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ABSTRACT 

Pairs of discrete event time series are characterised by 

their asynchronous nature, often hampering direct appli-

cation of otherwise common analysis methods. For cor-

rect application of scatter plots, pairs of discrete event 

time series first have to be pre-processed and merged 

into a new synthetic time series of so-called co-

observations. While standard scatter plots suggest anal-

ysis of global state correlation, connected scatter plots 

support more sophisticated hypotheses, by including 

sequence information. The family of time-segmented 

scatter plots introduced here additionally contributes 

time information, by dividing co-observations into time-

related coloured segments. Time-segmented scatter 

plots permit to correlate co-observation states, state pat-

terns and state relationships with time intervals, in order 

to explore time-stability of state relationships, discover 

otherwise overlooked dynamic patterns and possibly 

detect underlying processes that shape the formation of 

co-observation relationships. Enhanced concepts like 

filtered, tiled or delimited time-segmented scatter plots 

are available for unfavourable conditions like very high 

number of co-observations, overplotting, high variance 

or low autocorrelation. These extensions add visual aids 

to focus on the basic nature of co-observation relation-

ships and their possible development. All concepts in-

troduced in this paper are illustrated by means of a 

simple cash and carry warehouse example model. 

 

INTRODUCTION 

Discrete event simulation is a methodology that models 

dynamic systems and runs experiments on these models, 

in order to gain insights that can be re-transferred to the 

investigated original system (Page and Kreutzer 2005). 

Output time series of discrete event experiments are of 

non-equidistant and asynchronous nature: it is character-

istic for the methodology to allow arbitrary time spans 

between discrete events, e.g. continuous stochastic 

transport times. In consequence, many common time 

series analysis methods are inapplicable here, because 

they require equidistant and synchronous basic time 

series. 

De facto, analysis of discrete event time series is widely 

dominated by methods of descriptive statistics, e.g. 

computation of mean, standard deviation or confidence 

intervals (cf. e.g. Fishman 2001, Banks 2010, Law 

2014). In doing so, sequential and time-related infor-

mation of discrete event time series is lost; it might be 

questioned as to how far application of methods de-

signed for static sample distributions can comprehen-

sively represent the true, dynamic behaviour of discrete 

event processes. 

In previous contributions, new methods for analysis of 

single discrete event time series have been proposed 

(Koors 2013; Koors and Page 2013). A novel approach 

for analysis of discrete event time series pairs is de-

scribed in (Koors and Page 2014). This paper introduces 

a method family called Time-Segmented Scatter Plots 

(figure 1), conceived for exploration of time-dependent 

state relationships between two discrete event simula-

tion time series. 
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Figure 1: Time-Segmented Scatter Plot Method Family 

 

This paper is structured as follows (cf. figure 1): Next, 

the common use of scatter plots and phase space dia-

grams is outlined. The succeeding section describes how 

pairs of asynchronous discrete event time series have to 

be pre-processed into new co-observation series, to al-

low correct application of scatter plots. Afterwards, the 

example model for the rest of this paper is delineated. 

The following section presents connected scatter plots. 

Subsequently, basic time-segmented scatter plots are 

introduced, extended by sub-sections for filtered time-

segmented scatter plots, tiled time-segmented scatter 

plots and delimited time-segmented scatter plots. The 

final section summarises and concludes the paper. 
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SCATTER PLOTS 

Scatter Plots in Statistics 

Scatter plots are diagrams used to explore relationships of 

two variables 𝑣𝑖 and 𝑣𝑗 in data sets with associated obser-

vations. One of the variables is assigned to the abscissa, the 

other one to the ordinate of a Cartesian coordinate system. 

Each pair (𝑠𝑖,𝑘 , 𝑠𝑗,𝑘) of associated state observations is rep-

resented as a discrete data point 𝑝𝑘 in the coordinate sys-

tem, whose horizontal and vertical location is determined 

by the observed states 𝑠𝑖,𝑘 and 𝑠𝑗,𝑘 of the original variables. 

An exemplary scatter plot of breast cancer data is shown in 

figure 2 (data taken from Lichman 2013). 

 

 
 

Figure 2: Scatter Plot 

 

For analysis of three associated variables, scatter plots may 

be extended to the third dimension, by adding a depth axis. 

