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Abstract—This paper introduces a generalized deviation 

concept, inspired by quantitative finance. Standard risk 

metrics like volatility or downside risk are deconstructed into 

five general sub-functions for reference, selection, penalization, 

normalization and re-dimensioning. The advantage of this 

approach is its flexibility, allowing modeling a wide range of 

risk perceptions in numerous application fields of discrete 

event simulation. Several further risk types like upside risk, 

outside risk, transition risk, critical state risk or 

countermovement risk are describable and embeddable as 

special cases of generalized deviation. These risk types are 

presented with respect to motivation, specification of relevant 

generalized deviation components, description of application 

classes, an application example and a graphical illustration. In 

particular, various options for determining reference states, 

reference selection and penalty functions are discussed. 

Implementation features of the generalized deviation metric in 

the discrete event simulation framework DESMO-J are 

outlined. Moreover, possible structural extensions as well as 

additionally implementable risk types are delineated, 

indicating further application potential and the flexible scope 

of this approach. It is proposed to complement descriptive 

standard statistics in discrete event simulation domains by 

additionally employing risk measurement in terms of 

generalized deviation as explicated here, to facilitate 

assessment of undesired simulation dynamics in various 

application fields. 

Keywords-risk; risk metrics; generalized deviation; discrete 

event simulation 

I.  INTRODUCTION 

Discrete event simulation is a methodology for modeling 
dynamic processes in real or imaginary systems, executing 
experiments with the aim of gaining insights which can be 
re-transferred to the investigated original system [1]. In order 
to actually gain insight and assess a modeled system, system 
output variables of interest are chosen by the modeler, and 
selected statistics on these state variables are collected during 
experiment run time. They are then shown in the simulation 
report at the end of an experiment. 

Typically, descriptive standard statistics are calculated, 
like mean, variance, standard deviation, minimum, 
maximum or simply the number of observations. Further 
statistics include median, quantiles, modes, skewness or 
kurtosis; more advanced concepts deal with histograms, 

regression analysis, correlation, confidence intervals or time-
weighted versions of the statistics mentioned above. 

Each of the aforementioned statistics describes one 
specific aspect of the observations made in a rather objective 
way, leaving it to the experimenter to assess welcome or 
undesired outcomes in the aftermath. 

Discrete event simulation often is employed to evaluate 
design alternatives of new systems or optimize already 
existing systems. For this purpose, it is essential to assess 
and rate the system’s state variables dynamics concerning 
welcome or undesired behavior. The conventional statistics 
mentioned before do not contain intrinsic valuation 
standards, therefore there is no choice but to base valuation 
on already aggregated figures, with no way to weight 
elementary observations according to the specific simulation 
study’s aims and needs. 

E.g. with given mean and variance of cost, variance of 
cost below the mean normally is welcome, whereas variance 
of cost above the mean is undesired. However, use of already 
aggregated statistics (here: variance) restricts appropriate 
downstream valuation: In conventional discrete event 
statistics, there are no metrics offered to separate variance in 
welcome and undesired sections. 

In principle it is feasible to manually implement 
customized performance metrics for any specific application 
case. Nevertheless it seems preferable to avoid repeated 
implementation effort by providing a general framework for 
dynamics assessment, to generically cover a wide range of 
discrete event simulation application fields. 

In this paper, a generic class of additional simulation 
performance metrics called generalized deviation is 
proposed, enabling the modeler to accurately control 
aggregation of elementary observations according to objects 
and valuation standards of a study. Once implemented in 
existing simulation software (like described here for the 
framework DESMO-J [2], [3]), this class of metrics enables 
flexible assessment of simulation dynamics by composing 
functional building blocks – which are predefined or may be 
self-developed – without further technical implementation 
effort. 

In [4] it was proposed to transfer financial risk metrics to 
discrete event simulation, namely Semi-Variance, Value at 
Risk, Expected Shortfall (also called Conditional Value at 
Risk) and Drawdown. A forthcoming paper reports on 
implementation and visualization of these metrics in the 
discrete event simulation framework DESMO-J [5]. It has 
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been found that financial risk metrics are inspiring for 
assessment of dynamics in discrete event simulation, but 
need further generalization for wider applicability. The 
generalized deviation metric introduced here draws its 
intellectual stimulus from the quantitative finance notion of 
measuring uncertainty of returns by standard deviation and 
below-expected returns by semi-deviation. This contribution 
reports on extension and formal generalization of these two 
metrics and showcases how typical application fields of 
discrete event simulation may benefit from the generalized 
deviation metric to assess undesired model dynamics in a 
case-specific manner, far beyond the original financial use 
cases. 

This paper is structured as follows: Section II defines the 
proposed generalized deviation metric formally and 
illustrates it by the example of standard deviation. Section III 
generalizes classical financial risk metrics like volatility and 
semi-deviation and embeds them into the more flexible 
generalized deviation concept. Furthermore, several 
advanced risk notions in discrete event simulation 
application fields are delineated, illustrating the application 
potential and flexible scope of this approach. In particular, 
various options for determining reference states, reference 
selection and penalty functions are discussed. Section IV 
concerns interpretation of generalized deviation.  Section V 
outlines the software implementation in the discrete event 
simulation framework DESMO-J. Section VI concludes the 
paper and gives an overview of further implementable risk 
types and possible structural extensions. 

