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ABSTRACT 

 

In discrete event simulation experiments, state variables’ 

values are recorded and further processed to explore the 

dynamics of the modelled system. This paper introduces a 

family of so-called Analysis by State methods for 

exploration of relationships between two discrete event 

simulation output time series. Here, state intervals of a 

primary time series are visually augmented with information 

gained by processing corresponding time intervals of a 

secondary time series, e.g. by displaying interval-wise 

correlation, distribution, sample aggregates or sample 

parameters in form of background histograms or heat maps. 

The desired benefit is to further support and comfortably 

enhance identification of characteristics and relationships in 

pairs of discrete-event time series. 

 

INTRODUCTION 

 

Discrete event simulation is a methodology that models 

dynamic systems and runs experiments on these models, in 

order to gain insights that can be re-transferred to the 

investigated original system (Page and Kreutzer 2005). 

During simulation runs, time series of state variables’ 

observational values are recorded for analysis after 

completion of experiments, to explore the dynamics of the 

modelled system. It is specific for discrete event simulation 

that these time series are not equidistant, because arbitrary 

time spans between discrete events may be observed, e.g. 

stochastic inter-arrival times. 

The most common forms of analysing single discrete event 

simulation output time series are characterisation by 

descriptive statistics, testing for stationarity, identification of 

initial transient phases, and determining simulation run 

length resp. number of replications (Fishman 2001; Page and 

Kreutzer 2005; Banks 2010; Hoad et al. 2011; Law 2014). 

Fewer techniques can be found concerning analysis of time 

series pairs in discrete event simulation. Obviously, standard 

approaches for equidistant time series could be applied, like 

scatter plots, computation of correlation coefficients or 

simply plotting pairs of time series and visually inspecting 

them for conspicuous relationships (Law 2014). However, 

the non-equidistant nature of discrete-event observation 

series impedes resorting to methods developed for 

equidistant time series: to be exact, these methods had to be 

adapted for non-synchronized time-weighted observation 

series, before generally applicable to discrete event 

simulation output. Though feasible in principle, canonically 

extended time-weighted scatter plots resp. time-weighted 

correlation coefficients are rarely implemented in discrete-

event simulation packages and are therefore not in wide-

spread practical use. 

This paper introduces a family of so-called Analysis by State 

methods, to support exploration of relationships between two 

discrete event simulation output time series: State intervals 

of a primary time series are visually augmented with 

information gained from processing corresponding time 

intervals of a secondary time series in different ways. 

The Analysis by state approach is inspired by Volume at 

Price Charts from technical analysis (TA; e.g. Kamich 2003; 

Ochoa 2010; Coulling 2013), a subfield of financial 

engineering (fig. 1). Here, the price line graph in the upper 

diagram part is enhanced by horizontal bars representing the 

cumulated length of vertical volume bars from the lower part 

of the diagram. The purpose of Volume at Price Charts is to 

highlight past potentials of buyers’ support and sellers’ 

resistance at different price levels, in view of the TA notion 

that past observations may indicate future financial market 

prices. The Volume at Price approach has been generalised 

and comprehensively extended in this work, towards the 

Analysis by State concept described hereafter.  

 

 
 

Figure 1: Volume at Price Chart from financial engineering 

 

For further finance-inspired discrete event simulation 

analysis and visualisation techniques see (Koors and Page 

2012; Koors 2013; Koors and Page 2013).  

The remainder of this paper is structured as follows: The 

following section describes the basic procedure for Analysis 

by State. Next, an overview of the method family as a whole 

is given, and an illustrating example model is introduced. 

Afterwards, six subsections explain the method family 

members in more detail. The final section gives a summary, 

an outlook and concludes the paper.  



 

 

THE ANALYSIS BY STATE METHOD FAMILY 

 

Basic Procedure 

 

The concept and basic terms of the Analysis by State 

approach are illustrated in fig. 2: During a simulation run, 

event time instants and corresponding state values are 

recorded for a pair of chosen primary and secondary 

observation variables. On simulation report generation, the 

two resulting observation series (in the following time series) 

are displayed in the upper resp. lower part of a common 

diagram (fig. 2 and 3). The range of observed states of the 

primary observation variable is divided into 𝑛 adjacent, non-

overlapping primary state intervals of equal size. Primary 

state intervals may be highlighted by different background 

colours. 
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Figure 2: Concept and basic terms of Analysis by State 

 

Next, the primary time series is divided into primary 

segments: Whenever observed states leave one primary state 

interval, a new primary segment is established. All following 

observations in the new state interval are incorporated in the 

newly established segment, until the interval is left again. On 

leaving the current state interval, the current segment is 

closed, and a new segment for the next state interval is 

opened. A primary segment thus contains subsequent 

observations that are all in the same primary state interval 

range. 

