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ABSTRACT 

We propose a conceptual procedure to integrate 

methods of specific application domains into general 

purpose discrete event simulation. This procedure is 

applied on quantitative finance, a field that deals with 

computer-assisted analysis of asset prices and supports 

investment decisions in financial markets. One of 

quantitative finance’s most significant assessment 

categories relates to the term risk. We generalise the 

concept of risk, regarding risk as observation of 

undesired state dynamics of a modelled system. We 

outline various interpretations and application fields for 

this generalised risk notion, demonstrating its wide 

scope. Special attention is paid to risk types and 

reference states of risk. We report in detail on 

implementation of four established risk metrics into our 

discrete event simulation framework DESMO-J. Special 

focus is given to realised conceptual extensions and risk 

metric visualisation. We point out further development 

options and conclude that this approach may benefit and 

inspire a wide range of application fields. 

 

Keywords: risk metrics, discrete event simulation, 

generalisation, visualisation 

 

1. INTRODUCTION: METHOD TRANSFER TO 

DISCRETE EVENT SIMULATION 

Scientific disciplines like physics, engineering, the 

social sciences or finance have developed a variety of 

methods to process or visualise experimental data. 

Simulation serves as a means to conduct experiments in 

these and several other subject areas as well. Unless 

domain specific simulators are employed, general 

purpose discrete event simulators often only deploy 

standard methods like descriptive statistics or random 

number generation, as a greatest common factor among 

disciplines. The decision for not implementing powerful 

methods of single application domains is often based on 

their discipline specificity, leading to inapplicability in 

other domains. 

As an example, risk metrics from finance 

concentrate on expressing the observed or potential 

capital loss of a portfolio or trading strategy within a 

certain time horizon. In this narrow sense, the concepts 

are too constrained for e.g. biological ecosystem 

analysis, which may be interested in the potential of 

preserving certain quality conditions in an ecosystem. 

We argue that generalising and transferring 

methods from simulation application domains in such a 

way that they are applicable in simulation studies of 

other areas as well may be beneficial and possibly 

inspiring in research. 

The conceptual procedure we propose to integrate 

methods of specific application domains into general 

purpose discrete event simulation is shown in figure 1. 

 

Discrete Event Simulation Application Domain

0. Generalise and enhance 

Methods

2. Transform Simulation 

Experiment Data 3. Apply generalised and 

enhanced Methods4. Transform Application 

Domain Method Results

6. Transform Simulation

Report Data 7. Apply generalised and 

enhanced Methods8. Transform Application 

Domain Method Results

1. Run Simulation Experiment

5. Generate Simulation Report

Figure 1: Generalisation and Utilisation of Application 

Domain Methods in Discrete Event Simulation 

 

In a one-time preliminary step methods of a 

specific application domain are generalised and – if 

necessary – enhanced, with the objective of general 

usability in various other discrete event simulation 

application areas. The generalised methods are 

implemented within the simulation package, e.g. as 

additional software classes. They may be called both 

during execution of simulation experiments and at 

generation of simulation reports. Depending on the 

environment in which the domain methods have been 

used before, a transformation of simulation experiment 
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or report data may have to precede their call, in order to 

prepare a proper application context. Analogously, a 

post-processing of the domain methods’ results may be 

necessary, in order to incorporate them in the further 

course of simulation. It is subject to the modeller and is 

depending on the application domain which methods 

are utilised during simulation experiments, at simulation 

report generation or on both occasions. 

In this way, additional powerful functionality 

originating from specific application domains may be 

provided in discrete event simulation packages, for the 

benefit of a further range of subject areas. 

 

This paper is laid out as follows: Section 2 introduces 

quantitative finance and risk metrics. Risk types are 

generalised in subsection 2.1, whereas the aspect of risk 

reference states is discussed in subsection 2.2. The main 

section 3 and its subsections report on the 

implementation and visualisation of four quantitative 

finance risk metrics in our open source discrete event 

simulation framework DESMO-J; namely semivariance, 

Value at Risk, Expected Shortfall and drawdown. 

Generalisation, extensions, application proposals, 

presentation and visualisation in simulation report as 

well as interpretation are discussed. Section 4 concludes 

this paper. It outlines the current status of work and 

gives an outlook on further development options. 

 

2. QUANTITATIVE FINANCE RISK METRICS 

The field of Quantitative Finance (also called 

Computational Finance or Financial Engineering) deals 

with computer-assisted analysis of capital asset prices 

and the support of investment decisions in financial 

markets. 

Here, specialised discrete event simulators called 

back testers are utilised, in order to evaluate financial 

market trading strategies: Strategies under examination 

are simulated in different historical or hypothetical 

market environments and are evaluated, compared and 

optimised by means of a wide range of assessment 

criteria. In this context, one of the most significant 

assessment categories relates to the risk taken in 

following a particular trading strategy. 

Historically, risk first was defined as variance of 

expected return with regard to a portfolio of assets 

(Markowitz 1952). Later, quantitative finance 

distinguished the concepts of uncertainty and risk and 

elaborated asymmetrical risk metrics called downside 

risk. Under this aspect, only negative deviations of 

return or asset value are considered, as finance assesses 

underperformance as undesirable, whereas unexpected 

profit is welcome (Markowitz 1959 pp.193–194, 

Sortino and van der Meer 1991, Harlow 1991, Rom and 

Ferguson 1993, Rachev et al. 2008).  

In the context of back testers, a risk metric is a 

concept to assess risk, both serving for quantification of 

risk of a particular trading strategy and for comparison 

of different trading strategies amongst each other. The 

term risk measure refers to the computational 

implementation of calculating a particular risk metric. 

To us, risk metrics appear useful for application in 

other domains beyond finance as well. In a preceding 

WAMS paper, we proposed generalisation of the four 

most established risk metrics in quantitative finance in 

order to utilise them in discrete event simulation (Koors 

and Page 2012). Here, we report on refinement, further 

development, implementation and visualisation of these 

metrics. We think that their integration into discrete 

event simulators opens up new and fruitful views on 

model dynamics in general and may specifically support 

evaluation and possibly optimisation of model 

behaviour. 