2D or 3D scatter plots can incorporate further variables by 

mapping their values to colour, shape or size of data points. 

However, analysis of multi-dimensional data by single 

scatter plots becomes less intuitive the more dimensions 

are involved, since human visual and cognitive capability 

is restricted, especially for distinction of colour and size 

(Aigner et al. 2011). 

Depending on characteristics and quantity of the data giv-

en, overplotting may become a problem: a) If more than 

one pair of observations with identical variable values 

𝑠𝑖,𝑘 = 𝑠𝑖,𝑙 and 𝑠𝑗,𝑘 = 𝑠𝑗,𝑙 exist, corresponding data points 

will indistinguishably be plotted one on top of the other 

and therefore be lost visually. b) If there exist many obser-

vation pairs with merely small differences 𝑠𝑖,𝑘 ≈ 𝑠𝑖,𝑙 and 

𝑠𝑗,𝑘 ≈ 𝑠𝑗,𝑙, visual data points may overlap and thus blur the 

scatter plot. 

As a sideline, it should be noted that scatter plots formally 

only visualise coincidence in observations, not necessarily 

causality: Apparent relations in scatter plots may be identi-

fied a) because there actually is an underlying causal de-

pendency between two observational variables or b) just by 

chance, without fundamental causal relationships (e.g. 

Leinweber 2007). 

Scatter plots are typically used in descriptive and explora-

tory statistics, to analyse dependencies between two varia-

bles, by visually spotting functional relationships in data 

sets, or for identification of (possibly related) data clusters 

(Myatt and Johnson 2014). 

Regularly, the data sets analysed originate from cross-

sectional studies, where all observations are taken at (ap-

proximately) the same time instant, e.g. medical or biologi-

cal studies, public-opinion polls or market surveys. There-

fore, scatter plots commonly do not contain sequential or 

time-related information. 

 

Phase Space Diagrams 

Phase space diagrams are similar to scatter plots in that 

they visualise relations of two variables 𝑣𝑖 and 𝑣𝑗. In con-

trast to scatter plots, the displayed data generally is contin-

uous and not of discrete nature, thus phase space diagrams 

show continuous curves instead of discrete data points 

(figure 3). 

 

 
 

Figure 3: Phase Space Diagram 

 

Phase space diagrams are often used in physics, where 

dynamical systems are described by equations. Concrete 

valid dynamic paths 𝑠∗(𝑡) of 𝑛 system variables complying 

with the underlying equation set are called trajectories and 

can be described in an 𝑛-dimensional phase space. Phase 

space diagrams visualise one or a bundle of possible trajec-

tories in phase space as geometric curves in 𝑛-dimensional 

Cartesian coordinate systems. 

Here as well, limitations of human visual and cognitive 

apparatus practically lead to two- or three-dimensional 

phase space diagrams, illustrating relations only between 

two or three system variables. Sometimes phase diagram 

lines are coloured, to display state information of one fur-

ther variable; however dashing and width of trajectory 

curves are usually not employed to convey further infor-

mation. 

Besides of physics, phase space diagrams can be used in 

disciplines where systems are modelled by mathematical 

equations, e.g. in engineering, biology, ecology or econom-

ics. These fields are often application areas for continuous 

simulation as well; figure 3 shows the phase space diagram 

of a predator-prey model, output by a continuous simula-

tion experiment. 

Although the underlying equation systems consistently 

include time as independent variable 𝑡, time itself is not 

assigned to phase space diagram axes (since time is not 

modelled as a state variable). Therefore, phase space dia-

grams do not indicate when certain state combinations are 

observed. Moreover, if trajectories do not approach fix 

point attractors but follow periodic orbits or strange attrac-

tors, it is not necessarily obvious in which direction the 

curves evolve. To sum up, phase space diagrams do not 



 

 

directly contain time-related information and need not con-

tain sequential information. 

 

SCATTER PLOTS FOR DISCRETE EVENT TIME 

SERIES 

Asynchrony of state variables 𝑣 is one of the distinguishing 

features of discrete event simulation, compared to other 

simulation techniques. 