A segment explicitly has a start time instant (event time 

instant of its first observation) and an end time instant (event 

time instant of the following’s segment first observation). 

Thus, a segment corresponds to an uninterrupted time 

interval. All segments are adjacent and disjoint in time, like 

the original primary state intervals, and concatenation of all 

primary segments yields the original primary time series. 

One primary segment always belongs to exactly one primary 

state interval, but one primary state interval may refer to an 

arbitrary number of primary segments. 

In this way, the original primary time series is mapped onto a 

(possibly large) number of time intervals, with each time 

interval corresponding to a primary state interval. 

The primary segments’ start and end time instants are now 

applied to the secondary time series, dividing it into 

secondary segments. In this manner, primary and secondary 

segments are associated with each other on a 1:1 time-instant 

defined basis. Because each associated primary segment 

corresponds to one primary state interval, all secondary 

segments now transitively map onto primary state intervals 

as well. 

To illustrate this mapping, secondary time intervals may be 

coloured with the same background colours as their 

corresponding primary state intervals (see fig. 3): Whenever 

the primary observation variable has high values (here: pink 

primary state intervals), corresponding segments of the 

secondary time series receive a pink background, too. 

Conversely, the secondary time series has blue background, 

whenever state values of the primary time series are low. 

 

 
 

Figure 3: Basic Analysis by State diagram 

 

In this process, secondary observations before the start of the 

primary time series are dropped, because they do not 

correspond to any defined primary state interval. Secondary 

observations behind the end of the primary time series are 

mapped to the last primary segment, because variable states 

are generally considered to last until simulation has ended. 

Note that in discrete event simulation, event time instants of 

primary and secondary time series need not be synchronised 

at all, and event density may differ both locally per series 

and overall across the two series, resulting in more complex 

algorithmic handling. 

 

Overview 

 

The family of Analysis by State methods (see fig. 4) differs 

in how secondary observations are related to primary state 

intervals: 

In the Sample by State approach, all values of secondary 

segments which belong to the same primary state interval are 

incorporated into one sample per primary state interval. 

Aggregation by State bases on Sample by State and applies 

an aggregate function on each sample of primary state 

intervals. Aggregate function values are displayed as 

horizontal histogram bars, based on the ordinate axis and 

drawn in the background of the primary time series. 
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Figure 4: Analysis by State method hierarchy 

 

Frequency by State is a specialisation of Aggregation by 

State: The secondary time series is a copy of the primary 

time series, and the aggregate function is fixed to count. The 

resulting frequency histogram of the primary time series is 

superimposed by the time series itself. 

Period by State is similar to Frequency by State, but here a 

histogram of times spent per state interval is constructed, by 

implicitly deriving a secondary time series of inter-event 

time spans from the primary time series. 

Distribution by State bases on Sample by State. Colour-

coded histograms of the whole sample distribution are shown 

per primary state interval. Special aggregate values per 

sample are visualised as well. The chosen rows-of-

histograms approach is equivalent to displaying an enhanced 

heat map in the background of the primary time series. 

The Parameters by State method bases on Distribution by 

State. Here, all (thirteen) implemented aggregate functions 

are computed per sample. The aggregate values are shown in 

different series, as functions of primary state intervals. The 

result is a multi-aspect view of secondary state distribution 

per primary state interval, providing far more information 

than conventional scatter plots. 

Last, Correlation by State computes partial correlation 

coefficients of corresponding primary and secondary 

observation segments. In doing so, total correlation is 

decomposable into partial correlation contributions per 

primary state interval. 

 

The methods outlined above will be described in more detail 

in the following, illustrated by a simple example model. 

 

Example model 

 

A group of 10 servers with fixed service time distribution 

serves clients, which queue in front of the servers in a shared 

waiting queue. At the end of servicing one client, each server 

immediately services the next client from the waiting queue. 

The observed waiting queue length of a concrete simulation 

run is depicted in the upper part of fig. 3. 

