. To our 

knowledge, most of these key figures and their 

underlying concepts have not been regarded in 

general purpose simulation so far. 

 

* Event Modelling

* Activity Modelling

* Process Modelling

* Simulation Clock

* Scheduler

* Standard Statistics

* Reporting

* Experiments

* Optimization

* Entities

* Queues

* Stochastic

  Distributions

* Extended Reporting

* Historical Timeseries

Discrete Event Simulators Back Testers

Figure 1: Commonalities and differences of general 

purpose discrete event simulators and back testers  
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Commonalities and differences between general 

purpose discrete event simulators and back testers are 

shown in the figure above. 

In spite of the differences mentioned, back testers 

and general purpose simulators are widely comparable 

in structural terms. Further, the modelling and 

simulation cycle as well as experiments are processed 

equivalently. Back testers can be understood as a 

special case of general purpose discrete event 

simulators and therefore implemented by these, see e.g. 

Golombek (2010) or Koors and Page (2011). 

From a historical point of view, back testers have 

developed concurrently to general purpose simulators 

since the nineties, with rather limited mutual exchange 

of ideas into both directions. 

Risk metrics are an advanced aspect of back 

testers, both serving for quantification of risk of a 

particular trading strategy and for comparisons of 

different trading strategies amongst each other. To us, 

risk metrics do appear potentially useful for other 

application domains as well. 

In this paper, we aim at the transfer and 

generalisation of established risk metrics from 

quantitative finance into the world of general purpose 

discrete event simulators. 

This paper is structured as follows: In section 2, we 

deal with the character of risk, seen from the 

quantitative finance point of view. Parallels to 

application fields of simulation are shown. We advance 

to the concept of downside risk and motivate that the 

idea of transferring financial risk metrics to general 

application domains of simulation could be beneficial. 

In section 3, we describe four central risk metrics of 

quantitative finance in their original context first, and 

then illustrate them by simulation queues. Advancing to 

observation variables, we generalise the concepts and 

transfer them into the field of general purpose discrete 

event simulation. We outline the modifications and 

enhancements we have carried out and discuss certain 

implementation aspects. Section 4 summarises and 

concludes the paper. 

 

2. THE CONCEPT OF RISK IN QUANTITA-

TIVE FINANCE 

 

2.1. Expected Value as Characteristic and Variance 

as Risk 

Yield and risk are the central concepts when evaluating 

financial trading strategies by means of back testers. 

Here, yield is understood as expected value of the 

return of a trading strategy during a defined time span. 

The trading strategy may carry out a number of 

investment decisions during the simulated time frame, 

so-called trades. The compounded return of all single 

trades is the overall return of the strategy at the end of 

the simulation. Its expected value is the yield of the 

strategy. 

The second central characteristic of trading 

strategies is risk. Risk is defined as volatility, i.e. 

variation of return around the expected average return, 

following the fundamental thought pattern called Mean-

Variance-Framework introduced by Markowitz (1952) 

into finance. Volatility mathematically corresponds to 

the standard deviation of return. 

General purpose simulation of discrete event 

systems operates with mean and empirical standard 

deviation as well, e.g. regarding queue length or 

concerning the state space of observation variables in 

general. 

Attention should be paid to a shift in connotation 

of the aforementioned concepts in finance: While the 

expected value of return is considered as given and 

characteristic for a strategy, variance always has a 

negative connotation, in the sense of risk. 

From this point of view, an expected queue length 

x of a standard M/M/1-queuing system would be 

considered merely a characteristic of the system. With 

increasing variance of queue length (at a constant 

expected value) the model would be estimated 

increasingly risky, in the sense of higher uncertainty and 

precariousness. 

In this sense, risk can be understood as a metric for 

the potential of a strategy or a model to leave a stable 

equilibrium state into an undesired direction. 

In many typical application fields of simulation, 

the departure from an equilibrium state or from an 

interval of tolerable states is also seen as critical, e.g. in 

 

 Queuing systems and production systems, if 

queues run empty and machine utilisation sinks 

towards 0, resp. conversely, if the available 

waiting room capacity is exceeded and 

therefore client orders are lost 

 Ecological systems, if necessary population 

sizes or quantities of substance are fallen 

below or exceeded, and the system collapses 

 Physical systems, if material strains are too 

high, resulting in damages. Physiological 

systems may suffer from underutilisation as 

well, thus becoming inoperative in 

consequence of non-use. 