 

Synchronous State Observations 

In the majority of simulation approaches, e.g. continuous 

or agent based simulation, the simulation clock advances in 

fixed or variable steps of ∆𝑡, with step size determined by 

global settings of the simulation engine. After every time 

step, all model constructs (e.g. equations or agents) are 

updated concurrently, and new state observations 𝑜∗,𝑘 =

(𝑡𝑘 , 𝑠∗,𝑡𝑘
) are computed quasi-simultaneously. Afterwards 

the simulation clock is advanced again. Dynamics arise as 

a sequence of synchronous state observation tuples 

(𝑡𝑘 , 𝑠1,𝑡𝑘
, … 𝑠𝑖,𝑡𝑘

, … 𝑠𝑛,𝑡𝑘
), where all observed states 𝑠∗,𝑡𝑘

 are 

tied by the same observation time instant 𝑡𝑘 (see figure 4). 
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Figure 4: Synchronous State Variable Observations 

 

It is quite natural and formally feasible to use scatter plots 

or phase space diagrams in case of synchronous state vari-

ables, because mapping of each observation 𝑜𝑖,𝑘 of variable 

𝑣𝑖 to an observation 𝑜𝑗,𝑘 of any other variable 𝑣𝑗 is well-

defined by correspondence in time: Both observations refer 

to the state of the same system at the same time instant 𝑡𝑘, 

just from the viewpoint of different state variables. 

 

Asynchronous State Observations 

In contrast, advancement of the simulation clock in discrete 

event simulation is determined by time stamps of sched-

uled events. Cyclically, the simulator advances the simula-

tion clock to the time stamp of the next event note on the 

event list, executes the corresponding event routine and 

then picks the subsequent event note from the event list. 

Although the simulator executes the flow of events, it has 

no control of inter-event time spans ∆𝑡: time stamps of 

event notes are set by simulation model event routines, 

(often stochastically) re-/scheduling other events at arbi-

trary points in time. 

Within event routines, some state variables may change 

(e.g. length of a waiting queue during the arrival event of a 

client), but regularly many entities and their state variables 

are not influenced by particular event routines and thus 

remain unaltered. In consequence, four state change con-

stellations of two variables 𝑣𝑖 and 𝑣𝑗 may be observed (fig-

ure 5, left):  

a) Both variables may change synchronously (𝑡5). This 

typically is the case when both variables are affected 

by the same event or by different events occurring at 

the same simulation time instant. 

b) One variable is modified by an event routine, while 

the other one remains unchanged (𝑡2, 𝑡3, 𝑡4). This is 

the normal mode of progress for most pairs of state 

variables. 

c) At the start of a simulation experiment, one variable 

may be assigned a (sequence of) value(s), while the 

other one remains undefined for a certain time (𝑡1). 

d) At the end of a simulation experiment, one variable 

may have been modified recently, while the other one 

remained unchanged for a long time (𝑡6). 
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Figure 5: Asynchronous State Variable Observations and 

Construction of Co-observation Series 

 

Hence, discrete event simulation experiments do not result 

in a sequence of synchronous observation tuples, but in a 

set of asynchronous time series. These time series may 

start and end at different simulation times and consist of a 

different number of observations; they may have deviating 

observation densities, and even within one time series 

event density may change locally. Moreover, between two 

subsequent observations in one time series (e.g. 𝑠𝑗,𝑡1
 and 

𝑠𝑗,𝑡4
), a large number of observations in another time series 

may have been recorded. 

It is not feasible to construct scatter plots for pairs of “raw” 

discrete event time series as described above, because no 

pairs of corresponding observations will exist for most 

time instants. 

At this point, it is helpful to recall that there exist two types 

of state variables: 

The first persisting type holds the last observed state indef-

initely, until it is superseded by another state observation. 

For example, a waiting queue has a length of 10 not only at 

the moment when a new client enters the queue, but for all 

subsequent time instants, until another client enters or 

leaves the queue. These state variables regularly have to be 

time-weighted, because here it is not only important that a 

certain state was observed (at a particular frequency), but 

how long it was observed. Other examples include server 

utilisation, warehousing KPIs, machine breakdown, but 

also exposure to harmful substances or performance of 

investment decisions. 

On the other hand, there exists a second transient type of 

often unweighted state variables, where – strictly speaking 

– observations are only valid for the particular time instant 

they were observed at. These include all observations of 



 

 

time (e.g. waiting time, service time, total processing time) 

and often assessment (e.g. client satisfaction) and will be 

discussed further below. 