II. GENERALIZED DEVIATION METRIC 

Quantitative Finance deals with computer-assisted 
analysis of asset prices and supports investment decisions in 
financial markets. One of its most significant assessment 
categories relates to the term risk. A risk metric is a concept 
to quantify financial risk, in order to compare different 
portfolios or trading strategies with respect to the risk taken. 

This section generalizes one approach to the quantitative 
finance concept of risk and applies it to discrete event 
simulation, regarding risk as observation of undesired state 
dynamics of a modeled system. For this purpose, we 
introduce a generalized deviation metric, where risk can be 
measured and expressed by definition of five sub-functions 
for reference, selection, penalization, normalization and re-
dimensioning. 

A. Definintion 

Be 𝕋  the data type of simulation time instants with a 
defined operator ≤ for ordering simulation time instants. Be 
𝑣  a state variable with possible states 𝑠 ∈ 𝕊  and be 𝑜𝑖 =
(𝑡𝑖, 𝑠𝑖) ∈ 𝕋 × 𝕊 an observation of 𝑣 with an observed state 𝑠𝑖 
at simulation time instant 𝑡𝑖 . Be 𝕆 = 𝕋 × 𝕊  the set of all 
possible observations and 𝑂 = ⋃ 𝑜𝑖𝑖 , 𝑂 ⊆ 𝕆 ⇔ 𝑂 ∈ 𝒫(𝕆) 

the set of all observations of 𝑣  actually recorded during a 
simulation run. Assuming observations 𝑜𝑖  are stored 
successively during simulation implies that they are ordered 
in simulation time, so that ∀𝑖: 𝑡𝑖 ≤ 𝑡𝑖+1, 1 ≤ 𝑖 < |𝑂|, 𝑖 ∈ ℕ. 
(“ℕ” here represents the set of natural numbers, whereas all 
other set letters - even “ℝ” - in this paper represent freely 
selectable sets, unless otherwise stated.) 

Then, a Generalized Deviation metric GD of 
observations 𝑂 may be defined as shown in (1). 

Here, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦: ℕ × 𝒫(𝕆) × ℝ → 𝕏  is a function that 
assesses risk towards each single ith observation in 𝑂 with 
regard to a corresponding reference, returned by the function 
𝑠𝑒𝑙𝑒𝑐𝑡: ℕ × 𝒫(𝕆) × 𝒫(ℝ) → ℝ . The select function 
chooses one reference out of a set of (observed or computed) 
alternative references, generated by the function 
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒: ℕ × 𝒫(𝕆) → 𝒫(ℝ) . The penalties of all 
observations in 𝑂 are added and afterwards normalized by a 
function 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒: 𝕏 × 𝒫(𝕆) → 𝕐 . Finally, potential 
changes in dimension induced by the penalty function are 
compensated by a function 𝑟𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛: 𝕐 × 𝒫(𝕆) → ℤ. 

B. Example 

As an example, we can express the quantitative finance 
risk metric Volatility (which simply is the standard deviation) 
of a set of observations O 

𝑆𝐷(𝑂) =  √
1

|𝑂| − 1
∑(𝑠𝑖 − 𝑠̅)2

|𝑂|

𝑖=1



by 𝐺𝐷(𝑂) as defined above, with the sub-functions 

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖, 𝑂) = {
1

|𝑂|
∑ 𝑠𝑗

|𝑂|

𝑗=1

}, 

𝑠𝑒𝑙𝑒𝑐𝑡(𝑖, 𝑂, {𝑟}) = 𝑟, 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖, 𝑂, 𝑟) = (𝑠𝑖 − 𝑟)2,

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑥, 𝑂) =  
𝑥

|𝑂| − 1
,

𝑟𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝑦, 𝑂) = √𝑦

and ℝ, 𝕊, 𝕏, 𝕐, ℤ all equal to the set of real numbers. 
In this example, the reference function ignores its first 

parameter i and simply computes the mean 𝑠̅ of all observed 
states 𝑠𝑗 in the observation set O, given as second parameter. 

Thus, the reference state constantly is the mean of states, 
independent of the current observation under examination. 

Furthermore, the reference function generates a set 

 𝐺𝐷(𝑂) = 𝑟𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (∑ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑖, 𝑂, 𝑠𝑒𝑙𝑒𝑐𝑡(𝑖, 𝑂, 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖, 𝑂)))

|𝑂|

𝑖=1

, 𝑂) , 𝑂) (1) 



 

 

containing only one single reference per observation without 
other alternative references to choose from. Thus, the select 
function merely passes on the (mean) reference to the 
downstream penalty function. 