One of the servers leaves the group occasionally, to support 

other server groups. After some time, he returns and 

continues working. Likewise, an additional server from a 

different group arrives from time to time and temporarily 

works in the server group analysed here, returning to his own 

group some time later. 

On leaving the system, clients are asked to rate their overall 

experience on a continuous scale from 1 (poor quality) to 10 

(high satisfaction). The answer time (i.e. time clients need to 

decide on their rating) is recorded as well. Clients’ rating 

usually will consider both total time spent in the system 

(processing time) and the actual quality of services rendered, 

summarised in one global mark. However, it is aim of the 

study to assess service quality only. 

Recorded client satisfaction from a simulation run is 

depicted in the lower part of fig. 3. Obviously there is a high 

degree of over-plotting and comparatively low 

autocorrelation. 

The system was modelled in DESMO-J, an open source 

discrete event simulation Java framework, which is 

developed and maintained by our Modelling and Simulation 

workgroup at the University of Hamburg (Göbel et al. 2013). 

The system was simulated for 30 days, with a statistics reset 

after 2 days of model time. The remaining four weeks of 

simulation contain more than 10,000 completed service 

operations. 

 

Period by State 

 

One might intuitively estimate that the upper primary time 

series of client queue length in fig. 3 is stationary and 

fluctuates around a mean level of approx. 20 waiting clients. 

The Period by State method helps to quantify how much 

observation time actually is spent in certain state intervals: 

All periods between subsequent events of the primary time 

series are determined and implicitly composed to a 

secondary, artificial “observation” series of time spans 

between primary events. Afterwards the primary and 

secondary time series are segmented by primary state 

intervals, and the (artificial) secondary “period observations” 

are mapped back to their corresponding primary state 

intervals (see section Basic Procedure). Finally, all collected 

periods per primary state interval are summed up, and 

horizontal histogram bars per state interval are drawn in the 

background of the primary time series (fig. 5). 

 

 
 

Figure 5: Period by State diagram 

 

The length of each histogram bar is proportional to the sum 

of observation times spent in the corresponding state 

interval. A third axis is added at the top of the chart, 

indicating the observation period each histogram bar 

represents. 

Additional information is given to enhance diagram 

interpretation: 



 

 

 The histogram mode, i.e. the longest histogram bar, is 

highlighted in blue. If the histogram is unimodal, the 

mode bar can be considered as the centre of dynamics, 

around which state observations fluctuate. Because the 

mode bar spans from left to right through the whole 

charting area, it can be regarded as a second, implicit 

centred abscissa. The lower boundary of the state 

interval containing the mode bar and the mode bar’s 

length are detailed at the bottom of the chart legend. 

 The time-weighted mean and time-weighted median of 

the primary time series are computed, and the state 

intervals that contain their values are highlighted in red 

and green at the ordinate axis. The corresponding 

histogram bars are highlighted as well, and exact 

position and length of the mean and mode bars are 

detailed at the bottom of the chart legend, too. 

 The colour of histogram bars is controlled by their 

accumulated length: the bars which contain the top 50% 

of total observation period are coloured in dark orange, 

the remaining bars in light orange. Thus, the (few) state 

intervals representing 50% (or a bit more) of total 

observation time can easily be spotted. The majority of 

dynamics happens in these state intervals. 

The diagram layout – a horizontally rotated period histogram 

overlaid by its basic time series – is advantageous, compared 

to usual presentation of a vertical histogram next to a 

separate time series diagram. Beyond conventional analysis 

of histogram and time series on their own, Period by State 

diagrams facilitate the integrated analysis of relationships 

between their histogram and time series components: it can 

comfortably be seen when, in which sequence and how often 

histogram state intervals of interest were passed by the time 

series, and what happened beforehand and afterwards. 

Contributions of potential observational patterns and time 

intervals of interest to the period histogram bars become 

clearer, and might better explain which dynamic behaviour 

shaped specific histogram regions under investigation. 

Issues like these could be examined by separate histogram 

and time series diagrams as well, but would involve 

permanently re-focusing back and forth between two 

diagram types, with additional rotation of histogram or time 

series by 90 degrees in one’s mind’s eye – a fatiguing and 

fault-prone process. 