 

2.2. Downside Risk as Asymmetric Risk Conception 

Deviations from the mean may be uncritical into one 

direction, while undesired into the other direction. In 

finance, only below-average returns (resp. above- 

average losses) pose a risk for an investment, while 

excess returns are welcome and may be ignored in 

terms of risk assessment. Quantitative finance has 

elaborated an asymmetrical risk metrics category called 

downside risk, where only one-sided variations of return 

in the sense of underperformance are considered as risk. 

Asymmetric risk perceptions can also be found in 

the application fields of simulation, with regard to 

desired resp. undesired deviations from means or 

system equilibrium states. Thus longer queues in 

production, higher pollutant concentrations in 

ecological systems or stronger physical strains will 

generally be considered as more risky and less 

desirable, while this is usually not true for the opposite 
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cases. On this background of comparable asymmetric 

evaluation preferences, downside risk metrics from 

quantitative finance should be more suitable for risk 

assessment in simulation application fields than 

conventional symmetric standard statistics. 

 

2.3. Practical Implementation 

We would like to provide modellers of general discrete 

event systems with additional tools, which allow them 

to assess inherent “risks” of models more adequately, 

following the concepts of quantitative finance. This can 

help in understanding model dynamics more 

appropriately and can deliver new fruitful approaches 

and deeper insight concerning analysis and adaptation 

of undesired model behaviour. 

For this purpose, the four risk metrics from 

quantitative finance discussed below are transferred into 

our general purpose discrete event simulation 

framework Desmo-J (www.desmo-j.de, Page and 

Kreutzer 2005) as statistical extensions. This work is 

currently carried out in the context of a bachelor thesis 

in our working group Modelling and Simulation (MBS) 

in the Department of Informatics at University of 

Hamburg. 

 

3. RISK METRICS 

A risk metric is a concept to assess risk. In comparison, 

a risk measure is the implementation of a computational 

process, employed to calculate a certain risk 

measurement. As we focus on the conceptual side of 

risk, the term risk metric is used in this paper. 

In this section we describe four central risk metrics 

of quantitative finance in their original context first and 

afterwards exemplarily illustrate them by simulation 

queues. Advancing to observation variables, we 

generalise the concepts and transfer them into the field 

of general purpose discrete event simulation. We outline 

the modifications and enhancements we have carried 

out and discuss certain implementation aspects. 

Formal definitions of the mentioned risk metrics in 

their original financial context can be found in e.g. 

Yang, Yu, and Zhang (2009); Lohre, Neumann, and 

Winterfeldt (2009) or Giorgi (2002). 

 

3.1. Semi-Variance 

As stated above, only those trades yielding a below-

average return actually contribute to the downside risk 

of a trading strategy. By contrast, trades with above-

average returns are welcome and do not increase 

downside risk. Insofar, only those undesired return 

deviations below expected return are accounted for in 

the Semi-Variance concept. The computation is carried 

out as for the standard variance, but observations above 

the mean are skipped. 

In the characterization of a queue, we can as well 

assume that only one of the two possible deviation 

directions from the mean queue length is preferable, 

depending on the context. This means that in computing 

Semi-Variance only time spans are to be considered, 

where the average queue length is exceeded or fallen 

below, respectively, depending on the preferred point of 

view. (Commonly, there will be a preference for shorter 

queue lengths.) 

By this metric, we can gain a first impression and a 

basis for comparison, with regard to the size of 

undesired variations of queue length. 

For the implementation of further risk metrics 

described below, it is required to store all single 

observations as time series, until the simulation has 

ended. Thus the implementation of Semi-Variance 

accesses the total sample collected at the end of a 

simulation run, in contrast to the stepwise online 

computation of standard statistics, as normally applied 

in Desmo-J (Page, Lechler, and Claassen 2000). 

In order to provide general applicability 

concerning the direction of deviation perceived as risk, 

we compute negative as well as positive Semi-Variance 

and provide both of them separately on simulation 

reports. 