In the remainder of this section, we generalise the 

quantitative finance concept of risk in terms of type and 

reference state, in order to widen its application area to 

new domains (cf. figure 1, step 0). 

 

2.1. Generalising Risk Type 

Many domains differentiate between welcome and 

undesired dynamics of a system, depending on the 

particular task at hand: 

 

a) Referring to financial time series, quantitative 

finance would term a collapse in the equity curve of a 

trading system Downside Risk (figure 2a). 

 

Figure 2: Different Types of Risk 

 



In order to support a wider range of application 

fields, we extend the scope of the concept risk and its 

associated methods as follows:  

In a generalised context, risk can be regarded as 

observation of undesired state dynamics of a modelled 

system. 

 

b) In the engineering context of factory planning, 

waiting queues in front of new machines have to be 

dimensioned. In accompanying simulation experiments, 

according queue lengths will be observed and can be 

recorded. Undesired dynamics occur when queue 

lengths tend to approach their maximum capacity, 

meaning upstream machines will have to stop or client 

orders will be lost (figure 2b). From an abstract point of 

view, downside risk metrics used in quantitative finance 

to evaluate decreases in price time series are similarly 

applicable to evaluate increases in queue length time 

series. Formulae and algorithms only have to be adapted 

slightly and then can be correspondingly  employed as 

valuation standards for Upside Risk in general purpose 

discrete event simulation, to support various other 

application domains. 

c) When simulating social systems, there might be 

a preferable bandwidth of agent group sizes in order to 

retain stable groups. When group size shrinks too much, 

a group might dissolve, whereas an ever-growing group 

might lose self-identification and split. Here, Outside 

Risk can be attributed to undesirably departing from an 

interval of system preserving states (figure 2c). For this 

application case, the risk metrics already generalised in 

cases a) and b) merely have to be merged. 

d) In bi-stable or multi-stable technical or social 

systems, stable states resp. state regions can be 

considered “safe”, whereas state transitions can effect 

wear, damage or destruction. For example, switching of 

gears imposes additional strains on transmissions; or in 

countries with two party systems, change of 

government might induce higher social tension than 

retention of the ruling administration. In this respect, 

regions between or beyond stable states can be 

considered undesired and hence risky (figure 2d). More 

general, the preference to avoid certain states or state 

transition regions results in several (un)desired 

partitions of the state spectrum. This view of Transition 

Risk can be dealt with by combining multiple risk 

metric instances of type c). 

e) In the analysis of biological ecosystems, it may 

be desirable to maintain a certain ratio of different 

species’ population sizes, i.e. population proportions 

should stay within an equilibrium state (similar to figure 

2c). If the population of one species stagnates, whereas 

the habitat of another species grows, it may be generally 

acceptable that the population ratio decreases to a small 

positive figure. However, reaching the extreme target 

state 0, would mean that one species is extinct. In this 

context, the term Critical State Risk denotes 

approximation to critical system states that threaten to 

damage or destroy a system (figure 2e). 

f) The risk concepts identified so far are time-

independent and path-independent, i.e. the region of 

critical states remains fixed during an experiment. From 

a different financial perspective, risk might be perceived 

as loss of asset value already gained before (figure 2f). 

In this conception, state regions considered risky 

depend on the states that have been traversed so far. For 

example, the term undesired dynamics may refer to 

losing more than 10% of the maximum portfolio value 

registered so far. As portfolio value grows, the 

boundary level of states regarded risky rises 

proportionally. Thus, states regarded welcome in the 

past may be considered undesired in the future, 

depending on time and state transitions in the course of 

a system’s dynamic development. This path-dependent 

Drawdown Risk perception concerns processes that are 

not in a stationary phase but exhibit behaviour of 

continuous growth or decline. As an inverse example in 

medical simulation, a decreasing infection rate of an 

epidemic is favourable and every new minimum mt of 

infection rate will be welcome. But when infection rate 

declines further and new minimums mt+n are reached, 

any increase of infections back to a then-past minimum 

mt now will be considered as undesired and risky. 

 

A common characteristic of the examples a) to f) 

given above is the need to evaluate modelled systems or 

strategies asymmetrically, distinguishing welcome and 

undesired state regions. In contrast, standard descriptive 

simulation statistics focus on symmetric non-

distinguishing concepts like mean and variance. On the 

background of asymmetric evaluation preferences, it 

appears that generalised risk metrics inspired by 

quantitative finance may provide additional value for 

risk and dynamics assessment in discrete event 

simulation application fields, complementing 

conventional standard statistics. 

In summary, generalising risk type means 

extending quantitative finance instruments designed for 

downside risk (a) and drawdown risk (f) by expanding 

applicability to upward dynamics (type b), range 

scenarios (type c), transitions in multi-stable contexts 

(type d) or risky target states (type e). On this basis, 

tools for modellers of diverse simulation application 

domains regarding risk as undesired dynamics can be 

provided. In section 3, we will report on four prominent 

risk metrics that have been amended to cover risk types 

a), b), c) and f). 

 

2.2. Generalising Risk Reference State 

In quantitative finance, the concept of risk relates to a 

certain reference state (return on investment or portfolio 

value), considered as starting point to assess risk from. 

Depending on the particular risk metric, this is either the 

arithmetic mean of observations or the last observed 

state within a series of observations. 

In this regard, risk metrics referring to the mean of 

observed values usually describe the character of risk as 

deviation from the mean in the past. Here, mean is 

considered as a representative that is typical or desirable 



for the set of observed states. Epistemological interest 

focusses on evaluation and explanation – possibly also 

ex post optimisation – of a system’s past state history. 

When referring to the last observed state, future 

risk impending in the current situation is of interest. 

Here, past state history is regarded as well; however the 

emphasis is on using past data not to describe the past 

but rather to determine a forecast of deviation from the 

current state for the near future. In this case, 

epistemological interest concentrates on prognosis of 

future developments and adaption of strategy design. 