 

Co-Observation Time Series 

To overcome the obstacles of constructing scatter plots for 

pairs of asynchronous discrete event time series, it is sug-

gested to generate synthetic compound co-observation time 

series as follows (figure 5, right): 

a) When both original state variables 𝑣𝑖 and 𝑣𝑗 change 

synchronously at 𝑡𝑘, a new co-observation 𝑜𝑘 =

(𝑡𝑘 , 𝑠𝑖,𝑡𝑘
, 𝑠𝑗,𝑡𝑘

) is created that contains the observed 

state values (figure 5, right, 𝑡5). 

b) Whenever an observation for one state variable 𝑣𝑖 at 

𝑡𝑘 has no time-corresponding observation in the other 

state variable 𝑣𝑗, a new co-observation 𝑜𝑘 =

(𝑡𝑘 , 𝑠𝑖,𝑡𝑘
, 𝑠𝑗,𝑡𝑘−𝑙

) is created, containing the actually ob-

served variable value 𝑠𝑖,𝑡𝑘
 at 𝑡𝑘 and the first existent, 

immediately preceding value 𝑠𝑗,𝑡𝑘−𝑙
 of the other varia-

ble (figure 5, right, 𝑡2, 𝑡3, 𝑡4, 𝑡6; artificially generated 

state values are marked with “+”). This determination 

is justified for all state variables of the first persisting 

type, where state is valid until changed: If a state 

𝑠𝑗,𝑡𝑘−𝑙
 was in force at an earlier time instant 𝑡𝑘−𝑙 in one 

time series and did not change when a state 𝑠𝑖,𝑡𝑘
 was 

observed in the other time series at 𝑡𝑘, this state can be 

considered to also have been in force at 𝑡𝑘. 

c) All initial observations of one state variable 𝑣𝑗 for 

which no preceding observations in the other state var-

iable 𝑣𝑖 exist, are discarded (figure 5, right, 𝑡1; marked 

with “–”). This determination loses part of state obser-

vations in the earlier starting time series. However, 

when no observations have been made for the com-

plementing variable 𝑣𝑖, there is no valid basis that 

could be merged with leading observations of the var-

iable 𝑣𝑗 to form a valid prefix sequence of initial co-

observations. 

Note that the procedure above constructs a new time series 

of now synchronised co-observations, but that inter-event 

time spans remain variable: the event density in the new 

time series will still vary randomly. Simulation time delib-

erately has not been discretised, to maintain the character-

istic properties of discrete event time series. 

 

With the newly constructed co-observation time series, a 

valid basis for discrete event scatter plots is at hand. 

 

Handling of Transient Observations 

There are two options to incorporate time series containing 

transient observations: 

i) For practical reasons, transient state observations may 

be handled like persisting state observations. Though, 

one should be aware that in some cases conceptual in-

accuracies might arise: Imagine that a time series of 

waiting queue length observations is merged with a 

time series of client satisfaction observations. Then 

two subsequent queue length observations between 

two subsequent satisfaction observations will lead to 

co-observations where both queue lengths are related 

to the same preceding client satisfaction value. This 

would be questionable, because the satisfaction a cli-

ent expresses (probably before finally leaving a sys-

tem), represents his rating on previously rendered ser-

vices, at this very moment; thus it should not be used 

to rate future waiting queue lengths. 

ii) Alternatively, another approach may be used: Instead 

of statistically recording state variable values when 

they actually occur, these values can temporarily be 

stored in memory (e.g. in entity data fields) until the 

values of both corresponding state variables are 

known. Just then, both time series are updated simul-

taneously. This will generate synchronous time series 

pairs consistently containing observations of type a) 

(cf. figure 5, left), without the need to synthesise addi-

tional co-observations from preceding transient state 

values. 

This option has another benefit: Here, the modeller 

can ensure that pairs of observations indeed refer to 

state values that conceptually belong together: In the 

case of client satisfaction and waiting queue length, it 

would make more sense to record the (e.g. average) 

actual waiting queue length a client experienced in 

combination with his rating, and not his rating along 

with the unrelated waiting queue length observed 

when he leaves the system. 

 

EXAMPLE MODEL 

The types of scatter plot proposed in this paper will be 

illustrated and motivated by a simple discrete event model 

of a cash and carry warehouse, implemented in our open 

source Java simulation framework DESMO-J (Göbel et al. 