The penalty function utilizes its first two parameters i and 
𝑂 to determine the ith observation 𝑜𝑖  in the observation set 
O; note that observations 𝑜𝑖  can be ordered by time instant 
𝑡𝑖 , as postulated above. Then, the second component of 
observation 𝑜𝑖  (i.e. the actually observed state 𝑠𝑖) is accessed 
and the selected reference given as third function parameter 
𝑟(= 𝑠̅)  is subtracted from 𝑠𝑖 ’s value. The difference is 
squared. This expresses a nonlinear, over-proportional risk 
attribution: deviations from the reference mean state are 
penalized quadratically. 

The normalize function divides the sum of penalties by 
the number of observations minus one, because an estimator 
for the unbiased sample variance of quasi “empirical” 
simulation observations is calculated. The second function 
parameter containing the set of observations 𝑂 is only used 

to determine the number of total observations |𝑂|. 
By penalizing observed states in computing the squared 

difference to the mean of states, the dimension of the metric 
was squared as well. This finally is compensated by the 
redimension function, which simply calculates the square 
root of the normalized squared difference sum, given as first 
parameter. The second parameter containing the set of 
observations 𝑂 is disregarded in the context of the standard 
deviation. To keep options open, the redimension function 
may be defined rather freely. Nevertheless, it can be 
expected that it will regularly contain an inverse function of 
a component of the penalty function. 

In this way the volatility or standard deviation can be 
expressed as one special instantiation of the generalized 
deviation metric introduced above. 

III. RISK TYPES AND APPLICATION EXAMPLES 

In this section, we will elaborate on different risk types 
that can be expressed by instantiation of the five sub-
functions of generalized deviation (abbreviated in the 
following as “GD”). Each risk type is covered regarding 
motivation, specification of the relevant GD sub-functions, a 
description of application classes, an example and a 
graphical illustration. 

A. Two-sided Deviation from a Representative State 

In quantitative finance, the volatility resp. standard 
deviation is utilized when regarding risk as uncertainty of 
return around a central mean return [6]. In this context, 
return is no genuine observation, but derived from change of 
asset prices within a certain time span. 

In discrete event simulation, observations of freely 
chosen state variables can be recorded into time series. The 
arithmetic mean is not necessarily an appropriate 
characterization of observed state values, because it is 
sensitive to statistical outliers. In many cases, the median or 
the (most frequent) mode state may be more representative 
choices. In these cases, the reference function of generalized 
deviation can simply be set to 

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖, 𝑂) = {𝑚𝑒𝑑𝑖𝑎𝑛(𝑂)}or 

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖, 𝑂) = 𝑚𝑜𝑑𝑒𝑠(𝑂). 

Whereas there is only one median of an observation 
recording, there may exist more than one mode, because two 
or more mode states may be observed with the same 
maximum frequency. Therefore a set containing more than 
one possible reference may result from the reference 
function, and it is task of the downstream select function to 
determine which of the reference alternatives is processed 
further by the penalty function. An obvious option is to 
choose the reference alternative that is nearest to the current 
state under examination 𝑠𝑖 by 

𝑠𝑒𝑙𝑒𝑐𝑡(𝑖, 𝑂, 𝑅) = 𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝑖, 𝑂, 𝑅) ∶=

𝑟 ∈ 𝑅 so that∀𝑟𝑗 ∈ 𝑅: |𝑟𝑗 − 𝑠𝑖| ≥ |𝑟 − 𝑠𝑖|, 𝑟𝑗 ≠ 𝑟.

Another option is setting the reference state to an 
externally specified value, which could be a desired target 
state considered “best” for the state variable by the modeler. 
In this case, all deviations from the desired target state can be 
interpreted as risk and will be revealed in the simulation 
report. 

Regarding standard deviation, deviation from the mean 
reference state is penalized quadratically. In general, risk 
perception in arbitrary application domains may differ from 
this view. Accordingly, the penalty function of generalized 
deviation can be customized to e.g. 

exponential: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖, 𝑂, 𝑟) = 𝑒|𝑠𝑖−𝑟| − 1, 

linear: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖, 𝑂, 𝑟) = |𝑠𝑖 − 𝑟|,

square-rooted: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖, 𝑂, 𝑟) = √|𝑠𝑖 − 𝑟|, 

logarithmical: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖, 𝑂, 𝑟) = 𝑙𝑛(|𝑠𝑖 − 𝑟| + 1) 

or any other function that appears adequate in the application 
domain. In the majority of cases, it seems advisable that the 
penalty function is monotonically increasing from the point 
of origin and symmetrical w.r.t. the y-axis. Fig. 1 depicts the 
graphs of the penalty functions proposed above; 𝑠𝑖 − 𝑟  is 

Figure 1.  Some examples for penalty functions. 
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assigned to the x-axis. 
The redimension function has to be adjusted according to 

the penalty function, to ensure that generalized deviation and 
observed states are of the same dimension. Ignoring this step 
would mean that observed states and the GD value do not 
correlate reasonably. For the penalty functions given as 
examples above, the redimension functions should be 

logarithmical: 𝑟𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝑦, 𝑂) = 𝑙𝑛(𝑦) 

linear: 𝑟𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝑦, 𝑂) = 𝑦

quadratic: 𝑟𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝑦, 𝑂) = 𝑦2, resp. 

exponential: 𝑟𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝑦, 𝑂) = 𝑒𝑦. 

