

THE DISCRETE EVENT SIMULATION FRAMEWORK DESMO-J:

REVIEW, COMPARISION TO OTHER FRAMEWORKS

 AND LATEST DEVELOPMENT

Johannes Göbel, Philip Joschko, Arne Koors, Bernd Page

Department of Informatics

University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

E-mail: {goebel, joschko, koors, page}@informatik.uni-hamburg.de

KEYWORDS

Discrete Event Simulation, Simulation Software, Simu-

lation Framework, Open Source, Java, .NET, Visualiza-

tion.

ABSTRACT

This review paper focusses on DESMO-J, a comprehen-

sive and stable Java-based open-source simulation li-

brary. DESMO-J is recommended in numerous

academic publications for implementing discrete event

simulation models for various applications. The library

was integrated into several commercial software prod-

ucts. DESMO-J’s functional range and usability is con-

tinuously improved by the Department of Informatics of

the University of Hamburg (Germany). The paper sum-

marizes DESMO-J’s core functionality and important

design decisions. It also compares DESMO-J to other

discrete event simulation frameworks. Furthermore,

latest developments and new opportunities are ad-

dressed in more detail. These include a) improvements

relating to the quality and applicability of the software

itself, e.g. a port to .NET, b) optional extension packag-

es like visualization libraries and c) new components

facilitating a more powerful and flexible simulation

logic, like adaption to real time or a compact representa-

tion of production chains and similar queuing systems.

Finally, the paper exemplarily describes how to apply

DESMO-J to harbor logistics and business process

modeling, thus providing insights into DESMO-J prac-

tice.

INTRODUCTION

A practitioner aiming to conduct a simulation study has

the choice between two types of simulation software to

base his or her model on:

 Integrated simulation development environments,

typically commercial software, often support the

simulation study as whole, including data collec-

tion, model design, experimentation and evaluation.

Model design often is done by assembling ready-to-

use components on drag and drop basis in a graph-

ical user interface. Plant Simulation (Siemens PLM

Software, www.plm.automation.siemens.com) or

FlexSim (FlexSim Software, www.flexsim.com)

are well-known examples.

 Simulation libraries have a narrower focus, typical-

ly concentrating on model implementation and ex-

perimentation. They require models are coded in a

general-purpose or special programming language,

sacrificing comfort for flexibility. Though their

modeling capabilities are often similar to commer-

cial development environments, most of such li-

braries are open source software: apart from being

available for free, advantages include source code

analysis, debugging, modification, and the permis-

sion to re-distribute extended versions according to

the relevant license. Examples include DESMO-J

(Page 2013) and others, as compared later in this

paper.

The purpose of this paper is easing the difficulty of this

choice by clarifying the state of the art for the second

type of software: This paper presents DESMO-J as ex-

ample of a modern open source library for Java-based

discrete event simulation. The subsequent section de-

scribes DESMO-J’s functional range and important de-

sign decisions and provides a comparison to other open

source simulation libraries. For examples of how

DESMO-J is applied in different real-world scenarios

consider the next section, namely extensions for harbor

logistics and business process modeling. The following

section can be understood as an update to previous pub-

lications like Page and Neufeld (2003) and Göbel, Krze-

sinski and Page (2009), as the latest extensions to

DESMO-J are described, namely real time capability,

2D and 3D visualization, a .NET port, efficient simula-

tion of processes based on coroutines and continuations,

generic components for production chains and other

queuing systems, recording and logging of simulation

objects, as well as advanced simulation dynamics analy-

sis on basis of quantitative finance risk metrics. This

permits the conclusion in the final section that libraries

like DESMO-J should be recognized as alternatives to

commercial development environments.

DESMO-J

DESMO-J (Discrete-Event Simulation and Modelling in

Java) is a comprehensive framework for developing

discrete event simulation models, see Banks et al.

(2010) or Page and Kreutzer (2005), in the object-

Proceedings 27th European Conference on Modelling and
Simulation ©ECMS Webjørn Rekdalsbakken, Robin T. Bye,
Houxiang Zhang (Editors)
ISBN: 978-0-9564944-6-7 / ISBN: 978-0-9564944-7-4 (CD)

oriented programming language Java. The first subsec-

tion discusses the reasons for choosing Java, followed

by a short primer about modeling in DESMO-J. After-

wards, the most important design decisions and a com-

parison to other simulation libraries are addressed.

Implementation Language

Simulation modeling in DESMO-J actually means im-

plementing models in Java. Particularly, the model

structure including properties and behavior of all com-

ponents has to be coded in appropriate Java classes. In

contrast, the simulation infrastructure, e.g. simulation

clock, event list, random number distributions and ex-

periment conduction including reporting is readily

available.

In comparison to the other main approach of providing

simulation functionality to a user, namely graphically

assembling models on “drag and drop” basis, simulation

programming may be less intuitive to learn (especially

for beginners) and slower to apply; this at least holds for

standard cases like production lines which are covered

by the building blocks included in GUI-based modeling

environments like Plant Simulation or FlexSim. How-

ever, the most important advantage of simulation pro-

gramming based on a library like DESMO-J is

flexibility, as any model logic can be described in a

general purpose programming language like Java; no

constrains are imposed by a restricted simulator API or

a product-specific script language. Therefore,

DESMO-J is particularly well-suited for complex mo-

dels for which graphical modeling cannot be done ade-

quately and efficiently.

Furthermore, choosing Java as simulation programming

language means addressing a large community of pro-

grammers. It ensures all features of a modern object-

oriented language are available. Java’s pervasiveness is

unmatched: so-called Java virtual machines are provid-

ed for almost every modern operating system. Java pro-

grams can not only be executed on desktops, but also as

Web Service or as Applets on web sites. Just-in-time

compilation including optimization of Hot Spot execu-

tion and garbage collection has helped to achieve run

time performance similar to languages that compile

sources to binary code.