We argue that the main purpose of employing 

discrete event simulation in various application domains 

is evaluation and analysis of existing (or planned) 

systems. Thus, we focus on using quantitative finance 

methods as valuation standards for past observations 

here, as opposed to utilising them for forward-looking 

operational decision support. Consequently, risk metrics 

are employed for assessment of recorded state dynamics 

at end of simulation experiments, as depicted in figure 

1, step 7. 

As aforementioned, backward-looking risk metrics 

typically use the mean of observed states in further 

computations. Considering that manifold application 

areas may prefer other reference states in assessment of 

risk, it is necessary to generalise risk metrics with 

regard to a wider choice of reference states. 

For this reason, additional characteristic reference 

states in observation time series are identified as 

follows: 

 

a) Median state. The median is less sensitive to 

statistical outliers at the ends of state spectrum than the 

mean of states. Additionally, the median is (near) a state 

that actually was observed, whereas the mean of states 

as a calculated artefact need not necessarily correspond 

to a practically observable state. In an analytical 

context, using the mean might facilitate handling of 

equations, compared to the median. But against a 

computational background, algorithms remain the same, 

regardless of which value is stored in a variable for the 

reference state. On these grounds, it is recommended to 

prefer the median to the mean of states. 

b) Mode states (Most frequent states, Modal 

states). Referring to mode states may be more valid than 

concerning the mean of states or the median, since the 

most frequent states may appear more characteristic 

than any other states that were observed with lower 

frequencies. Furthermore, risk metrics referring to the 

mode states benefit from a greater statistical population 

of starting points and thus more cases observed than in 

any other case, implying higher significance. At last, 

mode states are virtually insensitive to outliers. For 

these reasons, it is generally advised to include mode 

states in risk analysis. 

c) Minimum and Maximum state. Referring to these 

states allows studying model dynamics from the 

perspective of extreme states resp. environments. 

Depending on the particular system examined, extreme 

may relate to especially welcome or especially 

undesirable states: The interpretation of extreme states 

as preferable or avoidable remains with the modeller. 

For example, the (frequent, but in terms of state) 

“extreme” state of an empty waiting queue might appear 

desirable, whereas the extreme state of highest observed 

queue length may be regarded undesirable. 

Additionally, it should be noted that “risk” with 

reference to undesired states can mean departing from 

unwanted extreme states and heading for more welcome 

states. Therefore, risk metrics referencing undesired 

states may actually characterise recovery phases 

towards welcome states. 

d) Previous Maximum or Previous Minimum state. 

In cases of non-stationary processes (cf. application 

scenario in figure 2f) it can make sense to refer to the 

preceding extreme state, looking back from present 

simulation time. By the nature of an ever-increasing or 

ever-decreasing process, current extreme states will 

only have a temporary relevance. By considering the 

sequence of increasing or decreasing extreme states as 

an artificial reference state series, risk can be interpreted 

and quantified as the extent of temporary state 

movements into an undesired opposite direction, against 

the main trend. In this context, only the relative degree 

of counter movement is of interest, whereas the absolute 

states traversed on these occasions lose importance. 

 

Extreme states typically have a very low 

frequency; sometimes only one observation of 

maximum or minimum is made. In consequence, 

samples of extreme state observations may become too 

small to allow valid conclusions based on risk metrics. 

This circumstance is met by introducing State Regions 

around reference states, with an adjustable radius r. A 

radius r  0 around a reference state s incorporates all 

states in [s – r, s + r] into the risk metrics of reference 

state s. By this means, enlarged reference state sets can 

be dimensioned, to obtain sufficient states for 

significant risk metric results. Risk metrics referring to 

state regions are re-defined to calculate results for each 

state occurrence t in [s - r, s + r]. If desired, all states 

t  s in a state region may be set to the same reference 

state s before computation. 

 

Another issue arises when regarding (potentially 

risky) dynamics of state transitions. Given a start time t0 

and a fixed state transition time t, it cannot be 

guaranteed that an observation variable will change its 

state precisely at t0 + t. So it is not exactly defined 

which target state should be assigned to a start state 

after t. The path taken here is to provide a parameter to 

the modeller for choosing the outcome of a) the 

preceding b) the following or c) the nearest state change 

event to t0 + t as Flexible Target State of a state 

transition. The default is to consider the last state 

change event preceding t0 + t, since it is assumed that 

a preceding state is valid until it is superseded by a 

following state change event later than t0 + t: the target 

state observed at the last state change event before 

t0 + t is regarded to be still in effect. 



It is obvious that risk assessment highly depends 

on the state considered as reference state for normality. 

If a highly frequent reference state in the centre of the 

state spectrum is chosen, a large number of relatively 

small state differences may be observed, presumably 

with similar extent of deviations in both directions, 

above and below the reference state. In contrast, 

choosing an extreme state with a low frequency might 

imply higher risk for the same state observation series, 

since recorded state differences are greater. Thus, the 

same risk metric can lead to different results and 

conclusions for a given system, depending on the choice 

of reference state. It is advised to select reference states 

carefully, considering interpretation and relationships of 

equivalent states in the original modelled system in 

terms of undesirable dynamics (i.e. risk). 

 

By extension of financial risk metrics to further risk 

types as described in subsection 2.1, and introduction of 

six additional reference states, state regions and flexible 

target states (subsection 2.2), a range of new application 

scenarios opens up, providing several application fields 

of discrete event simulation with additional valuation 

standards. Since assessment of risk types and choice of 

risk reference states are flexible according to modellers’ 

needs, accurate domain-specific risk definition and 

interpretation is made available, for gaining more 

insight and transparency of a system’s state dynamics. 

 

3. IMPLEMENTATION AND VISUALISATION 

OF GENERALISED RISK METRICS 

This section presents four established quantitative 

finance risk metrics – namely semivariance, Value at 

Risk, Expected Shortfall and drawdown – and describes 

their concrete generalisation for use in discrete event 

simulation. Every risk metric is discussed in an own 

subsection, with definition, application proposals and 

elaboration of generalisation and extensions. Further 

attention is given to textual presentation resp. graphical 

visualisation in simulation reports, followed by an 

interpretation in the application context of a simple 

queuing system. The focus of this section is on 

conceptual enhancements, further development and 

experiences gained, carrying on the more conceptual 

introduction by Koors and Page (2012). 