 

3.2. Value at Risk 

The Value at Risk (VaR) of an open trade quantifies the 

maximum loss (in absolute currency units) that will not 

be exceeded at a given confidence level of 1 – , at the 

end of a set period. In other words, VaR is equivalent to 

the -quantile of the probability distribution of the 

returns expected in the set period. 

 



Probability Distribution 

of Returns expected

in the Set Period

Value at Risk 0
 

Figure 2: Illustration of the Value at Risk metric 

 

The basic return distribution for computation can 

be determined by Historical Simulations, Monte-Carlo-

Simulation or the Variance-Covariance method 

(Linsmeier and Pearson 2000). 

Value at Risk is an important key figure in 

banking: Under the Basel II accord, banks are legally 

obligated to compute market risk in terms of the Value 

at Risk metric on a daily basis, in order to ensure that 

pre-set maximum losses won’t be exceeded within 

certain time horizons. 

Transferred to queues in general purpose discrete 

event simulators, VaR indicates the minimum or 

maximum queue length expected after a given 

simulation time interval and at a set confidence level, 

starting from the current queue length. This becomes an 

important measurand, if certain queue lengths must not 

be exceeded or fallen below, e.g. because of cost 

restraints or capacity limits of the waiting room. Thus, 

VaR gives a formative indication how to dimension a 

waiting room at a given initial state, a set confidence 

level and a designated time horizon, in order to meet 

specific restrictions. 
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In simulation practice, it should be avoided to refer 

to the current queue length resp. the present value of an 

observation variable, as these values permanently 

change during simulation runs and therefore are not 

eligible as fixed states of reference for the VaR 

measure. Instead, we implement the VaR concept by 

only considering the relative change of observation 

variables compared to their previous states and call this 

Delta at Risk. 

In case of bounded state spaces, there is a risk of 

distortion at boundary states and extreme states, such as 

the length of a queue cannot fall below zero. In this 

context, no further decrease of the queue length will be 

observable next. In contrast, if the state of an 

observation variable is far away from boundary states 

and extreme states, their impact on the next 

observations will be much smaller. 

Without differentiation, this could lead to 

overestimating the risk of increase of queue length in 

cases of lengths > 0, as more length increment 

observations starting from length = 0 would be regarded 

than appropriate in the normal case. 

Conversely, observations in the context of a queue 

length > 0 would distort the representative basis of 

future states for length = 0, as unrealistic length 

decrement observations were included in the sample, 

though for length = 0 a decrease of queue length below 

zero is conceptually impossible. 

The stated danger of reduced significance due to 

insufficient consideration of marginal or extreme 

contexts exists in the practical use of Value at Risk in 

financial institutions as well. Often the present state of 

financial markets is abstracted from, and the risk of loss 

is calculated without consideration of the current 

context. For example, the risk of high losses intuitively 

is lower at the end of a financial market decline than at 

the beginning of the same period, as most fearful 

investors have already left the market at an earlier stage, 

thus selling pressure eases. Nevertheless, the current 

market environment normally is not considered when 

calculating VaR. 

As long as state change probabilities are 

determined regardless of the context of boundary states 

and extreme states, the VaR metric consequently runs 

into danger of diminished significance. 

We address this problem by calculating four 

different Delta at Risks in simulation reports, according 

to four contexts: On the one hand we determine the 

Delta at Risk related to the most frequent and the 

median state of all states observed during the simulation 

run. On the other hand we compute two more Delta at 

Risk measures, corresponding to the minimum and 

maximum states observed. Using the example of 

queues, output is generated for the expected alteration 

of queue length considering empty, frequent, median 

and maximal length queues. 

The choice of the median state in the sense of a 

representative average state is motivated by the 

approach to analyse a state as far away from boundary 

states and extreme states as possible, in order to provide 

a largely unaffected Delta at Risk representing 

intermediate states. 

In case of non-symmetrical state distributions, the 

most frequent state is situated closer to boundary states 

or extreme states than the median state. Even though it 

might be under (partial) influence of boundary states 

and extreme states, the most frequent state may be 

regarded as a better basis for significant conclusions in 

certain contexts, as statements concerning this state may 

have higher empirical correspondence. 