DESMO-J in a Nutshell

We refer to DESMO-J as a simulation framework as it

provides a coherent software architecture of components

exhibiting a well-defined cooperative behavior designed

to effectively and conveniently serve the task of model

building and experiment conduction: as much

implementation effort as possible is removed from the

user. Wherever feasible, DESMO-J makes available so-

called black-box components, which are classes that are

ready-to-use. Such classes are parameterized by the

user; usually, their code needs not be touched. Figure 1

shows the most important classes from DESMO-J’s

core functionality. Black-box components include the

Experiment class responsible for conducting discrete

event simulation runs. Following the façade design

pattern, Experiment hides the infrastructure it requires,

like the scheduler and the event list it operates on, the

simulation clock, and the generation of experiment

reports. Additional black-box components offer generic

model components like queues with finite or infinite

space, random number generators based on a variety of

random number distributions and different means of

collecting statistical data. Important functionality of the

statistics classes includes counting, uniform or time-

weighted aggregation of samples, determining

confidence intervals and generating histograms. The

last-mentioned black-box components are subclasses of

Reportable, automatically generating statistical data

available in the experiment report.

EventAbstract

SimProcess

EventOf2Entities

EventOf3Entities

QueueBased Distribution StatisticObject

Queue NumericalDist Count

ReportableSchedulable

ModelComponentExperiment

NamedObject

ContDist

ContDistNormal

DiscreteDist

DiscreteDistGeo

e.g.

Black-Box

Hot Spot

Reporter

ModelReporter

QueueReporter

CountReporter

e.g.

Scheduler SimClockEventList

EventTreeList

e.g. e.g.

e.g.e.g.

e.g.

Entity

ExternalEvent

Event

Model

Figure 1: Important DESMO-J Classes

With this set of black-box components at hand, the

modeler is able to focus on implementing the logic of

the system to simulate by using additional objects re-

ferred to as Schedulables. Such Schedulable ob-

jects can be put onto the event list; they are typical

examples of DESMO-J’s white-box components or hot

spots: the unknown structure and behavior of a user’s

model require more flexibility than parameterized

black-boxes can provide. Consequently, hot spots are

abstract Java classes whose methods have to be com-

pleted by the user.

To implement a model, the DESMO-J user may choose

between the event-oriented and the process-oriented

view:

The event-oriented perspective, also referred to as

“bird’s eye view”, requires the user to describe the

model behavior in terms of event routines which are

assumed executed as an atomic transaction without

interruption and without simulated time passing. Model

dynamics arise from sequentially executing events.

Entities are represented by classes inheriting from

Entity. The events implemented by the user have to be

derived from one of the four subclasses of

EventAbstract; which subclass to base a modeled

event on depends on the number of entities associated to

the event, namely one (Event), two

(EventOfTwoEntities), three (EventOfThree

Entities) or none (ExternalEvent). For example, a

service end event of an item leaving a machine in a

production line typically is modeled as an

EventOfTwoEntities, as two entities are affected:

one item proceeding to the next machine and one

machine processing the next item, if available. In

contrast, an event referring to no specific entity, but to

the system as whole, e.g. a power failure, could be

implemented as ExternalEvent. An event’s behavior

is defined in its eventRoutine() method; typically,

event routines include entities being created and

destroyed, entities entering or leaving queues, statistical

data collectors being updated and further events

scheduled or cancelled.

In contrast, process modeling describes model logic in

terms of processes that persist as simulation time passes.

Model dynamics arise from process interaction and

transfer of program control among each other. For each

process, the user has to subclass SimProcess, provid-

ing a life cycle containing the behavior of the process

over time, yielding a “worm’s eye view” of the model.

In their user-defined lifeCycle() methods, processes

may create other processes (which are special entities),

modify queues or update statistic objects. Furthermore,

simulation processes are able to wait for a certain period

of simulated time (“hold”) or for an indeterminate peri-

od (“passivate”) until activation by another process

(“activate”). A process may interrupt another process on

hold, causing the interrupted process to resume its life

cycle execution at a time instant prior to its original

schedule.

With true coroutines not being available in Java, pro-

cess execution internally is based on event scheduling:

each process runs in its own Java thread; process

threads are suspendable and are resumed by events im-

plicitly scheduled when processes are held or activat-

ed/interrupted. Note that the section describing latest

developments presents an alternative approach of im-

plementing processes which is less resource-consuming.

DESMO-J does not enforce an exclusive decision for

either event or process modeling; the user is free to

combine both modeling styles in a single model (e.g. an

event activating a process which in turn schedules an-

other event), so that the modeling perspective best suit-

ed for each specific aspect of a model can be applied.

Comparison to other Tools

When conducting a simulation study using a Java-based

simulation framework like DESMO-J, the model devel-

oper may choose out of a number of different tools. An

of course non-exhaustive list of open source discrete

event simulation libraries in Java includes

 DESMO-J (Page 2013),

 DSOL (Verbraeck 2009),

 J-Sim (Kačer 2006),

 JavaDEMOS (Computer Science Group 2009),

 JSL (Rossetti 2013),

 PtolemyII (Lee 2011),

 SimKit (Buss 2012) and

 SSJ (L’Ecuyer 2012).

For URLs of these libraries including API documenta-

tion and examples see the corresponding Reference en-

tries. Table 1 compares some key features of DESMO-J

and its competitors.

Table 1: DESMO-J compared to other Java Discrete

Event Simulation libraries

P
ac

k
ag

e

n
am

e

E
v

en
ts

 /

P
ro

ce
ss

es

V
is

u
al

iz
at

io
n

R
an

d
o

m

d
is

tr
ib

u
ti

o
n

s

T
u

to
ri

al
 /

E
x

am
p
le

s

L
ic

en
se

 *
*

C
o

m
m

er
ci

al

u
se

L
as

t
v
er

si
o

n

DESMO-J E/P 2D/3D 25 Yes ASL2.0 Yes 2013

DSOL E/P 2D 21 Yes Special – 2009

J-Sim E/P – 5 Yes AFL2.1 – 2006

J’DEMOS E/P – 15 Yes Special – 2009

JSL E – 9 Yes GPL – 2013

PtolemyII E/P* 2D 23 Yes Special Yes 2011

SimKit E 2D 25 Yes LGPL Yes 2012

SSJ E/P – 64 Yes GPL – 2012

* Processes based on an Actor approach

** ASL = Apache Software License, AFL = Academic Free License, GPL =

GNU General Public License, LGPL = GNU Lesser General Public License

These key features include support of event and process

modeling and availability of 2D or 3D visualization of

model behavior; different means of 2D visualization are

available, e.g. schematic representation of the spatial

model structure similar to Plant Simulation, where enti-

ties are drawn using icons, or important statistics as dis-

playable in DESMO-J, or dynamically annotated event

graphs as in DSOL. The number of random distributions

has not much intrinsic value on its own, as generators

for additional distributions can be implemented quickly.