 

At a glance on the Period by State diagram, the original 

assumption of queue length stationarily varying around 20 

clients can be rejected easily: the apparently “central” mean 

and median states (queue lengths 18 and 19) are mere 

transition states. The period distribution of client queue 

length in fact is bi-modal, with most frequent queue lengths 

at 25 and 13 clients. 

This characteristic is attributable to model structure: In 

normal operation, the number of incoming and served clients 

balances out. When one of the servers is absent for support 

of a different group, the remaining servers cannot handle all 

incoming clients; thus client queue length grows. After 

return of the server, client queue length stabilises on the now 

higher level. On arrival of the additional server from another 

group, queue length shrinks again, since now more clients 

can be served than arrive. When the additional server leaves 

the group, queue length stabilises again on the now lower 

level. Thus in fact, queue length periodically alternates 

between two different levels. The first impression of spotting 

a stationary process is incorrect and a mere result of 

stochastic variance in client inter-arrival and service times. 

 

Frequency by State 
 

Period by State diagrams are meant for observation series of 

variables that should be time-weighted, like queue length or 

server utilisation. However, other variables exist where time-

weighting makes no sense, for example client processing 

times or client satisfaction. These variables can be analysed 

by the Frequency by State method, which is basically 

identical to Period by State, with two exceptions: 

 The implicitly constructed secondary “observation” 

series now is a mere copy of the primary time series, or 

– even more simple – a series that has a constant 1 (or 

any arbitrary value) at exactly the same time instants as 

the primary time series. As described in the Basic 

Procedure section, secondary segments (now containing 

arbitrary values) are constructed and mapped back to 

primary state intervals. 

 Instead of adding these “observed” secondary values per 

primary state interval, they are just counted and 

visualised as horizontal histogram bars per state interval. 

In a nutshell, Frequency by State diagrams show the number 

of events per primary state interval, whereas Period by State 

diagrams visualise the sum of inter-event periods per primary 

state interval. 

As an example, the Frequency by State diagram of client 

processing time is shown in fig. 6. 

 

 
 

Figure 6: Frequency by State diagram 

 

Apart from the construction process, the only visual 

difference to Period by State diagrams is the label of the 

third axis (top of the chart), which now quantifies the 

number of observations per state interval, instead of the 

observed period. 

Unlike fig. 3, both Period by State and Frequency by State 

diagrams hide their secondary, implicitly created time series, 

because it does not contain genuine experiment observations: 

it was only constructed for intermediary reasons and thus 

should not confuse the experimenter. Likewise, there are no 

background colours indicating primary state intervals, 

because state intervals are clearly denoted by histogram bars. 

However, if of interest, secondary time series and state 

intervals may be displayed by setting respective parameters. 



 

 

 

Unsurprisingly, the Frequency by State diagram of client 

processing time closely resembles the Period by State 

diagram of client queue length: total client processing time is 

the sum of time spent in the waiting queue (approximately 

proportional to client queue length) and service time. Since 

service time is distributed independently and identically, its 

variations will balance out in the long run (here: > 10,000 

observations). Thus, clients’ service in the average only adds 

a constant span to total processing time. For this reason, 

frequencies of total processing time are predominantly 

determined by periods of queue length, resulting in similar 

diagrams. 

 

Sample by State and Aggregation by State 

 

Both Period by State and Frequency by State are 

specialisations of the more general Sample by State 

approach. Here, all values of secondary segments that belong 

to the same primary state interval are collected in a special 

data structure, a sample (basically a multiset of observed 

secondary states). 

Its specialisation Aggregation by State defines aggregate 

functions on these samples, in order to map every primary 

state interval’s sample to one unique function value. Thirteen 

pre-defined aggregate functions have been implemented: 

first, last, count, sum, minimum, maximum, median, first 

mode, mean (=average), unbiased (=empirical) standard 

deviation, coefficient of variation, unbiased skewness and 

unbiased excess kurtosis. The modeller is free to add further 

aggregate functions as needed. 

Apart from conceptionally offering arbitrary aggregate 

functions, Aggregation by State is a more general concept 

than Period by State or Frequency by State: here, the 

secondary time series can be selected freely from any 

observation series of the simulation experiment; it is not 

computed implicitly. 

Nevertheless, visualisation of Aggregation by State, Period 

by State and Frequency by State follows the same concept: 

The primary time series is drawn onto a background 

histogram, whose bar lengths are determined by the chosen 

aggregate function. The secondary time series and 

background markers for primary state intervals resp. 

secondary time intervals may be displayed (or not). 