A typical application class where GD measures risk as 
two-sided deviation from a representative reference state are 
systems in equilibrium or in default states, when deviation in 
any direction is regarded as risk. 

Consider the simulation of a warehouse that has been 
built as a buffer between producers and consumers. Here, 
undesired dynamics (risk) occurs, if the warehouse filling 
level tends towards its maximum capacity. When reaching 
this point, producers could not store their goods immediately 
and would have to wait for consumers until unloading is 
possible again, entailing additional cost for waiting time and 
non-availability of trucks at other locations. On the other 
hand, a filling level too low would threaten that goods run 
out of stock and a sudden peak of consumer demand might 
leave part of the consumers un-served, resulting in loss of 
customers or even compensatory claims resp. penalty 
payments. Here risk arises as deviation in both directions, 
regarded from a central, “safe” system state. 

Fig. 2 illustrates warehouse utilization dynamics and 
shows risk extent, in this case the average absolute linear 
deviation of approx. 20% from the mode warehouse 
utilization level of 44%. The chart is part of the simulation 
output of our open source discrete event simulation 
framework DESMO-J, developed at the University of 
Hamburg. The set GD parameters are displayed at the 

bottom of the chart. They are included in the textual 
simulation report as well, as shown in section V. Annotations 
in blue color have been added manually. 

Incidentally, it should be noted that risk and cost are 
independent of each other: varying risk may be measured 
without a change of cost in the system and cost may alter 
without affecting risk. In the warehouse example, risk 
expresses the probability of undesired extra costs; but as long 
as risk is not extreme, no additional costs actually arise in 
daily warehouse operation, although risk permanently 
changes corresponding to warehouse filling levels. On the 
other hand, streamlining business processes in warehouse 
operation may reduce (e.g. overhead) cost, but risk may stay 
unalteredly at the same levels as before. 

B. One-sided Deviation from a Reference State 

In quantitative finance, it has been argued that negative 
deviations from the expected (mean) return indeed pose a 
risk, whereas positive return deviations are welcome and 
should not be incorporated into risk metrics. As a 
consequence, the concept of Downside Risk was developed 
[7], [8], [9], [10], where positive deviations from the mean 
are simply replaced by the mean, when computing risk. The 
most prominent downside risk metric is Lower Semi-
Deviation, which again can easily be expressed as a special 
case of generalized deviation: To obtain this metric, the same 
sub-functions as for the standard deviation given in sub-
section II.B are applicable, except for 

𝑠𝑒𝑙𝑒𝑐𝑡(𝑖, 𝑂, {𝑟}) = {
𝑟, 𝑠𝑖 < 𝑟

𝑛𝑢𝑙𝑙, 𝑠𝑖 ≥ 𝑟


𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖, 𝑂, 𝑟) = {
(𝑠𝑖 − 𝑟)2, 𝑟 ≠ 𝑛𝑢𝑙𝑙

0, 𝑟 = 𝑛𝑢𝑙𝑙


where 𝑛𝑢𝑙𝑙 ∈ ℝ is a special value in the set of references ℝ, 
indicating that none of the references generated by the 
reference function was selected. The small modification 
above leads to only incorporating states 𝑠𝑖  below the mean 
𝑟(= 𝑠̅) in penalty computation. It is obvious that standard 
deviation and lower semi-deviation are closely related, since 
only two of the five sub-functions of generalized deviation 
are modified slightly. The structural difference of the two 
risk concepts solely originates from different selection (resp. 
ignorance) of reference states. 

The concept of asymmetric risk assessment is applicable 
well beyond finance and is easily implementable by a case 
differentiation in the GD select function, as shown above. 
Nevertheless, the diverse application fields of discrete event 
simulation will not generally prefer lower observation states 
to higher states. Specific demand for complementary Upside 
Risk metrics can easily be satisfied by flexibly exchanging 
terms for 𝑠𝑖 < 𝑟  and 𝑠𝑖 ≥ 𝑟  in the select function, now 
penalizing positive deviations in consequence. 

In the context of downside and upside risk, mean, median 
and mode have useful applications as reference states. 
However, due to asymmetric risk perception, one state of all 
observations will be most distant from undesirable state 
regions. This will be an extremum state, the minimum or Figure 2.  Risk as two-sided deviation from the mode state. 

Risk 

Risk Mode State 



 

 

maximum of all observed states, and thus setting the 
reference function to  

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖, 𝑂) = {𝑚𝑖𝑛(𝑂)}or 

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖, 𝑂) = {𝑚𝑎𝑥(𝑂)} 

supports further use cases. 
A typical application class where GD measures risk as 

one-sided deviation from a reference state are systems with 
state variables that have a preferred extremum boundary state 
(e.g. an empty waiting queue), where one-sided departure 
from this (extremum) state is regarded as risk. 