Nevertheless, it is included in the table as an exemplary

indicator for each framework’s extent, which is difficult

to measure. E.g. number of classes or download size

might be misleading measurements, as they depend on

various design decisions, e.g. few monolithic or many

specialized classes, data collection separated from the

source generation of the data or not, functionality par-

tially delegated to sub-libraries… Furthermore, the table

addresses the availability of tutorials or example mod-

els, the licenses under which the libraries are available

to the public and whether commercial use is permitted.

For commercial application, we particularly require

permission for usage in closed-source, proprietary soft-

ware and inclusion in releases of such software without

endorsement from the libraries’ authors. The table con-

cludes with the date of the most recent version as of

February 2013.

Observe that the combination of features DESMO-J

offers is unmatched among the other Java-based simula-

tion frameworks: as already explained, DESMO-J al-

lows event and process modeling and offers both 2D

and 3D visualization of the model behavior as will be

described below. The DESMO-J website (Page 2013)

contains an extensive tutorial not only describing how a

container logistics example model is implemented using

either events or processes and how experiments are

conducted. A variety of advanced topics is also ad-

dressed, e.g. different data collectors and higher model-

ing features like conditional waiting or implicit process

synchronization.

Another unique feature is the availability of a compan-

ion book: The Java Simulation Handbook (Page and

Kreutzer 2005), available as printed version and as

eBook, covers discrete event simulation fundamentals

and simulation modeling based on UML and DESMO-J

as well as simulation statistics, model validation and

verification, multi-agent simulation, simulation optimi-

zation, simulation projects in practice and various other

topics.

EXTENDING DESMO-J AND APPLICATION

SCENARIOS

General Expandability

Every time a model is implemented with DESMO-J by

deriving entities and processes/events from DESMO-J

classes, a kind of ‘domain-specific extension’ is written.

Classes designed with the intention of general reusabil-

ity within diverse models are called DESMO-J exten-

sions. These might be general, more technical

extensions like multi-agent-based simulation entities

(Knaak, Kruse and Page 2006) or domain-specific ex-

tensions, containing reusable entities for easier compo-

sition of models in that particular domain, see next

sections or Joschko, Page and Wohlgemuth (2009).

Furthermore, DESMO-J can be integrated into other

software products, such as extensive modeling suites

with own graphical user front-end and model editors,

allowing modeling without writing Java code. Due to

the flexibility of ASL 2.0 under which DESMO-J is

licensed, it is possible to implement individual solutions

without using an open-source license – an important

issue in non-public, commercial projects.

Since expandability is a very important aspect in using

DESMO-J, we sum up some domain-specific solutions

in the following sections.

Harbor and Container Terminals

Simulation is an established method for optimizing

strategies and resource allocation in logistic contexts.

Since Hamburg accommodates one of the ten largest

container ports worldwide, we had the opportunity to

gain substantial experience in simulating container ter-

minals in a number of cooperation projects. We present-

ed our first DESMO-J harbor extension in Page and

Neufeld (2003). This class library extension is still

available in DESMO-J, offering three types of objects:

dynamic, mobile, temporary objects like ships, trucks

and trains; dynamic, mobile, permanent objects like

cranes and van carriers; and stationary, permanent ob-

jects like holding areas, gates, jetties and yards

(Joschko, Brandt and Page 2009).

Worldwide, many other working groups use DESMO-J

in logistic investigations in harbor context, see e.g.

Asperen et al. (2004) and Henesey, Aslam and Khurum

(2006).

The traditional aim in executing logistic simulation ex-

periments is to compare different handling strategies in

order to determine terminal layout or optimize usage of

transport vehicles (Bornhöft, Page and Schütt 2010).

These strategic simulation approaches take place in the

design and implementation phase of container terminals.

In the operation phases of container terminals, tactical

simulation can be used to support decision-making in

resource allocation, finding good storage positions and

accepting orders.

A completely different approach in this phase is to use

simulation for integration tests on terminal operating

systems. Together with the Hamburger Hafen und

Logistik AG (HHLA), we implemented a DESMO-J

extension for a broad range of applications in the con-

text of container terminals, called COCoS, see Brandt

(2008) or Joschko, Brandt and Page (2009). Entities in

COCoS (van carriers, quay cranes etc.) are assembled

from different exchangeable layers and sub-components

that manipulate model state by scheduling DESMO-J

events. The granularity depends on the level of detail

needed for the object of investigation. Whereas in lo-

gistic experiments an abstract, stochastic representation

of transport device behavior is needed, a high level of

detail is required when connecting the model to a real

terminal operating system. The exact kinematic charac-

teristics of transport devices have to be mapped. A TCP-

based communication layer enables message exchange

between the simulation model and the container termi-

nal operating system. Last but not least, deceleration of

simulation adjusts the model to real time (see next chap-

ter). A graphical user interface comprises visualization

of the model’s state and buttons permitting user interac-

tion with the job list or a device. Fulfilling these condi-

tions with DESMO-J and COCoS, a simulated terminal

system can be controlled by a real terminal operating

system. In this way, a “terminal operating system can be

tested with help of a terminal model” (Joschko, Brandt

and Page 2009).

Business Process Modeling

In Business Process Analysis, a graphical modeling no-

tation (BPMN, EPC, UML, Petri-Nets etc.) is used to

visualize production processes and information flows.