The description above deals with the original and 

probably most frequent application of VaR as a risk 

metric for one-dimensional discrete state spaces (here: 

currency units). In principle, the Delta at Risk concept 

is canonically extendable to multi-dimensional or 

continuous state spaces as well. In order to keep 

simulation reports manageable, the mapping of sets of 

multi-dimensional states or intervals of states to a one-

dimensional discrete state space should be considered, 

though. 

With this in mind, we continue to describe Delta at 

Risk in terms of one-dimensional discrete state spaces, 

as we expect this to be the most common use case. 

A naive implementation of Delta at Risk of an 

observation variable could compute and store the delta 

of state size divided by the simulation time passed since 

the last state change, as a quotient, at every change of 

the observation variable. By sorting these rates of 

change in ascending order, accumulating their 

frequencies and normalising these, the distribution 

function F(x) could be constructed, describing the 

distribution of rates of change per reference time unit. 

However, rates of change computed in this way 

would base on variable length time intervals containing 

only one actual change event, being scaled to a 

reference time unit afterwards. Real consecutive 

observations within real reference time intervals would 

be ignored. Thus, extrapolations of short time intervals 

could lead to excessive distortions when dealing with 

longer time intervals. 

Instead, we determine and store the size of state 

change at every modification of an observation variable, 

as compared to the state the variable had a fixed time 

interval earlier. For this purpose the state history for (at 

least) the time interval under consideration has to be 

stored within a time series during the simulation run. 

Subsequently, the recordings of these actual 

relative state changes within the set time span, are 

sorted in ascending order, accumulated and normalised 

in frequency, yielding to a more realistic distribution 

function F(x). This procedure takes into account that 

subsequent state changes may neutralise each other 

partially or entirely over longer time frames, as often 

observed in practice. 

For flexibility, n time spans of interest may be 

passed as input parameters, leading to a risk analysis for 

each of the time frames given, regarding the cumulative 

outcome of all multiple state changes actually observed 

within that time frame, recorded at every simulation 

event concerning the observation variable. 

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 103



Beyond the original application in quantitative 

finance, we extend the initially asymmetrical concept of 

downside risk to both ends of the state space, as it 

cannot be assumed that risk always is represented at the 

left end of the state space. Thus, we appraise the 

potential risk at the right end of the distribution 

likewise. As a consequence the -quantiles for  = 1%, 

2.5%, 5%, 10% as well as for 90%, 95%, 97.5% and 

99% are determined from F() and output on the 

simulation report. 

In sum, the Delta at Risk metric derived from 

Value at Risk quantifies the maximum size of change 

expected (i.e. risk, in terms of quantitative finance) with 

regard to an observation variable, at a given confidence 

level , after a set period, and according to four well-

defined reference states. 

Typical conclusions based on the simulation report 

were “At a confidence level of 97.5% and starting from 

the observed median m, the queue length will 

maximally increase by x entities and maximally 

decrease by y entities after 10 minutes of simulated wall 

clock time” or “Starting with an empty queue and given 

a confidence level of 99%, the queue length will not 

exceed z entities after 1 hour of simulated wall clock 

time”. 

 

3.3. Expected Shortfall 

Value at Risk quantifies the maximum loss at a given 

confidence level of 1 – , nevertheless a loss exceeding 

VaR is not impossible, as long as  > 0. The 

shortcoming of the VaR concept is that it does not make 

a statement about the amount of loss to be expected, if 

the limit of Value at Risk is exceeded in critical cases. 

This gap is filled by the metric Expected Shortfall 

(also referred to as Conditional Value at Risk or 

Expected Tail Loss, Rockafellar and Uryasev 2000). It 

expresses the expected amount of loss for the  fraction 

of cases where VaR is exceeded. Hence, Expected 

Shortfall is a metric to assess the potential extent of 

damage for unlikely but possible cases of extreme 

events (in terms of the choice of ). Expected Shortfall 

is an important key figure used to describe the state 

space beyond VaR when structuring finance products 

with insurance nature. 