Fig. 7 shows an Aggregation by State diagram, where client 

queue length has been chosen as primary time series and 

client satisfaction as secondary time series (cf. fig. 3, upper 

and lower part). The aggregate function is set to coefficient 

of variation (CV; ratio of empirical standard deviation to 

sample mean; relative standard deviation). Secondary time 

series and background markers for state intervals are hidden. 

Note that the third axis (top of the chart), quantifies the value 

of the secondary CV per primary state interval (i.e. client 

satisfaction CV per client queue length). 

 

 
 

Figure 7: Aggregation by State diagram 

 

The lower part of fig. 3 shows changing “cluster” ranges for 

the client satisfaction time series, implying that standard 

deviation of client satisfaction is not constant. 

The Aggregation by State diagram in fig. 7 reveals more 

precisely, that variation of client satisfaction has a functional 

dependency on client queue length: When queue length is 

very low, clients’ rating does not vary much. At low to high 

queue lengths, clients’ satisfaction is in a wide range. At 

very high queue lengths, the rating range narrows 

considerably. 

Also note that the CV is not symmetric, but skewed towards 

high client queue lengths. 

If variation of satisfaction and client queue length were 

independent of each other, all histogram bars would have 

approximately equal length, apart from smaller stochastic 

deviations. 

The observed phenomenon will be analysed further by 

applying additional Analysis by State family members. 

 

Distribution by State 

 

Like Aggregation by State, the Distribution by State method 

bases on Sampling by State. However here, each sample is 

visualised in its entirety in the primary state interval it 

belongs to. 

For this purpose, the value range of every sample is divided 

into sub-intervals of equal span. Then, the number of 

secondary observations per sub-interval is counted, as 

representative for its subintervals’ population density. This 

process is equivalent to the process of binning in the context 

of histogram construction. Finally, each sub-interval is 

colour-coded by population density and drawn as a 

rectangular cell into the Distribution by State diagram (fig. 

8). Top and bottom cell boundaries are determined by the 

range of the corresponding primary state interval, and left 

and right cell boundaries are identical to the aforementioned 

sub-interval boundaries of samples. 

The described construction process is repeated for every 

primary state interval resp. its corresponding sample of 

secondary observation values, resulting in an array of colour-

coded “histogram rows” from top to bottom, in the upper 

diagram part. 



 

 

 
 

Figure 8: Distribution by State diagram 

 

Visually, these continuous rows of histograms resemble an 

integral heat map (graphic representation of a data cell 

matrix), with colour coding the population density of heat 

map cells. Note however, that the graph still is a vertical 

array of horizontally laid out colour-coded sample 

distribution histograms. Adhering to this view, additional 

sample characteristics can be determined and highlighted per 

state interval (resp. horizontal sample histogram): 

 The cell with the highest population (mode cell) is 

highlighted by a blue dot in the centre of the cell.  

 The sample mean and the sample median are highlighted 

by red resp. green dots. 

 Small vertical grey lines indicate the distance of one 

sample standard deviation from the mean dot. There are 

up to three standard deviation indicators left and right of 

the sample mean, to give an impression of sample 

variance and sample outliers. 

Colour-coding of distribution histogram cells is performed 

on a global basis, i.e. the minimum and maximum of all cells 

(throughout all histograms) determine the total colour range. 

In this way, histograms of different state intervals become 

comparable (same colours code the same population 

density). Analogously, the sample subinterval boundaries are 

determined globally, hence cells of different horizontal 

histograms have same sizes and are located exactly one 

below the other, allowing for the impression of a “virtual”, 

integral heat map behind the primary time series. 

In support of this, the third axis at the top of the chart is 

scaled to fit the full range of all sub-intervals’ sample 

minima and maxima, i.e. the virtual heat map always will 

stretch onto the full background of the primary time series. 

In fig. 8, the secondary time series is displayed, and 

background markers for primary state intervals resp. 

secondary time intervals are switched on. The benefit of 

displaying both time series and the virtual heat map within 

one Distribution by State diagram is analogous to the 

overlaid histogram concept of Period, Frequency and 

Aggregation by State: The state distribution of the secondary 

time series can be seen at a glance, when analysing the 

primary time series. Additionally, by regarding background 

colours, it can easily be seen when, in which sequence and 

how often states of primary distribution histograms were 

passed by the secondary time series, and what happened 

beforehand or afterwards. 