For example, consider a logistics simulation of operating 
a truck fleet. Overall utilization near the maximal value of 
100% load capacity is highly desirable for ecological and 
economic reasons. GD may measure all downside deviation 
from this level as unwelcome risk; fig. 3 displays an 
application scenario where the maximum of observations 
was chosen as reference state and risk is assessed as 
downside deviation from the maximum. 

C. Deviation from a Reference State Channel 

In the preceding sub-section III.A, two-sided deviation 
from one constant representative state was discussed. In 
doing so, the reference state is considered riskless, because 
|𝑠𝑖 − 𝑟| is zero for 𝑠𝑖 = 𝑟  and a penalty function typically 
will yield 0 for deviation 0: with no deviation, there is no 
risk. Generally, in discrete event systems there may exist 
more than one riskless state, for example a whole interval of 
states regarded as riskless. In this case, two reference states 
act as the boundaries of a safe interval resp. state channel. 
Deviations outside of the channel are penalized as Outside 
Risk, according to the distance from the nearest channel 
boundary. This scenario is expressible in the generalized 
deviation framework by setting 

𝑠𝑒𝑙𝑒𝑐𝑡(𝑖, 𝑂, {𝑟𝑙𝑜𝑤𝑒𝑟 , 𝑟𝑢𝑝𝑝𝑒𝑟}) = {

𝑟𝑢𝑝𝑝𝑒𝑟 , 𝑠𝑖 > 𝑟𝑢𝑝𝑝𝑒𝑟

𝑟𝑙𝑜𝑤𝑒𝑟 , 𝑠𝑖 < 𝑟𝑙𝑜𝑤𝑒𝑟

𝑛𝑢𝑙𝑙, else

 

with a reference function that statically generates the set of 
the two interval boundaries 𝑟𝑙𝑜𝑤𝑒𝑟  and 𝑟𝑢𝑝𝑝𝑒𝑟 . The select 

function chooses the upper (resp. lower) channel boundary 
for all states above (resp. below) the corresponding boundary 
and returns 𝑛𝑢𝑙𝑙  for states within the channel boundaries. 
Consequently, the penalty function has to be adjusted to 
ignore 𝑛𝑢𝑙𝑙 reference values, as shown in sub-section III.B. 

Further, the normalization function should be adapted to 
consider only valid non-null selections: The set of uncritical 
observations within the channel, yielding to null-selections, 
should not distort risk computation for the remaining critical 
observations outside of the safe channel. This can be 
achieved by setting 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑥, 𝑂) =  
𝑥

|𝑂| − |𝑛𝑢𝑙𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑂|
 

A typical application class where GD measures outside 
risk as deviation from a reference state channel are systems 
in a stationary phase, where state fluctuation within a certain 
state interval is tolerable, but deviation beyond given state 
boundaries is regarded as risk. 

A different example in manufacturing simulation is given 
below. Here, perpetual workload of 100% in e.g. final 
assembly may decrease workers’ output quality. Thus short 
breaks at the workplace between pieces of work might be 
advisable both for health of workers and reduction of rework 
cost. On the other hand, insufficient capacity utilization 
would be unacceptable because of high fixed personnel 
costs. Here, risk can be attributed to deviation of workload 
into upward as well as downward direction, with respect to a 
channel of preferred variable states. Fig. 4 displays an 
appropriate scenario where GD measures risk as deviation 
outside of a preferred resp. safe reference state channel. 

D. Transition between Reference Phases 

In general, there may be more than one interval of safe 
states for a modeled system. For example, a system may 
have two or more stationary phases, and risk emerges from 
transition between these phases, because during phase 
transition the system is in an unstable and thus vulnerable 

Figure 3.  Risk as downside deviation from the maximum state. 
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Figure 4.  Risk as deviation outside of a preferred state channel. 
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state. 
Transition Risk can be modeled by 

𝑠𝑒𝑙𝑒𝑐𝑡(𝑖, 𝑂, 𝑅) = 

{
𝑟 = 𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝑖, 𝑂, 𝑅), 𝑠𝑖 > 𝑟 ∧ 𝑡𝑦𝑝𝑒(𝑟) = 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑟 = 𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝑖, 𝑂, 𝑅), 𝑠𝑖 < 𝑟 ∧ 𝑡𝑦𝑝𝑒(𝑟) = 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝑛𝑢𝑙𝑙, else



with a reference function that statically generates upper and 
lower boundaries of reference phases, and an auxiliary 
function 𝑡𝑦𝑝𝑒: ℝ → {𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦, 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦} that 
determines whether a reference is an upper or lower 
boundary of a phase. Then, the select function chooses the 
nearest boundary of neighboring phases, if the currently 
observed state is between two phases; resp. 𝑛𝑢𝑙𝑙  if the 
observed state is within a phase. Penalty and normalization 
functions should be adjusted as advised in sub-section III.C. 