 



Probability Distribution 

of Returns expected

in the Set Period

Expected Shortfall 0

Value at Risk

 
Figure 3: Illustration of the Expected Shortfall metric 

 

 Here too, we generalise the quantitative finance 

metric with regard to three aspects, for the purpose of 

transferring the concept to general simulation 

application domains: Firstly, we move from expected 

absolute loss to expected relative state change of an 

observation variable. Secondly, we consider minimum, 

median, most frequent and maximum states as 

references. Thirdly, both ends of the probability 

distribution are regarded likewise, to remain flexible 

with respect to where to attribute risk, depending on the 

special application area. 

In order to avoid confusion, the modified risk 

metric is called Conditional Delta at Risk. 

Conditional Delta at Risk is based on the same data 

as Delta at Risk introduced above. In the course of 

calculating Delta at Risk, the Conditional Delta at Risk 

simply can be computed as the expected value of the 

empirical probability density below (resp. above) the -

quantile of all observations. 

Referring to queues, Conditional Delta at Risk 

indicates the expected growth or contraction of queue 

length for the remaining  fraction of cases beyond the 

confidence level. If a waiting room was dimensioned 

taking account of the Delta at Risk metric, its overload 

in the remaining  fraction of cases is now appraisable. 

A typical conclusion based on the simulation 

report would be “If, starting with an empty queue and 

given a confidence level of 99%, the queue length 

exceeds the Delta at Risk of z entities after 1 hour of 

simulated wall clock time, then an average queue length 

of z + c entities can be expected”. 

 

3.4. Drawdown Phases 

The term Drawdown of a trading strategy relates to an 

interim loss of asset value, after a new peak of asset 

value was reached beforehand. Drawdown may be 

given in absolute currency units or as a percentage of 

the preceding peak asset value. A Drawdown Phase 

often extends over several consecutive (mis-)trades and 

thus cumulates their effects. 

Drawdown Recovery starts at the point of 

maximum interim loss. It lasts until the previous peak 

asset value is reached again or exceeded. 
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Figure 4: Drawdown Phase of the L’Oréal Share from 

July 2011 to April 2012 

 

Drawdown and Drawdown Time give an 

impression of extent and speed at which the state of 

observation variables may move into an undesirable 

direction. Therefore, these key figures allow an 

assessment of undesirable system dynamics in terms of 
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vulnerability or susceptibility to disturbances. By 

contrast, the Drawdown Recovery Time provides an 

indication of the regenerative capacity of the analysed 

system. 

A financial trading strategy may experience a 

multitude of Drawdown Phases over time. Especially 

the Maximum Drawdown ever undergone is of 

particular interest with regard to trading futures 

contracts in financial markets, as this key figure 

determines the required minimum margin of a trading 

account, to withstand the highest Drawdown 

encountered so far in the strategies history. 

Drawdowns and their recoveries can only be 

quantified ex post, when a Drawdown Phase is 

completed and a new peak in asset value has been 

reached. Moreover, a trading strategy is almost always 

in a Drawdown, except from new peaks in asset value. 

Hence it is of vital interest to analyse the structure of 

Drawdowns to gain insight into the dynamics of 

undesirable behaviour. 

In the context of queues, a queue length of 0 may 

be set as base level, corresponding to the peak asset 

value in financial context. Then Drawdown, Drawdown 

Time and Recovery Time characterise the dynamics of 

formation and reduction of queues, regarding the queue 

length as observation variable. 

Since a multitude of Drawdown Phases per 

observation variable is to be expected in simulation 

runs, we extend the quantitative finance Drawdown 

concept, as it originally focuses only on the extreme 

case Maximum Drawdown resp. Average Drawdown. 

To provide a quick overview of the total dynamics 

of the system modelled, we classify all Drawdowns 

according to their absolute extent and display their 

distribution in a histogram. The number of histogram 

bins is determined according to the rule of Freedman 

and Diaconis (1981), after the simulation has ended. 

Two additional histograms visualise the 

distribution of Drawdown Times and Drawdown 

Recovery Times in a similar manner. 

For further orientation, we introduce a Drawdown 

scatter plot, encoding Drawdown Time as x-coordinate, 

Drawdown Recovery Time as y-coordinate and the 

Drawdown extent as colour of a data point. Hereby 

character and distribution of all Drawdown Phases 

during the simulation run can be seen at a single glance. 