Computation and visualisation of the generalised 

risk metrics have been implemented in Java into our 

open source discrete event simulation framework 

DESMO-J (www.desmoj.de; Page 2013, Göbel et al. 

2013, Page and Kreutzer 2005), in a bachelor’s thesis 

(Göttsch 2013) and in a bachelor project (Peltzer 2013), 

at the University of Hamburg. 

Formal definitions of the original risk metrics in 

their financial context can be found in e.g. Yang, Yu, 

and Zhang (2009); Lohre, Neumann, and Winterfeldt 

(2009) or Giorgi (2002). 

 

3.1. Semivariance 

(Below mean) semivariance     is defined like standard 

variance  , with the only exception that variations 

above the mean are made effectless by setting them 

equal to the observed mean. As a result, semivariance 

measures only deviations below the mean. 

Above mean semivariance     is computed 

analogously, restricting measurement to variations 

above the mean. The sum of both 

semivariances - below and above mean – amounts to 

conventional standard variance:          . 

Below mean semideviation     and above mean 

semideviation     are defined as the square root of 

below mean semivariance resp. above mean 

semivariance. Note that their sum usually does not 

amount to standard deviation   , because √    

√    usually is not equal to √        √    . 

Markowitz (1959, pp.193–194) was the first to 

mention (below mean) semivariance as an alternative to 

standard variance for financial risk measurement, but 

did not follow up this approach due to computational 

restrictions at that time. Later, Hogan and Warren 

(1974) and subsequent authors proposed an asymmetric 

concept like semivariance to better account for 

asymmetric risk perception of investors. A result of the 

following discourse was to consider standard symmetric 

variance as representative of uncertainty, whereas 

asymmetric concepts like semivariance were regarded 

as instances of risk in the narrow sense. 

 

3.1.1. Application 

We propose to apply semivariance in discrete event 

simulation for assessment of steady state phases. In 

consistent steady state phases, overall state fluctuation 

below and above the mean should be of similar 

character. Therefore below mean and above mean 

semivariance should be of comparable magnitude. If a 

significant difference of the two semivariances is 

observed, unsymmetrical variation around the mean 

may be present and should be clarified by further 

examination. 

 

3.1.2. Presentation in Simulation Report 

In DESMO-J, Semivariance statistics can be declared 

and computed for any recording (time series) of 

observed state variable values. At the end of a 

simulation run, semivariance is presented textually in 

the simulation report as shown in figure 3. 

 

 
Figure 3: Textual Presentation of Semivariances and 

Deviations in Simulation Report 

 

Apart from below mean and above mean 

semivariance, the mean, standard deviation and variance 

are listed as well. The columns for Below Mean 

Deviation and Above Mean Deviation are discussed 



later in subsection 3.1.3; they are not identical to 

semideviation. 

If the report format is set to HTML with graphics, 

semivariances are also displayed graphically, as in 

figure 4. The graphical representation facilitates a quick 

visual comparison of variation dimensions below and 

above the mean. 

 

 
Figure 4: Graphical Visualisation of Semivariances and 

Deviations in Simulation Report 

 

3.1.3. Extension 

Although relative comparison of the two semivariances 

is expedient, the absolute semivariance values are not 

interpretable in relation to elementary observations, 

because semivariances are sums of squared observations 

with a squared dimension. 

Semideviation does not lead further, because it has 

no intuitive relationship to standard deviation (see 

subsection 3.1 above). Even in a perfect symmetric 

fluctuation of states around the mean, semideviations 

below mean and above mean are  √ ⁄  times lower than 

the standard deviation. 

We propose to compute metrics Above Mean 

Deviation and Below Mean Deviation similar to 

semideviation, but to totally ignore observations below 

(resp. above) the mean, instead of incorporating them 

with value 0. The difference is that here the sum of 

squares is divided by the number of non-ignored 

observations (minus 1), instead of the total number of 

observations (minus 1) in case of semideviation. By this 

definition, below mean deviation and above mean 

deviation are nearly identical to standard deviation, if 

fluctuation around the mean is symmetric (cf. figure 4). 

This opens up new room for interpretation: We 

graphically superimpose observation time series with 

state bands with width of above mean and below mean 

deviation (figure 5). Thereby, the experimenter can get 

an impression of variation range in terms of deviations. 

Untypical dynamics are more easily identifiable 

compared to using standard deviation, because above 

mean and below mean deviations may have different 

values. For example, an absolute deviation d may be 

normal when observed above the mean (because it is 

e.g. within two above mean deviations), but exceptional 

below the mean (because there, it may be e.g. beyond 

three below mean deviations). 

 
Figure 5: Graphical Visualisation of Deviations as State 

Bands in Simulation Report 

 

As an interpretation example, it can be concluded 

from figure 4 that the underlying queuing system has a 

quite balanced variation below and above the mean. 

Figure 5 shows that model dynamics remains within 

two deviations above and below the mean queue length, 

without unilateral exaggerations. However, it seems that 

the mean state itself is observed rather infrequently, 

which questions its eligibility as main reference state of 

model dynamics (compare subsection 2.2). 

 

3.2. Value at Risk and Expected Shortfall 

The risk metric Value at Risk (VaR) quantifies the 

maximum financial loss that will not be exceeded at a 

given confidence level of 1 - , at the end of a set 

period (J. P. Morgan 1996, Hull and White 1998). To 

put it another way, VaR is equivalent to the -quantile 

of the probability distribution of returns in the set 

period.  

Figure 6 depicts a potential distribution of returns 

after a set period as well as the -quantile (VaR) of this 

distribution. 

 



Probability Distribution 

of Returns after the

Set Period

Expected Shortfall 0

Value at Risk

Lowest   %

of Returns

 
Figure 6: Illustration of Value at Risk and Expected 

Shortfall 

 

The related risk metric Expected Shortfall (or 

Conditional Value at Risk, CVaR) expresses the 

expected amount of loss for the  fraction of cases 

where VaR is exceeded (Rockafellar and Uryasev 

2000). In other words, CVaR is equivalent to the 

expected value of all observations below the -quantile 

of the distribution (cf. figure 6). 