 

Fig. 8 confirms what was already made plausible in the 

Frequency by State section: Client queue length and client 

processing time are highly positively cross-correlated. Both 

time series displayed one beneath the other show similar 

details and background colour coding; therefore it is not 

surprising, that the upper virtual heat map is located closely 

to the bisector. 

Of more interest is the relationship between client processing 

time and client satisfaction, shown in fig. 9. 

 

 
 

Figure 9: Distribution by State diagram 

 

The Distribution by State diagram in fig. 9 quickly generates 

three insights: 

 The mean and median of client satisfaction sample 

histograms are negatively cross-correlated to processing 

time, at high processing times > 0.09 days (approx. 2 

hours and 10 minutes) and at low processing times < 

0.06 days (approx. 1 hour and 25 minutes): there are 

descending sequences of red and green dots in these 

state intervals. 

 However, this seems not so clear with the blue mode 

cells (indicating most frequent satisfaction per queue 

length) and medium processing times between 0.06 and 

0.09 days. 

 There is one major “frequency centre” in the virtual heat 

map at processing times > 0.09 days, yielding low rating 

from 2 to 5. Without further analysis one might wrongly 

conclude that mostly client satisfaction is low (which is 

supported by a frequency histogram of client 

satisfaction, not shown here), albeit it is unclear whether 

low ratings are really caused by poor service quality. 

 

Parameters by State 

 

Distribution by State diagrams visualise the whole 

distribution of primary state intervals’ samples as colour-

coded histograms, plus four aggregate functions (mode, 

mean, median, 1-3 standard deviations). The Parameters by 

State approach takes the next step and consequently 



 

 

visualises all aggregate functions on primary state interval 

samples in one diagram. 

In order to show all sample aggregates of the secondary time 

series as functions of the primary observation variable, the 

basic Distribution by State diagram is reflected over the 

bisector (fig. 10). Thus, primary state intervals are located at 

the abscissa (top and bottom axes of the diagram) and 

aggregate values of samples on the ordinates (left and right 

axes of the diagram). The underlying coloured histograms 

(resp. virtual heat map) are reflected as well. The original 

primary and secondary time series are not displayed; because 

of the change in diagram orientation they had to run from the 

bottom to the top of the chart, which is counter-intuitive and 

could confuse. Hiding the original time series visually clears 

space for a) connecting the dots of mode, mean and median 

by lines, appearing now like continuous mode, mean and 

median “functions” of the primary variable; and b) adding 

two more aggregate functions: minimum and maximum (see 

upper part of fig. 10). 

 

 
 

Figure 10: Parameters by State diagram 

 

The above-mentioned aggregate functions have values in the 

same range as the secondary time series itself; therefore they 

can be superimposed with each other and with the virtual 

heat map in the top charting area. 

However, aggregate functions like sum, count or standard 

deviation may be on different scales; therefore they are 

visualised in separate diagram sections below the main 

charting area. Every sub-diagram can refer to two scale axes 

at the left and right, hence two (or three) aggregate functions 

are displayed per sub-diagram, with mapping of aggregate 

functions explained by the right hand side legend. 

Sometimes not all aggregate functions are of equally high 

interest: for instance, the sum of secondary observations will 

not always have an interpretation; first and last secondary 

observations per primary state interval may be consequences 

of stochastic processes and may be neglected sometimes. 

The bottom diagram section contains the coefficient of 

variation (below the standard deviation section) and 

skewness and kurtosis, all in unbiased form. Deviation / 

variation, skewness and kurtosis give a fair impression of 

dispersion in vertical histogram columns at the top charting 

area, supporting interpretation better than estimation of 

histogram colour gradients with the naked eye. 

 

If the secondary time series is distributed identically and 

independently of the primary observation variable, almost all 

aggregate functions should approximate horizontal lines 

(except for smaller statistical variations), and the top heat 

map should homogenously show horizontal stripes. 

However, this is not the case in the example model. Fig. 10 

visualises all aggregation functions on client satisfaction 

samples by processing time state intervals. Analysis of the 

Parameters by State diagram suggests the following findings: 

 Processing times of less than 0.06 days lead to high 

client satisfaction with low coefficients of variation. 