Moreover, all Drawdown Pathways per 

observation variable are superimposed in a joint 

coordinate system. Thus, a good overview of the typical 

and most severe Drawdown Phases is given, including 

the Recovery sub-phases. 

A second diagram visualises the superimposed 

time series only of the Recovery sub-phases per 

observation variable, providing a quick overview of the 

regenerative properties of the system modelled. 

Beyond the specified extended analysis of the 

Drawdown concept itself, we generalise this risk metric 

in three ways, in order to support its flexible and 

unrestricted utilisation in simulation application 

domains: 

 

 We consider both the setbacks and recoveries 

on the way towards peak states (“classical” 

Drawdowns) and complementarily the ascent 

and descent phases on the way towards bottom 

states. By this means, we again take into 

account that the interpretation of a certain state 

development direction as risky or preferable 

cannot be predetermined for the manifold 

application areas of simulation. 

 Furthermore, after determination of the median 

state at the end of a simulation run, the time 

series of observed variable states is divided 

into phases below and above the median. 

These phases are treated separately as 

Drawdowns and Recoveries concerning states 

below the median resp. as ascents and descents 

concerning states above the median. This 

supports the alternative point of view of 

striving for a central state of equilibrium and 

considering deviations from this balanced state 

as risk. Since phases below and above the 

median are treated separately, it remains free 

whether risk is attributed to one or both 

directions of deviation. 

 For non-symmetrical empirical distributions, 

the same handling as above is applied, but this 

time with reference to the state with the highest 

frequency instead of the median state. 

 

Accordingly, all advanced statistical and graphical 

analysis mentioned (3 histograms, 1 scatter plot, 2 time 

series diagrams) are provided for all six use cases of the 

generalised Drawdown concept described above. 

 

4. SUMMARY 

In quantitative finance, specialized discrete event 

simulators called back testers are utilized, in order to 

evaluate financial market trading strategies. Here, 

strategies are simulated in different historical market 

environments and evaluated, compared and optimised 

by means of a wide range of assessment criteria. A 

significant assessment category is related to the risk 

taken in following a particular trading strategy. In this 

context, risk in terms of volatility is understood as a 

metric for the potential to deviate from a characteristic 

average rate of return. Additionally, quantitative finance 

has elaborated the concept of downside risk in the form 

of asymmetrical risk metrics, where only negative 

deviations in the sense of underperformance are 

regarded.  

We propose to introduce the four most accepted 

financial risk metrics of back testers into general 

purpose discrete event simulators. We think that these 

metrics open up new and fruitful views on model 

dynamics in general and may specifically support the 

evaluation and possibly optimisation of undesired 

model behaviour. In particular, dimensioning of waiting 

rooms as well as planning of processing capacities 

should benefit from the generalised risk key figures. 
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In order to support a preferably wide field of 

application domains in discrete event simulation, we 

extend the transferred metrics Value at Risk and 

Expected Shortfall in three aspects: Firstly, we advance 

from expected absolute loss of currency units to 

expected relative changes of observation variables, to 

allow deriving general statements independently from 

particular current states. Secondly, we consider the 

minimum, median, most frequent and maximum state of 

observation variables in order to handle boundary and 

extreme states separately. In this sense, the median of 

an observation variable represents a state as far as 

possible from extreme situations. For non-symmetrical 

empirical distributions, the most frequent state is 

regarded as well, as a maybe better basis for significant 

conclusions. Thirdly, we account for both ends of state 

distributions, since depending on the application 

domain, risk may be regarded as deviation into different 

directions, possibly also into both directions. 

The third aforementioned generalisation is also 

applied when transferring Semi-Variance to discrete 

event simulation. 

The second and third extension mentioned above 

concern Drawdown Phases, too. 

We aim at providing a concrete tool for the 

modeller of general discrete event models, in order to 

convey an impression of the value of transferring 

quantitative finance risk metrics into other domains. For 

this reason, our general purpose simulation framework 

Desmo-J is extended by these concepts in a Bachelor 

thesis at the working group of Modelling and 

Simulation in the Department of Informatics at 

University of Hamburg. We expect to provide a more 

sophisticated risk estimation in the various application 

domains of discrete event simulation as compared to 

conventional standard statistics. 
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