A typical application class where GD measures transition 
risk are bistable or multistable systems, where state 
fluctuations within stable phases are tolerable, but state 
dynamics outside of these safe phases are regarded as risk. 

Consider the simulation of social agents in a political two 
party system. There may be two smaller core groups that 
always remain loyal to their respective political parties, and a 
third large group of swing voters that are the decisive factor 
for election results. A new government will act more 
effectively the higher the supporting percentage of 
population is. Conversely, it would be a sign of inner 
disunity, if almost half of voters balloted against the future 
government. Then, legitimation of the government may be 
questioned and social tensions might arise. In this system, 
poll ratings that clearly favor one of the two parties may be 
interpreted as evidence for desired stable political and social 
conditions (as long as minor party proponents are not 
discriminated), whereas transitions between any of the two 
stable phases may indicate dissatisfaction and inner disunity, 
in other words social risk. Fig. 5 displays an application 
scenario where GD measures risk in terms of transitions 
between two phases of stability. 

E. Approach towards a Reference State 

The risk types discussed so far have in common that 
reference states 𝑟  are linked to the set of observations O. 
Typically, prominent states like median, mode, extremum or 
boundary states are chosen as reference, which actually have 
been observed (or should have been observed, in the case of 
externally specified most desirable reference states). These 
states resp. state intervals are considered riskless, and penalty 
of an observed state 𝑠𝑖 is assessed according to 𝑠𝑖’s distance 
from a riskless reference state 𝑟, utilizing the term |𝑠𝑖 − 𝑟|. 
The penalty function typically increases monotonically, since 
a higher distance from riskless states is associated with more 
risk. 

This notion of quantitative finance is not suitable for all 
of the diverse discrete event simulation application fields. 
Frequently, risk will not be defined by deviation from 
riskless states but by approaching towards risky states. 
Sometimes riskless states may be irrelevant or unspecified, 
and often simulation models will be concerned with whether 
certain critical states are reached, then damaging or 
irrecoverably destroying the system under examination. 

This “classic”, sometimes more natural Critical State 
Risk can be expressed by setting risky instead of riskless 
states as reference states and employing a monotonically 
decreasing penalty function, e.g. 

hyperbolic: 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑖, 𝑂, 𝑟) = {

1

|𝑠𝑖−𝑟|
, 𝑠𝑖 ≠ 𝑟

+∞, 𝑠𝑖 = 𝑟
, 

where penalty is infinite, if a critical reference state is 
reached and the system is destroyed. If critical states only 
represent system damage, the penalty function may be 
adjusted to approximate a given high positive figure for 
𝑠𝑖 = 𝑟. Thus, repeated damage will be reflected in higher 
overall risk. If the actual distance from risky reference states 
𝑟  is irrelevant and solely critical events are under 
consideration, penalty for 𝑠𝑖 ≠ 𝑟 may be set to 0 and penalty 
for 𝑠𝑖 = 𝑟 to e.g. 1. Thus, the number of critical incidents 
will be counted. 

A typical application class where GD measures risk as 
approach towards a critical reference state are systems in 
operation, when state fluctuations are tolerable in principle, 
but approaches towards certain states of (partial) damage or 
system destruction are regarded as risk. 

When e.g. simulating scheduling and machine utilization 
strategies in production, a number of organizational and 
technical boundary conditions have to be satisfied. For 
example, machines may have a maximum operating 
temperature recommended by the manufacturer and a 
somewhat higher temperature at which damage actually 
occurs. Any exceeding of the manufacturer’s maximum 
temperature threshold and approach towards damaging 
machine temperature is a risky operation policy, be it due to 
overutilization without pause, lack of maintenance or 
insufficient cooling. Fig. 6 displays an application scenario 
where GD measures risk as approaching a critical reference 
state. Here, risk is only attributed to those states higher than 
a threshold that separates critical from uncritical states. – In 

Figure 5.  Risk caused by transition between stable reference phases. 
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this example, operation is interrupted by a forced break after 
reaching a critical state and resumed some time later. 

F. Deviation from Previous Extremes 

In all scenarios discussed so far, generated reference 
states remain constant throughout the whole simulation 
experiment. This need not necessarily be so. In quantitative 
finance, the term Drawdown Risk expresses the possibility of 
undesirably losing asset value that has been gained before. In 
other words, the reference state that penalty refers to is the 
maximum of all previously observed states 𝑠𝑖: 

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖, 𝑂) = {𝑚𝑎𝑥({𝑠𝑗|1 ≤ 𝑗 ≤ 𝑖})}. 

In consequence, states 𝑠𝑖 that were riskless or had a low 
risk in the past may be considered more and more risky in 
the course of simulation time, as a result of rising maximum 
levels. 

Here again, the diverse application fields of discrete 
event simulation will not generally prefer rising observation 
states to falling states. Complementary Runup Risk can easily 
be defined by substituting the 𝑚𝑎𝑥  term in the reference 
function above by the 𝑚𝑖𝑛 function, setting a sequence of 
falling minimums as reference for penalization. 