Apart from other purposes, such a graphical representa-

tion facilitates communicating existing procedures and

discussing improvements. Augmenting such methodol-

ogy with simulation capabilities enables empirically

founded comparison of alternatives, e.g. resource allo-

cation or strategy optimization. Regardless of the cho-

sen modeling notation, a business process model can be

transformed into a simulation model if it is enhanced

with simulation properties. Particularly, stochastic pa-

rameters affect the duration of activities and the inter-

arrival time of events. Once again, resource allocation is

one of the most interesting issues. The total cost of ac-

tivities, the number of concurrently running processes,

the duration of (sub-)processes, the length of waiting

queues and the occurring frequency of specified events

are also relevant performance indicators.

Several commercial business process modeling tools use

DESMO-J as simulation engine in order to support such

analysis. To our knowledge, DESMO-J is a part of Tib-

co Business Studio, Borland Together, eClarus Business

Process Modeler for SOA Architects and Intellivate

IYOPRO, the latter being our favorite in user friendli-

ness. This list may be incomplete as not all DESMO-J

software integrators necessarily get in touch with us.

In cooperation with Intellivate GmbH, the developer of

IYOPRO, our working group has developed a

DESMO-J extension for simulating business processes

notated in Business Process Model and Notation 2.0

(BPMN). Since IYOPRO is a Silverlight web applica-

tion, we used a .NET port of DESMO-J (see below) in

order to implement a BPMN extension for DESMO-J.

This software now contains a special BPMN-process

derived from DESMO-J’s SimProcess class as well as

implementations of most BPMN flow elements, like

activities, several event types and sequence flows. Fur-

thermore, it includes message flows, pools, swim lanes

and data-objects derived from DESMO-J’s Entity

class. Integrated into the graphical model editor of

IYOPRO, model parameters can be set using a property

editor. Additionally, process variables for data-objects

and expressions for splitting gateways can be declared.

Therefore, the choice of path can depend on the state of

a process instance. The simulation report is enhanced

with pie charts and histograms, linked to the corre-

sponding model elements. See Joschko et al (2012) for

more details about business process simulation, enhanc-

ing models for simulation purposes and deploying simu-

lation experiments using BPMN 2.0 and IYOPRO.

LATEST DEVELOPMENT

Leaving the application level, we now describe some

recent features of DESMO-J itself, thus giving an in-

sight into the library’s continuous development process.

Real-time Capability

The handling of simulation time has been completely re-

engineered as of DESMO-J version 2.2.0, see Klück-

mann (2009): typically, a simulation experiment is exe-

cuted as fast as possible; simulation time advance

depends on CPU speed only. Special cases, however,

may require intentionally decelerating an experiment:

examples include concurrent animation or real-word

systems in which the behavior of some components is

emulated by a simulator. DESMO-J now offers the fea-

ture to link simulation time advance to real time, subject

to a user-defined time lapse factor. If this factor is set to

1, the simulation experiment will execute synchronously

to real time.

Re-engineering time handling also introduced some

minor improvements: for the modeler’s convenience,

references to time can alternatively be based on time

instants or durations, thanks to parameter overloading:

for example, either an absolute point in time

(TimeInstant, “hold until”) or a duration (TimeSpan,

“hold for”) can be passed to a process’ hold() method.

Additional improvements include the support of

java.util.Calendar and java.util.Date for

reading and writing time statements, multiple time

zones in a single model, a class for shift schedules, as

well as time-weighted data collection (Accumulate)

being switched on and off, e.g. in order to ignore a

night’s downtime.

2D Visualization

Modern simulation tools support model state and behav-

ior visualization; reasons include communication with

model users and decision makers as well as detection of

erroneous model logic and – though no replacement for

a statistically well-founded analysis – basic means of

evaluation, e.g. identification of potential bottlenecks.

DESMO-J supports two different means of visualiza-

tion, presented in this and the next subsection.

The 2D visualization component – a contribution of

Prof. Dr. Christian Müller and his research group at the

Technical University of Applied Sciences Wildau,

Germany – provides a means of schematically repre-

senting the model logic on a 2D plane: every entity (in-

cluding processes, compare Figure 1) can be shown in

the visualization, after an icon and location in terms of

x/y-coordinates have been assigned. Visualization sup-

ports uniform entity motion from an origin to a destina-

tion during a certain time span on a pre-defined path.

Entities can also be shown inside a waiting area of

queues while enqueued. Furthermore, data collectors

can be included in the visualization, featuring their cur-

rent or last values as well as mean and standard devia-

tion values. Figure 2 shows an example screenshot from

a bungee tower model; see the DESMO-J webpage

(Page 2013) for a Java Applet version of this animation

running directly inside the web browser.

Figure 2: Screenshot of the 2D Visualization of a

bungee tower model

To create a 2D visualization, a developer just has to

replace the DESMO-J core classes like Model, Entity,

SimProcess, Queue or Count with their appropriate

subclasses ModelAnimation, EntityAnimation,

SimProcessAnimation, QueueAnimation or

CountAnimation from the 2D visualization package.

Constructors and methods are identical to the core

classes except for additional means for defining a

position or exchanging an entity’s icon reflecting a state

modification, e.g. job completion or change of order

priority.

As 2D visualization works offline, a simulation experi-

ment has to finish before visualization starts: rather than

providing a “live” view of the experiment, opposed to

the 3D framework described below, a simulation run

generates an XML-script describing all updates to ap-

pear in the visualization, e.g. entity motion or data col-

lector values adjusted. After completion of a simulation

run, a viewer is launched in which the script can be

played back. Basic features include zooming and adjust-

ing animation speed (time lapse, stepwise execution).

Additional examples, a 2D visualization tutorial and

documentation are available at a dedicated web site

(Müller 2011).

3D Framework

Alternatively, we provide a 3D framework which

includes several libraries for three-dimensional

modeling and visualizing. First, there is a DESMO-J

extension which provides a basic spatial concept, see

Sun (2010): the interfaces SpatialObject and

MovableSpatialObject enhance the DESMO-J

classes Entity, SimProcess or Queue with

coordinates, orientation and movement behavior. The

class SpatialData encapsulates coordinates and

orientation in a 4 4 transformation matrix, thus

movements are represented as matrix multiplications.