2013): 

In a metropolitan area, clients order major household ap-

pliances like refrigerators, washing machines or clothes 

dryers via internet, which in turn are delivered to a central 

warehouse. Clients are notified by email when their or-

dered goods are available for collection and payment. 

When arriving at the warehouse, they park their cars and 

enter a waiting hall, drawing an electronically time-

stamped smart card from a ticket machine. When a ware-

house worker becomes available, he calls the next client in 

chronological order and services him by a) picking his 

ordered goods from the warehouse, b) handing over a pal-

let jack carrying the client’s goods and c) collecting the 

purchase price plus a deposit for the pallet jack. Next, the 

client loads his appliance(s) into the car (probably with the 

help of a friend), returns the pallet jack and finally inserts 

the smart card into the ticket machine again. After rating 

his total experience on a scale of 0 (very poor) to 9 (excel-

lent), the deposit is refunded, and the client leaves the sys-

tem, now transporting his purchase home. 

The smart card ticket machine records clients’ total pro-

cessing times (time span between entering and leaving the 

system = waiting time + service time) for further analysis, 

along with the corresponding client ratings. 

The warehouse managers suppose that client satisfaction 

depends on two aspects: a) The longer a client has to wait 

without service, the lower his rating will turn out, and b) 

the more accommodating (and longer) a client is serviced, 

the better his rating is. In order to increase sales by improv-

ing customer satisfaction, the managers test a new service 

strategy: In normal operation mode, clients are serviced as 

described above. If clients’ ratings decrease, additional 

warehouse workers are deployed to reduce waiting queues. 



 

 

Moreover, clients who have been waiting (too) long are 

given special attention by transporting their purchased 

goods to their cars and assisting them in the loading pro-

cess. The measured client processing times and corre-

sponding ratings are shown in figure 6. 

 

  
 

Figure 6: Time Series of Client Processing Times  

and Client Ratings 

 

This pair of time series is to be explored for relationships 

between client processing time and client rating, in the 

context of the new service strategy described above. 

Beyond, there exist further time series in the warehouse 

which the company directors want to be analysed: 

1. For the last ten years, the average salary of warehouse 

managers was recorded, as well as average workplace sat-

isfaction of warehouse workers (figure 7). The company 

directors are interested in possible relationships between 

these two observation variables. 

 

  
 

Figure 7: Time Series of Manager Salary 

and Worker Satisfaction 

 

2. Likewise, a ten year record of manager’s average weekly 

working hours shall be compared with the same manager’s 

average assessment of life quality (figure 8). 

 

  
 

Figure 8: Time Series of Manager Working Hours 

and Manager Life Quality 

 

In this paper, new advanced versions of scatter plots will 

be introduced, first exploring exemplarily the manager 

salary vs. worker satisfaction time series, followed by 

working hours vs. life quality and concluded by processing 

times vs. client rating. 

 

CONNECTED SCATTER PLOTS 

After a first view on figure 7, one could suppose that man-

ager salary and warehousemen’s workplace satisfaction are 

concordant: In the course of time, both time series rise in a 

similar manner. To examine this hypothesis, a new time 

series of co-observations is created as described in the pre-

ceding section Scatter Plots for Discrete Event Time Se-

ries, as basis for a discrete event scatter plot (figure 9). 

 

 
 

Figure 9: Scatter Plot of Manager Salary 

versus Worker Satisfaction 

 

The scatter plot shows events when warehouse manager 

salary changed (pay rise events) related to weekly events of 

poll outcomes on warehousemen’s workplace satisfaction.  

On basis of the standard scatter plot, one could assume 

positive correlation between both observation variables in 

the last ten years: The higher the average manager salary 

rose (scale from 3,500 to 7,500), the higher the average 

worker satisfaction was (scale from 30% to 85%). 

As stated in sub-section Scatter Plots in Statistics, correla-

tion observations do not necessarily imply causality: Nei-

ther workers need to be more satisfied because of manager 

pay rises, nor manager salary may rise because workers are 

more satisfied (thus perhaps working more productively). 

Another simple explanation might just be that life standard 

rose in the last ten years, and independently managers 

earned higher wages as well as warehousemen experienced 

higher workplace quality. However, on the basis of the 

standard discrete event scatter plot in figure 9, this question 

cannot be decided. 