 Processing times of more than 0.09 days result in low 

client satisfaction with low coefficients of variation. 

 For both cases above, negative correlation was already 

found in Distribution by State analysis (cf. fig. 9). The 

high positive correlation of queue length and processing 

time (fig. 8) suggests that client queue length may be a 

determining factor on rating outside the interval from 

0.06 to 0.09 days, via its impact on processing time. 

 At processing times between 0.06 and 0.09 days, a wide 

rating range is observed, and client satisfaction has high 

standard deviation resp. a high variation coefficient. 

 Moreover, client satisfaction seems to be independent of 

total processing time in the range from 0.06 to 0.09 

days: here, mean, median, standard deviation, CV, 

skewness and kurtosis are almost constant. 

 If interested in the isolated evaluation of service quality, 

it may be hypothesised that clients’ rating for service 

quality is more reliable at medium processing times 

from 0.06 to 0.09 days, because here variation of 

waiting times (i.e. the queue length component) 

apparently has no influence.  

 Abstracting the “outer zones” of the virtual heat map, an 

average rating of 5.5 and standard deviation of approx. 

2.2 are observed. 

 

In fig. 11 the most popular means to examine two 

observation variables in discrete event simulation is shown, 

the scatter plot (here: for client processing time versus client 

satisfaction). 

 

 
 

Figure 11: Scatter Plot of Co-Observations 

 

Though the scatter plot’s shape is basically similar to the 

upper virtual heat map in the Parameters by State diagram 



 

 

(cf. fig. 10), it suffers from heavy over-plotting, meaning 

that frequencies in black zones can hardly be estimated 

(compared to colour-coded heat maps). Because scatter plots 

are not sub-divided into state intervals (in contrast to the 

Analysis by State family’s members), no indication “lines” 

for mean, median or mode can be drawn, and no local 

standard deviation, skewness or kurtosis per state interval 

can be determined. If only relying on scatter plots, the 

discrete event modeller might miss important information 

that Analysis by State could provide at low additional effort. 

 

Correlation by State 

 

The Sample by State approach and all its specialisations 

disregard time and sequence information of secondary time 

series: Samples merely contain observed values, but lack 

information, when and in which sequence values were 

observed. 

However, it is of interest to relate primary segments and 

secondary segments to each other on a time basis, in terms of 

cross-correlation. 

Since primary and secondary segments have the same start 

and end time instants, the total correlation coefficient of 

primary and secondary time series can be split up into partial 

correlation coefficients (PCC): The total correlation 

coefficient is computed as usual (e.g. on basis of “global” 

means and standard deviations per time series), but source 

observations are restricted to corresponding pairs of primary 

and secondary segments, per primary state interval. By this 

procedure, the amount that every primary state interval 

contributes to the total correlation coefficient becomes 

quantifiable. 

Fig. 12 shows the result of this concept, the Correlation by 

State diagram: The primary time series is drawn on a 

background histogram of partial correlation coefficients 

(dark orange). The sum of histogram bar lengths is equal to 

the total correlation coefficient between both time series. In 

this respect, the Correlation by State diagram visualises the 

share each state interval has in overall cross-correlation. 

 

 
 

Figure 12: Correlation by State diagram 

 

Long dark orange bars result from any (or a combination) of 

two factors: a) In these state intervals both time series have 

long or many segments in common; and/or b) cross-

correlation between both time series is high in these state 

intervals. Note that due to multiplication of these two 

factors, state intervals with long common segments but low 

cross-correlation might yield the same PCC as state intervals 

with only few common segments but high cross-correlation. 

To correct for the time factor, each PCC bar’s length is 

divided by the sum of segment periods per corresponding 

state interval. The result is shown in a light orange histogram 

of time-adjusted partial correlation coefficients (TA PCC). 

The TA PCC histogram is drawn behind the PCC histogram 

and has the same scale, indicated on the third top axis. 

The TA PCC histogram visualises the degree of cross-

correlation between both time series, independent of 

observation period and thus helps to identify where 

“original” cross-correlation is high. 

The standard correlation coefficient of both time series is 

given in the diagram legend (here: 0), and further vertical 

dashed grey lines indicate the sums of all positive resp. all 

negative partial correlation coefficients. 

 

The time series of client answer time (i.e. how long clients 

needed to decide on their rating) is graphed in the lower part 

of fig. 12.  