The environment’s layout contains navigation points

and routes between them. It can be defined in an XML

file.

Second, there is an optional kinematic library for

calculating the arrival time of entities, requiring

acceleration, deceleration and maximum speed of a

MovableSpatialObject being given. While position

and orientation are calculated when a movement is

finished, the class SpatialMovementManager

interpolates speed, position and orientation of objects on

demand. Instead of the kinematic calculation, arrival

time can also be scheduled conventionally by stochastic

distributions.

Third, the visualization framework animates the

position, orientation and movement of objects with help

of OpenGL and Java 3D. 3D shape files are linked to

logical model elements by an XML file, thus the visual

appearance of objects is determined. Input and output

ports enable 3D modeling of entities like queues. In

order to get messages about movement events, the

visualization framework signs itself up at the spatial

classes. Between start and termination of a movement,

the actual position is updated regularly by the

SpatialMovementManager. The parallel deployment

of spatial concept, kinematic library and visualization

framework enables three-dimensional, concurrent

animation during a simulation run. Figure 3 shows a 3D

visualization of a simple logistics model.

Figure 3: Screenshot of the 3D Visualization of a truck

loading model

.NET-Versions of DESMO-J

This far, integration of DESMO-J into existing software

suites is limited to Java. A platform similarly wide-

spread is .NET from Microsoft. Like Java, .NET is

based on a virtual machine, yet it allows programming

in diverse languages, e.g. C# or Visual Basic. Since

DESMO-J is constantly improved and enhanced, main-

taining two branches of DESMO, one in Java and one in

C#, would have been too costly. Nevertheless, a .NET

version of DESMO-J always aligned with the maturity

level of the Java version was desirable. We successfully

explored two approaches of automatically porting

DESMO-J into .NET’s Intermediate Language code or

into C# source code, respectively.

IKVM is an implementation of the Java Virtual Ma-

chine for .NET and Mono, see Frijters (2012). It pro-

vides an implementation of the Java standard libraries

and some tools which enable interoperability of Java

and .NET respectively Mono classes. The command

‘ikvmc’ is able to compile a .NET DLL file out of a

Java JAR file. The resulting DLL file has dependencies

to several IKVM libraries. These files can be included

in a .NET based software application and used as if they

were ordinary compiled .NET classes. Since differences

between Java and .NET do exist, we examined the fea-

sibility of this solution in practice. We tested whether

the behavior of a ‘DESMO.NET’ library produced by

IKVM is identical to that of the original DESMO-J li-

brary. Therefore, we compared simulation results of

several simulation runs with several models, and could

not find any deviations.

As a consequence, we developed a sophisticated ERP

simulation model in C#, interfacing with a Microsoft

Windows-based ERP system in a .NET environment,

while employing broad simulation functionality of

DESMO-J converted to .NET by IKVM (Kühnlenz

2011, Schäfer 2011). Though the model was quite com-

plex and extensively used simulation functionality, we

did not encounter any problems introduced by the con-

version process of IKVM.

Another approach is to directly transform the Java high-

level language code into C# code. The syntax of Java

and C# is quite similar. However, method calls to clas-

ses in the Java core libraries have to be mapped to

equivalent method calls in the .NET framework.

Among the tools supporting such transformations, we

gathered experience with the open-source software

Sharpen (2013). As the transformation process is in-

complete, additional work is required. First, converting

multi-dimensional arrays and changing the parameter

order of class library methods is not fully supported.

Second, the tool does not adequately resolve some par-

ticular differences between Java and C#. E.g. in C# it is

not possible to reference raw types of generic classes, a

technique used in DESMO-J.

We developed an Ant script that prepares the Java code

before transformation into C# (e.g. removing raw type

references), and adjusts the result in order to eliminate

remaining errors. In consequence, we are now able to

generate C# source code, which is nearly equivalent to

our Java-based DESMO-J.

We argue that IKVM offers a fast, easy and reliable way

to generate .NET versions out of DESMO-J. If a more

lightweight solution is desired that does not require in-

tegration of IKVM libraries into the target simulation

application, transforming Java sources into C# sources

is feasible, with an additional manual effort.

Alternative Process Implementation

The class SimProcess (see DESMO-J introduction)

internally relies on an instance of java.lang.Thread

for life cycle execution. This permits halting a

simulation process whenever needed, persisting its

method pointer and process state, and reactivating it at a

later time. A disadvantage of using

java.lang.Thread is the upper limit of concurrent

existing threads in Java – independent of whether they

are actually working in parallel or not. For a typical

JVM, the maximum number of concurrently existing

simulation processes is approximately 2500 plus a few

thousand additional processes obtainable by increasing

heap space. However, if millions of concurrent

processes are needed, the model had to be implemented

in an event-oriented manner, until recently.

Now, we present an alternative SimProcess imple-

mentation that allows simulating huge numbers of con-

current processes in the process-oriented world view

(e.g. simulation of telecommunication compatibilities).

It is based on the concept of continuations and

coroutines, which are not included in the Java standard

libraries so far. However, the Apache library JavaFlow

fills this gap by providing the concept of continuations.

This library is licensed under ASL 2.0. The continuation

class permits the implementation of custom coroutines

that run mutually exclusively in a single thread. Testing

this implementation, we aborted the simulation run

manually, after reaching 2.5 million concurrently exist-

ing simulation processes.

Unfortunately, this solution requires byte code re-

engineering, not only of the simulation model, but of all

classes that may appear on the method stack of a

coroutine. Although this can be automated based on e.g.

an Ant task, we do not provide this functionality in our

standard deployment since compiling becomes unneces-

sarily complicated for learners and most users. Howev-

er, all necessary classes, libraries and a build script

including byte-code re-engineering are obtainable from

our SVN repository for those interested in the alterna-

tive simulation process implementation delineated

above.