A typical application class where GD measures risk as 
deviation from previous extremes are systems with state 
variables that consistently grow or decline. Here, current 
extremum states only have temporary relevance and risk can 
be regarded as countermovement of variable states against 
the main direction of development. 

E.g. in simulation of an epidemic in a population of 
agents, all decreases in infection rate are favourable, and 
every new minimum 𝑚𝑖𝑛𝑡 of infection rate will be welcome. 
When infection rate declines further and new minimums 
𝑚𝑖𝑛𝑡+𝑛 are reached, increases of infection rate back to then-
past minimum levels 𝑚𝑖𝑛𝑡 now will be undesired. Moreover, 
any countermovement against the prevailing falling trend 
will be considered as risk of a new epidemic outbreak. Fig. 7 
displays an application scenario where GD measures risk as 
countermovement against a sequence of falling previous 
minimum states. 

IV. INTERPRETATION 

The sub-sections III.A to III.F have discussed a number 
of generalized deviation instantiations for different risk 
notions and application classes. However the constitutive 
sub-function components are defined in particular, 
computation of GD finally results in a scalar value. 

In the first place, this GD value quantifies the normalized 
(e.g. average) intrinsic risk of observed state development in 
the simulated system. Correspondingly, the reference 
function should be set to generate the boundary of (un)risky 
states. The select function should separate riskless from risky 
states and choose between risk reference alternatives. The 
penalty and redimenson functions should express the nature 
of risk perception. In such a model-adjusted setting, the 
obtained GD value yields a concrete meaning, which is 
interpretable as quantification of risk in the context of the 
modeled system. 

Further interpretation of GD corresponds to handling of 
standard deviation values SD obtained from conventional 
statistics in simulation reports. First, GD may be used to get 
an impression on how distant risky states are distributed 
from their reference states (in terms of absolute distance). 
Second, GD may be set into relation to the selected 
references, analog to calculating the ratio 𝑆𝐷 𝑥̅⁄  in classical 
descriptive statistics, to assess relative dispersion. While this 
is easily feasible for cases of constant reference selection, 
relating to multiple or non-static references as covered in 
sub-sections III.C, III.D and III.F will involve additional 
computation. Third, GD may be used as a means of relative 
comparison between simulation experiments with different 
random number seeds or parameter settings. Fourth, GD 
might be utilized to determine whether a particular observed 
state 𝑠𝑖 may be classified as a remarkable outlier, in terms of 
high risk – e.g. if 𝑠𝑖  is beyond a distance of three general 
deviations from its reference state. It should be noted that 
this usage scenario has to be implemented cautiously, 
because risk commonly will not be normally distributed, and 
therefore there is no general law of how much risk can be 
expected per GD unit of distance from reference states.  
  

Figure 6.  Risk as approach towards a critical reference state. 
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Figure 7.  Risk as deviation from previous extremum states. 
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V. IMPLEMENTATION 

The generalized deviation metric has been implemented 
in the open source discrete event simulation framework 
DESMO-J [2], [3], developed at the University of Hamburg. 
The GD sub-framework consists of 1 package, 6 sub-
packages and 58 Java classes. 

Recording objects maintain Lists of 

Observation objects 𝑜𝑖 . Observations can be recorded 

during simulation by invoking the 

recording.update() method. Observations store their 

observed time instant 𝑡𝑖 and state 𝑠𝑖 (cf. sub-section II.A). A 

Recording object corresponds to the (chronologically 

ordered) set 𝑂 of all observations of a state variable 𝑣 in a 
simulation run. 

The central class GeneralizedDeviation has a 
constructor that takes a model reference, a title string, a 

Recording object and a risk type as parameters. Further, 
the constructor expects five parameter objects of types 

Reference, Selection, Penalty, Normalization 

and Redimensioning. These types are predefined Java 

interfaces; Reference is an abstract class. 
Objects of these five data types have to implement a 

getName() method (for textual output in the simulation 
report, fig. 8) and a computation method, as defined in sub-

section II.A. When the getValue() method of a 

GeneralizedDeviation object is called, all 

observations 𝑜𝑖  of its recording object are processed in a 
loop, by calling the computation methods of the involved 
five GD component objects, in the order specified by (1) in 
section II.A: 

 

42 building block classes for the five GD component 
types have been predefined and implemented, enabling the 
modeler to easily compose case-specific risk metrics 
according to his/her simulation study’s aims and valuation 
standards. 

Particularly common combinations of building blocks are 
encapsulated in 8 additional classes, e.g. 

 

– compare this code to the corresponding example in sub-
section II.B. 

The necessity to pass objects like new Mean<T>(), 
which implement a computation method to e.g. calculate the 
mean of a recording’s observed states, originates from the 
inability of Java to handle functions as parameters. In a Scala 
or C# implementation, one would pass functions directly 
instead. 

New generalized deviation objects can be built ad hoc in 
one statement, e.g. 