Unfortunately the correlation coefficient between client 

processing time and client answer time is 0, meaning that 

there is no overall linear relationship between processing 

times and answer times. 

However, a closer inspection of the Correlation by State 

diagram reveals high partial correlation coefficients per state 

intervals: At high processing times > 0.09 days, there is 

strong negative correlation to answer time (fig. 12: top 

histogram “bulge” to the left), meaning when overall service 

was long, clients gave their low rating (cf. fig. 10) within 

short time, presumably out of frustration. Conversely, low 

processing times < 0.06 days are strongly positively 

correlated to answer times (bottom histogram bulge to the 

right): When overall service was short, clients gave their 

high rating (cf. fig. 10) within short time as well, presumably 

desiring not to stay longer than necessary. All in all, rating 

from clients with both low and high processing times was 

given rather hastily. Therefore, rating from these two groups 

should be handled with care. 

Time-adjusted partial correlation coefficients at medium 

processing times between 0.06 and 0.09 days are 

comparatively low, meaning all answer times (short to long) 

were observed independently of processing times. Here, 

clients took more time to come up with final ratings. 

Chances may be higher that overall experience is better 

reflected in these ratings, because not only the waiting period 

component is considered. 

As a conclusion, based on Correlation by State and 

Parameters by State analysis, clients with medium 

processing times a) took more time for a supposedly 

thorough answer, assigning b) wide-ranging ratings, which 

are c) identically distributed and independent of processing 

time. Therefore chances are higher that this group’s rating 

provides more significant indication to true service quality, 

compared to other groups, where the effect of short or long 

queue lengths distorts overall rating. 

 

Apart from analysis of “local” correlation, the Correlation by 

State method lends itself for consistency checking of total 



 

 

correlation against partial correlation coefficients: If total 

correlation is highly positive or highly negative, no 

conspicuous partial correlations with reversed sign should be 

observable. Analogously, if total correlation is around zero, 

all partial correlation coefficients should amount to approx. 

zero as well, without remarkable single or systematic 

aberrations. When total and partial correlation coefficients 

are inconsistent (cf. fig. 12), differing local correlation 

should be explained. In that case the “traditional” total 

correlation coefficient loses significance for this variable 

pair and should be treated carefully in the further course of 

simulation output analysis. 

 

SUMMARY, OUTLOOK AND CONCLUSION 

 

The Analysis by State approach relates discrete-event time 

series on basis of state intervals and series’ segments. A 

family of six specialised methods has been presented: 

Period by State and Frequency by State aim at identification 

of important state intervals for a primary time series. 

Aggregation by State, Distribution by State and Parameters 

by State target at analysis of sample characteristics for a 

freely selectable secondary time series, in relation to its 

primary time series’ state intervals. 

Correlation by State is concerned with state-local correlation 

and inner consistency checking of correlation coefficients. 

All above-mentioned concepts are supported by 

corresponding diagrams. Since the six methods and their 

visualisations have complementary focus, they should be 

used in conjunction with each other. 

 

All Analysis by State methods have been implemented in 

Java, as extensions of DESMO-J (www.desmo-j.de), an open 

source discrete event simulation framework, which is 

developed at the University of Hamburg. The 

implementation makes use of the JFreeChart library for 

visualisation purposes and is part of the more comprehensive 

software package FAVOR (Framework for Analysis and 

Visualization Of simulation Results). 

 

Not all pairs of time series will yield additional insight by 

applying Analysis by State methods. Often, relationships can 

already be clarified by standard analysis, and/or no 

additional information may be contained in observations. In 

other cases, the nature of hidden information may be of 

different type, which the methods discussed here do not 

focus on, e.g. phenomena of periodicity. 

 

In the future, the Analysis by State concept will be extended 

to Autocorrelation by State, enabling the modeller to check 

whether any nth degree auto-correlation of secondary time 

series depends on state intervals of a primary time series. 

Another specialisation, Kernel Density Estimation by State, 

is under consideration as well. 

 

The purpose for introducing the Analysis by State method 

family is to further contribute to the statistical analysis of 

discrete event simulation dynamics. This is realised by 

visually augmenting original time series with additional 

information, or by series transformation. The desired benefit 

is to support and enhance identification of characteristics and 

relationships in discrete-event time series, in an easily to 

handle and comfortable way. 
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