Value at Risk is an approach to quantify the 

amount of loss that a bank, a fund manager, an investor 

or a trading strategy might incur within the next n future 

days at a confidence level of e.g. 95% or 99%, provided 



that future returns are distributed like past returns. It is 

an important key figure in banking: Under the Basel II 

accord, banks are legally obligated to report their 

market risk in terms of Value at Risk on a daily basis, to 

assure that pre-set maximum losses won’t be exceeded 

within given time horizons. 

In addition, Expected Shortfall estimates the 

potential extent of damage for unlikely but possible 

extreme events (in terms of choice of ), where VaR is 

exceeded. Expected Shortfall is essential for describing 

the state space beyond VaR, e.g. when structuring 

finance products with insurance nature. 

 

3.2.1. Application 

We propose to apply Value at Risk and Expected 

Shortfall in discrete event simulation to describe the 

extent of state movements: VaR and CVaR can be 

employed to quantify the state changes observed in 

simulation experiments within set time spans t and at 

given confidence levels 1 - . From this perspective, 

Value at Risk gives an impression of how far future 

states may depart from given start states in the 

predominant 1 -  fraction of all cases. Expected 

Shortfall delivers the mean of states to expect when 

simulation dynamics develops further than normal, for 

the remaining  fraction of cases. 

 

3.2.2. Generalisations and Extensions 

In order to adapt the two metrics Value at Risk and 

Expected Shortfall to general purpose simulation, a 

number of generalisations and extensions were 

performed: 

 

1. The various application areas of discrete event 

simulation will not necessarily attribute risk only to 

downward state movements as shown in figures 2a and 

6. Following our reasoning in subsection 2.1, VaR and 

CVaR were extended to also report on the upper end 

resp. both ends of state distribution. Thereby not only 

downside risk (figure 2a), but also upside risk and 

outside risk (figures 2b and 2c) are now covered. 

2. VaR and CVaR originally are forward-looking 

metrics, estimating risk with reference to the last 

observed system state. Generally, this state need not be 

of special interest in discrete event simulation. 

According to our proposals in subsection 2.2, VaR and 

CVaR were generalised to refer to the median, the 

minimum, the maximum and the mode (most frequent) 

states. In finance, VaR and CVaR unconditionally 

incorporate all observed state transitions for a future 

state estimation, regardless of the start state. For higher 

accuracy, we use only those observations starting from 

one of the four mentioned reference states when 

compiling the corresponding four state distributions. 

Therefore each of the state distributions reports exactly 

about one specific reference state context, and all other 

(distorting) state dynamics are filtered out. 

3. VaR and CVaR were enhanced by state regions 

around reference states, as suggested in subsection 2.2. 

Thus, sufficient numbers of state movements can be 

included into the two distributions that describe 

dynamics starting from minimum and maximum states. 

4. When observing a start state, there may be no 

state change event exactly after the set time span t. In 

these cases the target state can be selected as the 

preceding, the following or the nearest state after t, as 

expounded in subsection 2.2. 

5. A further approach is abstraction from absolute 

target states in favour of relative state differences 

observed, leading to a re-naming of the Value at Risk 

metric to “Delta at Risk” (DaR) and of the Expected 

Shortfall metric to “Conditional Delta at Risk” (CDaR). 

 

3.2.3. Presentation in Simulation Report 

The DaR and CDaR metrics are based on identical 

recordings of state variable changes. Therefore, they are 

computed conjointly and are presented together in the 

simulation report, as shown in figure 7. 

 

 

 
Figure 7: Textual Presentation of Delta at Risk and 

Conditional Delta at Risk in Simulation Report 

 

The “Delta at Risk and Conditional Delta at Risk” 

report section consists of two main tables, the upper one 

for Delta at Risk and the lower one for Conditional 

Delta at Risk. Each table has four lines of content, 

denoting the start states Minimum, Mode, Median and 

Maximum. The first four table columns list type, values, 

radii and regions of the reference states. Further four 

columns show the DaR resp. CDaR values for 

confidence levels 99%, 97.5%, 95% and 90%. These 

entries contain the lowest state deltas (shortfall deltas) 

observed after the set period t when starting at one of 

the four reference states and demanding one of the 

given confidence levels. 

To also account for upside risk, the observed upper 

boundary states (-quantiles) for the mirrored 

distribution and same confidence levels are stated. 

Outside risk is obtainable by combining downside risk 

and upside risk. 

If the report format is set to HTML with graphics, 

DaR and CDaR are also displayed graphically, see 

figure 8. Each of the four charts refers to one start state. 

Per chart, four groups with two bars present the values 

for downside and upside Delta at Risk for each of the 

four confidence levels 99%…90%. The Conditional 

Delta at Risk level is displayed as a “gloriole” on top or 

below of each bar. The distance between the end of a 

bar (DaR) and the gloriole of the bar (CDaR) gives an 

impression of the difference between normal model 

dynamics and rare extreme dynamics. 



  
 

  
Figure 8: Graphical Visualisation of Delta at Risk and 

Conditional Delta at Risk in Simulation Report 

 

3.2.4. Further Development 

A lesson learned was that presentation of 64 outcomes 

(2 metrics * 4 reference states * 4 confidence levels * 2 

downside/upside distribution ends) can be 

overwhelming and might even obstruct analysis. This is 

true for the textual presentation in the simulation report, 

but also applies to the four charts with altogether 32 

bars and 32 glorioles. Another experience is that 

thinking in terms of relative state changes has 

advantages, but often it is easier to regard absolute 

states that are directly connected with representative 

states in the modelled system. A third insight is that 

state deviations into one direction are of interest, but it 

is at least as interesting to depict the range of states that 

can be expected as outcomes of a start state after a time 

span t and with a given confidence level. These three 

aspects led to development of a compact, combined 

chart of absolute state movement ranges, which is 

additionally included in the DESMO-J simulation report 

and displayed in figure 9. 