 

– this code generated fig. 7 and the first line item of fig. 8. 
Apart from the foundation of existing building blocks – 

which already exceed the risk types described in this paper –
the framework is generally open for extension by additional 
blocks, in order to implement further application-specific 
risk types.  

One generic GeneralizedDeviationReporter 
class generates the output representation for all a generalized 
deviation objects. The accompanying charts (like those 
shown in fig. 2 – fig.7) are automatically generated along 
with the textual simulation report. They were implemented 
using the JFreeChart package. 

As a result, a concrete, easily utilizable generic 
framework for risk assessment has been provided for 
modelers of discrete event systems. 

VI. CONCLUSION AND OUTLOOK 

In this paper, a generalized deviation concept inspired by 
quantitative finance has been introduced. Standard risk 
metrics like Volatility or Downside Risk have been 
deconstructed into five sub-function components for 
reference state generation, reference selection, penalization, 
normalization and re-dimensioning. The advantage of this 
approach is its flexibility, allowing modeling a wide range of 

Figure 8.  Textual generalized Deviations section of DESMO-J’s simulation report (cf. fig. 4, 5 and 7). 



 

 

risk perceptions in numerous application fields of discrete 
event simulation. Risk conceptions like Upside Risk, Outside 
Risk, Transition Risk, Critical State Risk, Drawdown Risk or 
Runup Risk are easily expressible in the generalized 
deviation framework by adjusting its sub-functions. 

It is proposed to complement descriptive standard 
statistics in discrete event simulation with generalized 
deviation metrics as introduced here, because GD offers 
inherent adjustable valuation standards for sophisticated risk 
estimation in various application fields, and thus facilitates 
the assessment of simulation dynamics for the experimenter. 

The work described here is part of a more extensive 
approach to transfer quantitative finance concepts to discrete 
event simulation. Analog generalization of Value at Risk and 
Drawdown metrics, to analyze simulation dynamics extent 
resp. dynamics characteristics, will be described in future 
papers. This paper does not contribute to further 
development of risk metrics in their original finance context; 
but it serves as an example of the fruitfulness and potential 
of method transfer between different subject areas. 

Giving an outlook, measuring risk by GD is canonically 
extendable by employing an analog Generalized Potential 
metric for assessing non-risky states, e.g. in safe state 
channels. In consequence, every simulation run could deliver 
one value pair (𝑟𝑖𝑠𝑘, 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙) per observed state variable, 
rating its dynamics (note that risk and potential are 
independent of cost and revenues, as explicated in sub-
section III.A). By conducting a series of simulation 
experiments (for statistical confidence reasons), a series of 
(𝑟𝑖𝑠𝑘, 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙)  pairs will be obtained, which may be 
visualized in two dimensional scatter plots per variable. 
Regarding these profiles, a quick overview of state variable 
characteristics may be gained, concerning welcome vs. 
undesired dynamics. 

Another extension option is incorporating more than one 
state variable into generalized deviation. For example, higher 
level risk may consist of elementary risk factors, and overall 
risk may be better assessable by combining individual risk 
variables into a multi-dimensional state space, rated by a 
multi-dimensional penalty function. 

Moreover, it seems desirable to also provide a time-
weighted version of generalized deviation, as observations 
need not necessarily be equidistant in time. For this purpose, 
penalties have to be multiplied with the time span an 
observation is in force, compensated by the 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 
function, then dividing the weighted penalty sum by the total 
sum of penalized time spans. 

Beyond the risk types delineated in this paper, further 
advanced application contexts are imaginable, e.g. 

 Path dependency: As discussed in sub-section III.F, 
reference states need not be constant in time, but 
may depend on previously observed states. Beyond 
previous extremes, arbitrary reference functions are 
conceivable, generating e.g. moving averages of past 
states before 𝑠𝑖 , linear regression of past states, 
spectral analysis with a moving window, etc. 

 Bandwidth dependency: The upper and lower 
boundaries of reference state channels may be 
adjusted dynamically according to previously 

observed states, e.g. as a multiple of moving 
standard deviation. When combining bandwidth 
dependency with the above-mentioned path 
dependency, several technical analysis indicators 
from quantitative finance can be described as special 
cases of generalized deviation, e.g. Bollinger Bands 
[11], Keltner Channels [12] or Envelopes [13]. 

 Time dependency: Deviation may be computed with 
additional consideration of simulation time, e.g. to 
model windows of periodic system vulnerability. In 
this application case, simulation time of an 
observation may influence the reference, selection 
and penalty functions: reference states could follow 
a time-dependent function, or identical observed 
states may be penalized differently, depending on 
the time they were observed at. 

 Degree of Unpredictability: Reference states may be 
determined by a prediction on basis of past observed 
states. In this scenario, the penalty function will 
measure accurateness of future state predictions.  

Many more applications are conceivable. The flexibility 
of freely definable GD component functions opens up 
noteworthy potential for generic risk assessment, benefitting 
and possibly inspiring the range of discrete event simulation 
application fields. 
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