Processing Chains

Model logic frequently consists of repetitive tasks to be

executed by multiple model components in a similar

way. For example, consider work stations in a typical

production line processing items and forwarding them

to the next stations. Stations may e.g. differ in pro-

cessing and setup time distributions. Efficient modeling

of such systems may be conducted by providing com-

plex, integrated components specifically designed for

the relevant application domain, as e.g. described above

for the example of harbor logistics. For application are-

as, however, in which such solutions do not (yet) exist,

a level of abstraction between basic event/process mod-

eling and domain-specific components is desirable, fa-

cilitating a compact and redundance-free representation

of models containing similar or repetitive tasks.

To address this need, the DESMO-J core contains a set

of higher-level modeling components since its earliest

versions, e.g. finite resource pools or buffers: if a pool

or buffer contains fewer resources than requested by a

consuming simulation process, the process is implicitly

passivated until its demand is met. The user needs not

explicitly activate the process at the right instant of

time; instead, s/he may proceed in process description,

assuming the resource has been acquired successfully.

The chaining components (package

desmoj.extensions.chaining) are higher-level

modeling components no longer necessarily requiring

an event or process description of the model behavior at

all: such components – representing sources, work sta-

tions, sinks, mergers and splitters in a queuing system –

offer comprehensive means of parameterization (e.g. a

workstation: buffer size, number of parallel processors

and distributions of setup time, processing time, recov-

ery time, transport time) and, most importantly, they can

be chained to each other: e.g. the output of a source is

assumed forwarded to a work station. This permits de-

scribing basic production or queueing systems with very

few lines of code. At the same time, the implementation

remains flexible, as more complex work station behav-

ior can be introduced based on subclassing. Flexibility

also includes interaction with non-chaining components:

all entities whose types do match can be fed into a work

station, not only those created by the chaining source.

On the other side, the description of what happens with

the output of a station is encapsulated as event, which

defaults to a forward to the next station; an alternative

event provided by the user may for example divert some

entities to another station or cause a re-entry to the cur-

rent station with a certain probability.

Recording and Logging

In various application areas, it may be of interest to ex-

amine particular experiment phases in detail, e.g. transi-

tion from a warm-up phase to a steady state phase or

disruptions of steady state phases.

Although DESMO-J’s simulation trace output may be

turned on and off at any time during an experiment, the

resulting file by default only contains the most im-

portant data, like model, time, the acting entity, process

or event and the action itself, e.g. scheduling entities or

activating/passivating processes, queue manipulation,

random number access or statistical updates.

If certain constellations of simulation objects have to be

explored in detail, the output trace files are a) too

coarse, b) safely accessible only after an experiment has

finished and c) not in an easily machine-readable for-

mat.

To address these shortcomings, the concept of

recordings was introduced. A recording contains a

sequence of observations of any type of simulation

object, e.g. double or long values, Strings, entire

Entity objects or even the whole state of a waiting

Queue, over consecutive simulation time instants.

A recording may be paused or resumed at any time dur-

ing a simulation experiment. Its contained sequence of

copies of original simulation objects is ready for analy-

sis by further algorithms at any point of simulation time.

Recordings are typed, and for clarity we recommend to

employ one recording per individual observation varia-

ble. Hence, examining the interdependencies of n simu-

lation objects leads to n recordings. For ease of use, any

number of recordings may be linked to a recorder.

A recorder controls the recordings that registered with

it. Pausing and resuming a recorder is passed on to all of

its assigned recordings, enabling the experimenter to

centrally handle whole groups of recordings. Thus, en-

tire interconnected segments of a model may be record-

ed, e.g. when observing critical model behavior.

Recordings are created volatilely in memory, with no

default mechanism of persistence. As it may be of inter-

est to study recordings after simulation has finished or

to visualize recordings during simulation execution,

loggers may register at recordings. Whenever a record-

ing is updated with an observation, it forwards a copy of

the observation together with the current simulation

time stamp to all registered loggers. A concrete logger

(derived from the abstract class Logger) may imple-

ment any desirable behavior in order to process the ob-

served data on-line during an experiment run.

Applications include – but are not limited to – writing

observation objects to files (Text, XML, CSV etc.), stor-

ing observations in databases, conducting model-

dependent computations on observation streams, repre-

senting observation object states in specially tailored

online GUIs or simply printing observations on the con-

sole, for tracing und debugging purposes.

In all of these scenarios, the simulation framework does

not need to contain methods or knowledge of how to

process observations in the context of files, databases,

GUIs etc., this is left to the registered corresponding

loggers. This IOC approach (“inversion of control”) has

only been used internally in DESMO-J to date, e.g. in

reporting and statistics, but so far had not been offered

as an interface to arbitrary downstream functionality or

external applications.

Now, a comfortable mechanism for easier unidirectional

integration with external software components or func-

tional extensions is available.

Risk Metrics

Until recently, simulation dynamics could only be cap-

tured in DESMO-J standard statistics, regarding obser-

vation state variables of interest. These statistics

typically accomplish counting of (arriving or leaving)

entities, tallies or histograms of waiting times, or time

weighted accumulation of queue length or resource uti-

lization.

Most standard statistics comprise mean, minimum, max-

imum and standard deviation values; histograms addi-

tionally offer a visual impression of state distribution of

observation variables.

Nevertheless, none of these statistics gives an idea of

e.g. how fast the state of an observation variable shifts

from the median observed state to an extreme state or

how typical pathways of fluctuations in steady state

phases can be characterized.

In order to give better insight into the potential and risk

of model dynamics, the four most accepted risk metrics

from the application field of Quantitative Finance have

been generalized and transferred to discrete event simu-

lation (Koors and Page 2012). Namely, these metrics are

Semi-Variance, Value at Risk, Expected Shortfall and

Drawdown.

Semi-Variance measures state deviation, accounting

only for positive resp. negative deviation from the mean

state. If positive and negative Semi-Variance differ sig-

nificantly from each other, model dynamics towards

higher or lower observation variable states is distributed

asymmetrically and should be examined carefully.