 

 
Figure 9: State Movement Ranges Chart in Simulation 

Report 

 

The State Movement Ranges chart is divided into 

four areas, one area per confidence level. Every area 

consists of four bars, representing the absolute range of 

states that will be reached after t at the chosen 

confidence level. The bar ranges are symmetrical with 

respect to the boundary observations included into a 

bar: E.g. a bar in the 90% area starts at the 5
th

 percentile 

and ends at the 95
th

 percentile and therefore contains 

90% of all observations. The start and end values are 

noted within each bar. Each of the four bars in an area 

refers to one of the reference states minimum, 

maximum, median or mode; the numerical values of 

reference states are displayed in the chart legend. These 

reference start states of dynamics are represented by 

black lines. A black line inside a bar (here at the median 

and the mode) indicates that future target states will be 

distributed around the start state. The two diamonds 

above and below a bar indicate the expected value of 

the remaining observations above resp. below the bar, 

which are not included in the bar themselves. 

The state movement ranges chart resembles box-

and-whisker plots, but should not be confused with 

them: a) A dynamics bar contains observations 

according to the desired confidence level (90%…99%), 

whereas a boxplot contains fixed 50% of observations. 

b) Black horizontal lines in state movement ranges 

charts stand for the start states of dynamics, whereas 

thicker horizontal lines within boxplots represent the 

median of observations. c) State movement ranges 

charts always contain exactly two diamonds, above and 

below a bar, representing the mean of those states that 

are not included in a bar. Boxplots may contain zero to 

multiple non-cumulated data points for outliers, and 

every circle symbol stands for exactly one outlier. 

As an interpretation example, the following 

conclusions can be drawn from figure 9 (which traces 

back to the same queuing system that produced figures 

3–5 and 7-8): Within t of one hour, dynamics will 

lead far away from the minimum queue length of 25, 

into a rather narrow range between 60 and 80 waiting 

clients. The target states from 60 to 80 correspond to 

approx. 25% of the state space (25 to 100 waiting 

clients). Dynamics starting from the maximum queue 

length of 100 are different: queue length may either 

remain at high levels or decrease down to around 40. 

Here downside dynamics within one hour covers more 

than 75% of the state space and thus has a higher 

variance resp. uncertainty than upside dynamics. In the 

most frequent case with a queue length of 47 clients, 

queue length rather grows than shrinks within one hour.  

Nevertheless, low states near the minimum are only 

reached from other lower states like the mode. 

Dynamics around the median state 62 seem to be 

distributed symmetrically. There are no surprising 

outliers in state dynamics, because the diamonds 

representing expected states in extreme cases are 

relatively near to the bars which represent usual 

dynamics. 

 

3.3. Drawdown 

In quantitative finance, the term drawdown denotes the 

extent of an interim loss of asset value, after a new peak 

of asset value was reached beforehand (Burghardt et al. 

2003). In a broader sense, the term drawdown also 

relates to the whole time interval in which a setback of 

asset value is observed. 



If the value of a portfolio fluctuates upwards in the 

long run, then every new peak of asset value will be 

followed by a drawdown, until the next higher peak is 

reached. Hence a portfolio will almost always be in a 

drawdown, since new peaks of portfolio value are rather 

rare events. 

The main focus in quantitative finance is on the 

maximum drawdown that a trading strategy has ever 

undergone (Acar and James 1997, Chekhlov et al. 2000, 

Mendes and Leal 2003, Magdon-Ismail and Atiya 

2004). This figure quantifies the maximum magnitude 

of interim losses a strategy has incurred in the past. It 

indicates how much initial capital or risk disposition an 

investor needs to pursue a strategy, provided that 

historical drawdowns are not exceeded by future 

drawdowns. If the initial capital or tolerance to interim 

losses is lower than the expected maximum drawdown 

of a strategy, then the strategy should not be followed, 

because all invested capital may be lost or the investor 

might withdraw too early from a long-term strategy due 

to nervousness. 

A further (but less popular) key figure is the 

average drawdown, which is computed as the mean of 

all drawdowns observed. It can give an impression 

whether an incurred present drawdown is typical or 

exceptional and thus should be monitored carefully. 

Other key figures are the average length and maximum 

length of all drawdown phases. They are applied to 

compare the duration of drawdown phases with 

investors’ patience to wait for asset value recovery. For 

similar reasons, sometimes the time span from the 

instance of maximum drawdown to new peaks is 

considered. 

Compared to e.g. Value at Risk, drawdown is 

weakly covered in academic literature. This may be 

associated with the circumstance that there are not many 

starting points to handle drawdown analytically. 

Drawdown rather describes an aspect of dynamic 

behaviour and commonly is not used in conjunction 

with statistical distributions or moments (in contrast to 

e.g. returns). Nevertheless drawdown is established in 

professional practice like futures trading or funds of 

funds management. 

 

3.3.1. Generalisation 

Against the backdrop of sometimes inconsistent and 

vague utilisation in finance, we generalise and re-define 

the term drawdown for application in discrete event 

simulation (see figure 10): A drawdown phase is a time 

span in which the value of a certain state variable 

declines and recovers with respect to a preceding 

maximum state. The difference between the preceding 

maximum state and the lowest state observed within the 

drawdown phase is the drawdown extent. The time 

instant at which (the last occurrence of) this local 

minimum state was observed is the drawdown instant. 

The time span between the start of a drawdown phase 

and the drawdown instant is denoted drawdown time. 

The time span between the drawdown instant and the 

end of a drawdown phase is named drawdown recovery 

time. A drawdown phase ends with the first observation 

of a state equal or higher than the preceding maximum 

at which the drawdown phase started. A drawdown 

phase starts with the last observation of the preceding 

global state maximum. One particular drawdown is 

specified by start of the drawdown phase, drawdown 

time, drawdown recovery time and the drawdown 

extent. It can be represented by a quadruple     
     , where   is the data type of (simulation) time 

instants,   is the data type for simulation time intervals 

and   is the data type of the variables’ states 

(differences). The entirety of all definitions above is 

called drawdown concept. 
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Figure 10: Illustration of the Drawdown Concept 

 

3.3.2. Application 

We propose to apply the drawdown concept in discrete 

event simulation to characterise observed dynamics of 

state variables. Drawdown time and drawdown extent 

quantify susceptibility in terms of (counter) movement 

towards lower states, whereas drawdown recovery time 

describes regenerative behaviour in the analysed 

system. By extending the drawdown concept as 

introduced in the following subsection, additional 

insight into the dynamics of a simulation variable can 

be gained. 

 

3.3.3. Extensions and Further Development 

The drawdown concept embodies a risk type as shown 

in subsection 2.1, figure 2f: (un)desired states in a 

growth process are path dependent. Former global 

maximum states that were welcome in the past may 

precede newer higher maximums in the present. Hence, 

the same state observation that was desired in the past 

may pose a risk when a growth process continues. 

With respect to reference states, the drawdown 

concept defined above refers to the previous maximum 

as reference state (cf. subsection 2.2). It is obvious to 

transfer the drawdown concept to reverse contraction 

processes, by referring to the previous minimum. In this 

case, counter movements towards higher states can be 

regarded risky. In order not to confuse terminology, we 

apply a reverse naming scheme and incorporate runup 

phases, runup extent, runup instant, runup time, runup 

recovery time and particular runups into the runup 

concept. 



Logically, the drawdown concept is restricted to 

growth processes and the runup concept to contraction 

processes: for example, an ever-growing process with 

states that do not fall below the initial (minimum) state 

has only one runup, which is the process itself. 

The next step is to extend the drawdown/runup 

concept to processes in steady states as shown in figures 

2a and 2b. We accomplish this by utilising the median 

and mode state as reference states, instead of previous 

maximum or previous minimum, as before. If the 

expression “max” in figure 10 is replaced by e.g. 

“median”, then the drawdown concept will characterise 

all dynamics below the median and the runup concept 

will describe all dynamics above the median. With 

median or mode as reference states, the drawdown and 

runup concepts can be combined to treat dynamics 

below and above the reference state at the same time. 

The next conceptual step is to abandon the 

separation into drawdown concept and runup concept 

for steady state processes fluctuating around the median 

or mode (or any other) state. In the context of reference 

states that are not previous minimum or previous 

maximum, it makes sense to unify both concepts to an 

excursion concept, with excursion phases, excursion 

extent, excursion instant, excursion time, excursion 

recovery time and particular excursions. Former 

drawdowns and runups are still recognisable by the 

algebraic sign of the fourth component of an excursion 

quadruple: excursions with positive extent are runups 

and excursions with negative extent are drawdowns. 

The advantage of this unification is standardisation of 

methodology, algorithms and terminology, without 

inconvenient case differentiations. 

As a last step, the remaining drawdown and runup 

concepts that still refer to previous maximum and 

previous minimum may be generalised to excursions, 

too, harmonising terminology and technical 

implementation overall. 

 

3.3.4. Presentation in Simulation Report 

When the excursion metric is declared for a state 

variable, the dynamics of this variable is recorded 

during simulation and processed at the end of an 

experiment, because median and mode state are not 

known beforehand. Here, excursion quadruples 

          are extracted from the recording. 

They contain start of the excursion phase (data type  ), 

excursion time span and excursion recovery time span 

(both of data type  ) and excursion extent (data type  ). 

For faster and more convenient processing in 

DESMO-J, it is required that data types   and   have a 

representation as subtypes of Java Number. 

Since the relative state pathway of excursions is of 

more interest than their exact start time instant, the last 

three components of excursions are central and covered 

in the following analysis. For the time being, the first 

component indicating the exact start time is abstracted 

from.  

The set of collected excursion quadruples of a state 

variable is analysed in different ways, to account for 

various aspects. For a first overview, the top n (most 

relevant) excursions from and to median, mode, 

minimum, maximum, previous minimum and previous 

maximum states are listed in descending order, with 

respect to excursion extent, excursion time, excursion 

recovery time and excursion total time (figure 11). 

 

 
… 

 
… 

Figure 11: Segment of Textual Listing of the most 

relevant Excursions in Simulation Report 

 

If report format is set to HTML with graphics, the 

distributions for the three independent components 

excursion extent (figure 12), excursion time and 

excursion recovery time are approximated by kernel 

density estimations with selectable kernels and 

bandwidths. 

 

 
Figure 12: Graphical Visualisation of Excursion 

Distributions as Kernel Density Estimations in 

Simulation Report 

 

The kernel density estimations shown above give 

an independent view of each excursion component’s 

distribution. To convey an integrated impression of 

model dynamics, it is helpful to provide a view on all 

excursion tuples related to one reference state at once. 

For this purpose, we provide a scatter plot (per 



reference state) that maps excursion time to the x-axis, 

excursion recovery time to the y-axis and absolute 

excursion extent to shapes and colours (figure 13). Blue 

upward triangle symbols represent upward excursions 

(runups) and red downward triangles stand for 

downward excursions (drawdowns). 

 

 
Figure 13: Graphical Visualisation of Excursions in 

Simulation Report 

 

The scatterplot overview shown above is 

supportive for analysis of location, distribution and 

relationships of excursions from a bird’s eye view. As 

an aggregated view, it cannot contain information about 

the specific pathways of single excursions: this data is 

not contained in excursion tuples. But since the basic 

recordings of state variable dynamics are accessible at 

report generation time, it is easy to cut the whole time 

series of state variable dynamics into pieces (one per 

excursion) and to present these parts in further charts 

(one chart per reference state, figure 14). 

 

 
Figure 14: Graphical Visualisation of all Excursion 

Pathways in Simulation Report 

 

Here, all excursions are plotted together into one 

coordinate system. The start of each excursion is set to 

the origin of ordinates. The time span since start of an 

excursion is shown on the x-axis and the relative state 

distance from the start state is indicated on the y-axis. 

Naturally, runups are plotted above the x-axis and 

drawdowns are plotted below it. In stochastic 

experiments, most excursion phases will be rather short 

with low excursion extent, due to noise that causes 

small arbitrary movements around previous states. But 

it is interesting to analyse longer excursions phases: 

How do runups and drawdowns relate with respect to a) 

length, b) extent and c) quantity? Is there a common 

shape of excursions? How are excursions distributed: 

Do only few “outlier” excursions account for large parts 

of dynamics, or is there a dense distribution of mid-

length excursions? How stable are excursions: Do they 

consistently remain far away from the x-axis or do they 

temporarily collapse almost back to the x-axis, before 

departing to more distant states again; etc. 