Value at Risk was generalized to the metric Delta at

Risk (DaR). DaR quantifies the maximum extent of

state change expected (i.e. risk, in terms of quantitative

finance) with regard to a chosen confidence level ,

after a certain time interval, and according to four well-

defined reference states of an observation variable (min-

imum, median, maximum and most frequent observed

states). A typical conclusion based on the simulation

report could be “Starting with an empty queue and giv-

en a confidence level of 99%, the queue length will not

exceed z entities after 1 hour of simulated wall clock

time”.

Expected Shortfall was generalized to the metric Condi-

tional Delta at Risk (CDaR). CDaR expresses the ex-

pected mean state for the fraction of cases where DaR

is exceeded. A typical finding based on the simulation

report could be “If, starting with an empty queue and

given a confidence level of 99%, the queue length ex-

ceeds the Delta at Risk value of z entities after 1 hour of

simulated wall clock time, then an average queue length

of z + c entities can be expected”. Hence, CDaR is a

metric for estimating the extent of state movement in

unlikely cases of extreme events (in terms of the choice

of).

In steady state phases, Drawdowns and RunUps de-

scribe the magnitude and time structure of interim

downward or upward phases in observation variable

state, until the median or most frequent state is reached

again. This metric and its various self-elaborated deriva-

tives and analysis options give a good insight into dis-

tribution, characteristics and individual pathways of

both usual and extraordinary model dynamics.

The set of four risk metrics described above depends on

the same data basis, and especially Delta at Risk and

Conditional Delta at Risk share the same basic time

series. As an alternative type of statistics implementa-

tion, none of these metrics saves its own internal data,

like DESMO-J standard statistics do. Instead, all four

metrics refer to commonly shared recordings (see sec-

tion above) set by the modeller. Thus, a noticeable

amount of memory space and processing time is saved

by avoiding redundant collection of basic statistic state

observations.

All in all, the newly introduced risk metrics facilitate a

better assessment of risky or desirable model dynamics

than the DESMO-J standard statistics could provide to

the experimenter before.

SUMMARY

This paper’s aim was to clarify the state of the art in

open source simulation libraries by exemplarily present-

ing functional range and usability of DESMO-J, includ-

ing a comparison to other Java based simulation

libraries. We have pointed out technical improvements

like real time capability, recording and logging func-

tionality, which is useful for coupling simulation models

to external systems. An alternative process implementa-

tion allows concurrent existence of millions of process

entities. We have presented two alternatives of automat-

ically generating a “DESMO.NET” out of DESMO-J

Java sources. Moreover, enhancements in modeling like

processing chains and further analysis functionality like

generalized risk metrics have been delineated.

We also have introduced two visualization extensions.

While the 2D visualization package can easily be

adapted to existing models, the 3D visualization pack-

age needs more implementation effort, as 3D shapes for

entities are required.

Describing container terminal simulation and business

process modeling, we gave two examples how domain-

specific simulation applications can build upon

DESMO-J. Useful features include implementation of

graphical editors, customizing simulation reports as

desired and embedding DESMO-J models into external

systems.

Despite a variety of new features being introduced, an

important design criterion is the backward compatibility

of DESMO-J, ensuring models built upon older versions

of DESMO-J will also work with the newest version.

Finally, we emphasize that DESMO-J is a powerful,

flexible and easily usable simulation framework, rec-

ommending it to the reader as a tool to consider for the

next simulation study.

ACKNOWLEDGEMENT

We would like to thank Sönke Claasen, Nicolas Denz,

Johannes Haan, Tim Janz, Gunnar Kiesel, Felix Klück-

mann, Sven Kruse, Tim Lechler, Christian Mentz, Ruth

Meyer, Christian Müller, Olaf Neidhard, Eugenia

Neufeld, Thorsten Planeth, Thomas Schniewind, Fred

Sun, Malte Unkrig and Jörg Willig for providing their

work to the DESMO-J community.

REFERENCES

Asperen, E. van; R. Dekker; M. Polman; and H. de Swaan

Arons. 2004. “Arrival processes in port modeling: insights

from a case study”. Available at

http://publishing.eur.nl/ir/repub/asset/1275. Accessed

2013-02-13.

Banks, J.; J.S. Carson II; B.L. Nelson; and D.M. Nicol. 2010.

Discrete-event system simulation. Pearson, Upper Saddle

River NJ.

Bornhöft, K.; B. Page; and H. Schütt. 2010. “Modelling of

innovative Technologies for Container Terminal Yard

Stacking Systems using an Object-Oriented Simulation

Framework”. In The International Workshop on Applied

Modelling and Simulation. Rio de Janeiro.

Brandt, C. 2008. “Entwurf und Implementierung eines

Frameworks zur Entwicklung von Containerterminal-

Gesamtmodellen mit DESMO-J“. Master’s thesis, Univer-

sity of Hamburg, Hamburg, Germany.

Buss, A. 2012. Simulation software SimKit. Naval Postgradu-

ate School, Monterey. Available at

http://diana.nps.edu/Simkit. Accessed 2013-02-13.

Computer Science Group. 2009. Simulation software Ja-

vaDEMOS. University of Duisburg-Essen. Available at

http://sysmod.icb.uni-due.de/index.php?id=52. Accessed

2013-02-13.

Frijters, J. 2012. Java implementation IKVM. Available at

http://www.ikvm.net/. Accessed 2013-02-13.

Göbel, J.; A.E. Krzesinski; and B. Page. 2009. “The Discrete

Event Simulation Framework DESMO-J and its Applica-

tion to the Java-based Simulation of Mobile Ad Hoc Net-

works”. In Proceedings of the 21st European Modeling

and Simulation Symposium, Vol. I, R.M. Aguilar, A.G.

Bruzzone; and M.A. Piera (Eds.). La Laguna, Spain (Sep).

Henesey, L.; K. Aslam; and M. Khurum. 2006. “Coordination

of Automated Guided Vehicle in a Container Terminal”.

In Proceedings of 5th International Conference on Com-

puter Applications and Information Technology in the

Maritime Industries. Oud Poelgeest, Netherlands.

Joschko, P.; J. Haan; T. Janz; and B. Page. 2012. “Business

Process Simulation with IYOPRO und DESMO-J”. In

Proceedings of the International Workshop on Applied

Modelling and Simulation, Bruzzone, Buck, Cayirci, Lon-

go (Eds.). Rome, Italy (Sep).

Joschko, P.; C. Brandt; and B. Page. 2009. “Combining Lo-

gistic Container Terminal Simulation and Device Emula-

tion using an Open-Source Java Framework”. In

Proceedings of the International Conference on Harbor,

Maritime & Multimodal Logistic Modelling and Simula-

tion, Number c, A.G. Bruzzone, Cunha, Martínez; and

Merkuryev (Eds.). La Laguna, Spain.

Joschko, P.; B. Page; and V. Wohlgemuth. 2009. “Combina-

tion of job oriented simulation with ecological material

flow analysis as integrated analysis tool for business pro-

duction processes”. In Proceedings of the 2009 Winter

Simulation Conference, A.G. Bruzzone et al. (Ed.). Austin,

Texas (May).

Kačer, J. 2006. Simulation software J-Sim. University of West

Bohemia. Available at http://www.j-sim.zcu.cz/. Accessed

2013-02-13.

Klückmann, F. 2009. “Realzeitsynchrone Simulation – Begrif-

fe, Anwendungen und exemplarische Umsetzung anhand

des Simulationsframework DESMO-J”. Master’s thesis,

University of Hamburg, Hamburg, Germany.

Knaak, N.; S. Kruse; and B. Page. 2006. “An agent-based

simulation tool for modelling sustainable logistics sys-

tems”. In Proceedings of the iEMSs Third Biennial Meet-

ing: Summit on Environmental Modelling and Software.

International Environmental Modelling and Software So-

ciety. Burlington, Vermont.

Koors, A. and B. Page. 2012. “Transfer and Generalisation of

Financial Risk Metrics to Discrete Event Simulation”. In

Proceedings of the International Workshop on Applied

Modelling and Simulation, Bruzzone, Buck, Cayirci, Lon-

go (Eds.). Rome, Italy (Sep).

Kühnlenz, C.-M. 2011. “Interaktion von Simulationswerkzeu-

gen mit ERP-Systemen – Konzeption und Realisierung

von Interaktionsworkflows am Beispiel von DESMO-J

und Infor ERP COM“. Master’s thesis, University of

Hamburg, Hamburg, Germany.

L’Ecuyer, P. 2012. Simulation software SSJ. Université de

Montréal. Available at

http://www.iro.umontreal.ca/~simardr/ssj/indexe.html.

Accessed 2013-02-13.

Lee, E.A. 2011. Simulation software PtolemyII. University of

Berkeley. Available at http://ptolemy.berkeley.edu/. Ac-

cessed 2013-02-13.

Müller, C. 2011. Additional DESMO-J 2D Animation re-

sources. Technical University of Applied Sciences, Wil-

dau, Germany. Available at http://www.wi-bw.tfh-

wildau.de/~cmueller/SimulationAnimation/. Accessed

2013-02-13.

Page, B. and E. Neufeld. 2003. “Extending an object-oriented

discrete event simulation framework in Java for harbour

logistics”. In International Workshop on Harbour, Mari-

time and Multimodal Logistics Modelling and Simulation.

Riga, Latvia.

Page, B. and W. Kreutzer. 2005. The Java Simulation Hand-

book – Simulating Discrete Event Systems with UML and

Java. Shaker, Aachen, Germany.

Page, B. 2013. Simulation software DESMO-J. University of

Hamburg. Available at http://desmo-j.de. Accessed 2013-

02-13.

Rossetti, M.D. 2013. Simulation software JSL. University of

Arkansas. Available at

http://www.uark.edu/~rossetti/research/research_interests/

simulation/java_simulation_library_jsl/. Accessed 2013-

02-13.

Schäfer, F. 2011. “Interaktion von Simulationswerkzeugen mit

ERP-Systemen – Konzeption und Realisierung von Daten-

analysen sowie technischen Schnittstellen am Beispiel von

DESMO-J und Infor ERP COM“. Master’s thesis, Univer-

sity of Hamburg, Hamburg, Germany.

Sharpen. 2013. Eclipse plug-in for multi-platform develop-

ment. Available at http://community.versant.com/Projects/

html/projectspaces/db4o_product_design/sharpen.html.

Accessed 2013-02-13.

Sun, F. 2010. “Raumkonzept und 3D-Visualisierung für die

ereignis-diskrete Simulationsengine DESMO-J“. Master’s

thesis, University of Hamburg, Hamburg, Germany.

Verbraeck, A. 2009. Simulation software DSOL. Delft Univer-

sity of Technology. Available at http://sk-

3.tbm.tudelft.nl/simulation. Accessed 2013-02-13.

AUTHOR BIOGRAPHIES

JOHANNES GÖBEL holds a master in

Information Systems from the University

of Hamburg, at whose Modeling & Simu-

lation research group he is scientific assis-

tant and PhD candidate now; his research

interests focus on discrete simulation and

network optimization.

PHILIP JOSCHKO studied Computer

Science at the University of Hamburg. He

works as a scientific assistant and PhD

candidate within the Modeling & Simula-

tion workgroup of Prof. Dr. Page. Re-

search interests are business process

simulation, simulation software development and off-

shore wind parks. Since 2005 he takes part in improving

DESMO-J. He applied DESMO-J in several simulation

projects.

ARNE KOORS obtained his master de-

gree in Computer Science from University

of Hamburg, Germany. Since then he has

been working as a software developer and

management consultant in the manufactur-

ing industry, primarily in the field of de-

mand forecasting and planning. Furthermore, he works

as a research associate and on his PhD thesis on finan-

cial strategy simulation in the Modeling & Simulation

research group led by Prof. Dr. Page.

BERND PAGE holds degrees in Applied

Computer Science from the Technical

University of Berlin, Germany and from

Stanford University, USA. As professor

for Modeling & Simulation at the Univer-

sity of Hamburg he researches and teaches

in Computer Simulation and Environmental Informatics.

He is the head of the workgroup which developed

DESMO-J and the author of several simulation books.