Figure 14 facilitates analysis of excursions as a 

whole. When it comes to examination of excursion 

recovery, a slightly different presentation is rewarding: 

All excursions plotted in figure 14 are shifted parallel to 

the x-axis to the point where the excursion instant is on 

the y-axis. In this way all excursions are centred (not 

necessarily symmetrically) around the y-axis, with their 

highest absolute extent on the y-axis (figure 15). 

 

 
Figure 15: Graphical Visualisation of Excursion 

Recovery Pathways in Simulation Report 

 

As a result, recovery dynamics back to reference 

states can be explored when investigating the right side 

of the y-axis and dynamics from reference states 

towards maximum excursion instants can be explored 

on the left side of the y-axis. Objects of study may be 

internal symmetry of excursions or typical shapes on 

the left and right hand side of the y-axis 

As an interpretation example, it can be concluded 

from figures 14 and 15 that the underlying queuing 

system (cf. figure 5) has a large number of excursion 

phases shorter than a quarter of an hour. Starting at the 

mode reference state, these short-term excursions do not 

change the queue length to an extent further than 15 

clients. Only five excursions (clearly visible in figure 

13) account for the remaining mid-term dynamics of the 

system. These mid-term excursion phases have a 

comparable length before and after the excursion 

instant. It is noticeable that there is only one significant 

drawdown of lower extent, but four significant runups, 

three of them with high extent. This supports the 

conclusion from figure 9 (state movement ranges), that 

dynamics around the mode state is distributed 

asymmetrically and has a preference for higher states. 

  



4. SUMMARY AND OUTLOOK 

In this paper, we propose a conceptual procedure to 

integrate methods of specific application domains into 

general purpose discrete event simulation. In particular, 

four established risk metrics from quantitative finance 

have been generalised: semivariance, Value at Risk, 

Expected Shortfall and drawdown. Quantitative finance 

risk notions like uncertainty, downside risk and 

drawdown risk have been extended to the risk types 

upside risk, outside risk, transition risk, critical state 

risk, runup risk and excursion risk. The standard use of 

mean and previous maximum as reference states has 

been extended to median, mode, minimum, maximum 

and previous minimum reference states. State regions 

and flexible target states provide further application 

options. These generalised risk metrics have been 

implemented in our open source discrete event 

simulation framework DESMO-J, utilising the 

JFreeChart charting library. A number of chart types 

have been employed to visualise model dynamics in the 

simulation report, particularly bar charts, extended time 

series charts, interval bar charts, histograms, scatter 

plots and line charts. 

Table 1 gives an overview on the current status of 

implementation of the four pre-mentioned risk metrics. 

It shows the extent of generalisation introduced in terms 

of risk type and reference state as well as the chart types 

provided for visualisation. 

Generalisations and visualisations currently 

implemented are denoted with a checkmark. The term 

“n/a” marks combinations of risk metrics with 

generalisation or visualisation types that do not seem 

feasible in principle. The letters a) to f) before risk types 

and reference states refer to the corresponding passages 

of subsection 2.1 resp. subsection 2.2. 

As can be seen from table 1, considerable 

functionality has already been implemented; however 

some blank spots remain at the current stage. Further 

development is planned on the following items (denoted 

in the entries of table 1): 

 

1. Extend semivariance to other constant 

reference states than mean. 

2. Extend semivariance to dynamically reference 

previous extreme states, in order to assess 

drawdown and runup risk. 

3. Extend Value at Risk and Expected Shortfall to 

reference mean as well as previous extreme 

states in order to assess drawdown and runup 

risk. 

4. Visualise Value at Risk and Expected Shortfall 

in a chart similar to figure 6. 

5. Overlay the basic time series of observed states 

with a rotated chart similar to the 

aforementioned item 4. 

6. Extend drawdown (resp. excursions) to 

reference states mean, minimum and 

maximum. 

7. Extend Value at Risk, Expected Shortfall and 

drawdown conceptually to transition risk. 

8. Extend drawdown conceptually to outside risk 

and critical state risk. 

9. Extend semivariance to a generalised deviation 

concept, providing additional assessment of 

outside, transition and target risk. 

 

Table 1: Implementation Status of Risk Metrics and 

Starting Points for Further Development 
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) a) Downside Risk 

b) Upside Risk 

c) Outside Risk 9.  8. 

d) Transition Risk 9. 7. 7. 7. 

e) Critical State Risk 9. n/a n/a 8. 

f) Drawdown Risk 2. 3. 3. 

    Runup Risk 2. 3. 3. 

    Excursion Risk n/a n/a n/a 
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)     Mean  3. 3. 6. 

a) Median 1. 

b) Mode 1. 

c) Minimum 1.  6. 

c) Maximum 1.  6. 

d) Previous Maximum 2. 3. 3. 

d) Previous Minimum 2. 3. 3. 

    State Regions n/a n/a 

    Flexible Target State n/a n/a 
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Bar Chart n/a 

Extended Time Series Chart  5. 5.   

Interval Bar Chart n/a    

Histogram n/a 4. 4. 

Scatter Plot n/a     

Line Chart n/a 4. 4. 

 

The added value of this contribution is to apply 

and visualise generalised financial risk metrics in 

discrete event simulation, embedded into a conceptual 

frame. By this approach, additional means for 

assessment of model dynamics can be obtained, 

complementing standard descriptive simulation 

statistics: Extended semivariance supports evaluation of 

steady state phases; generalised Value at Risk and 

Expected Shortfall provide quantification of (un)desired 

state movement extents; generalised drawdown 

facilitates characterisation of state variable dynamics. In 

this way, advanced analysis methods are made available 

for further use in simulation application fields that 

could not use financial risk metrics before, due to 

dissimilar risk notions. We conclude that generalising 

and transferring methods from specific simulation 



application domains into general purpose discrete event 

simulators, as we have done here, may benefit and 

hopefully inspire a wide range of further application 

fields. 
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