 

In scatter plots of common cross-sectional studies, single 

observations normally are not collected in special order: 

they are virtually independent of one another. In discrete 

event scatter plots, observations are linked in an obvious 

order, defined by the order of co-observation time instants. 

Therefore, it is quite natural to connect data points accord-

ing to the sequence in which co-observations were record-

ed. Figure 10 applies this concept to the salary vs. 

satisfaction scatter plot. 

In the resulting connected scatter plot, an interesting pat-

tern can be discovered, that was not apparent in the stand-

ard scatter plot (figure 9): against expectation, worker 

satisfaction seems to locally negatively correlate to manag-

er salary. Observe the pattern marked with a blue ellipse in 

figure 10: The higher manager salary rises (here from 

4,800 to 5,200 currency units), the lower worker satisfac-

tion falls (here from 54% to 40%). Then, worker satisfac-

tion seems to catch up with the global upwards trend, and 

the same pattern repeats again, from a steadily increasing 

baseline. 

 



 

 

 
 

Figure 10: Connected Scatter Plot  

of Manager Salary versus Worker Satisfaction 

 

An explanation could be that manger salary is coupled to 

company profit. Managers may try to increase profit by 

lowering workplace costs and/or by streamlining ware-

housemen’s work. The resultant measures are often not 

welcome to workers and could be perceived as decrease in 

workplace quality. The nonetheless rising global trend may 

be explained by a combination of two factors: a) increasing 

life standard within the 10 year observation period b) sur-

vivorship bias: workers not getting along with their reor-

ganised workplace leave the company or are made 

redundant. In consequence, their negative workplace satis-

faction is not incorporated in future polls any more, and 

average workplace satisfaction of the “surviving” workers 

stays at least at the level observed before workplace reor-

ganisation. 

 

To sum up, connected scatter plots can help identifying 

local event dynamics patterns that are not visible in the 

standard unconnected scatter plot, but may confirm or 

(here) object – respectively even negate – hypothesis mere-

ly based on global correlation observations. 

 

TIME-SEGMENTED SCATTER PLOTS 

Connected scatter plots visualise sequence information that 

is contained in original time series pairs but disregarded in 

derived standard scatter plots. As a next step, it is proposed 

to also visualise time information in scatter plots. For this 

purpose, a basic connected scatter plot is constructed and 

then enhanced as follows: First, the sequence of co-

observations is divided into 𝑛 adjacent and disjoint seg-

ments of a) equal size or b) equal time span. Note that 

these concepts differ in discrete event simulation, because 

discrete event time series may have changing local densi-

ties: two scatter plot segments with equal number of co-

observations 𝑚 may cover time intervals ∆𝑡1 and ∆𝑡2 of 

differing duration; on the other hand, two segments of 

equal duration ∆𝑡 may consist of different numbers 𝑚1 

resp. 𝑚2 of recorded co-observations.  

Second, each of the 𝑛 scatter plot segments is mapped to a 

simulation time interval, based on the co-observations it 

contains: Corresponding simulation time intervals start at 

the observation time of the first co-observation of a seg-

ment (inclusively) and end at the observation time of the 

first co-observation of the following segment (exclusively) 

or at the simulation end time instant, for the last segment. 

Third, the colour spectrum is divided into 𝑛 segments, and 

scatter plot segments as well as corresponding time inter-

vals are mapped on associated colours. 

Fourth and last, the basic connected scatter plot diagram is 

augmented by a) replacing the original monochrome co-

observation sequence by the 𝑛 co-observation segments, 

coloured in their associated colours and b) adding a time 

scale as bottom legend, where the 𝑛 adjacent time intervals 

are coloured according to their associated colours (figure 

11). Optionally, the start of every time segment can be 

highlighted by a small number icon, showing the ordinal 

number of the segment. 

 

 
 

Figure 11: Time-Segmented Scatter Plot  

of Manager Salary versus Worker Satisfaction 

 

Comparable to figure 10, figure 11 shows manager salary 

vs. worker satisfaction, now containing additional colour-

coded information when pay rises resp. worker polls were 

recorded. 

Generally, the number of time segments is freely se-

lectable. Here, it was decided to divide the scatter plot into 

ten segments, because original observations spanned an 

interval of ten years (3650 days). Thus, the small time in-

terval ordinal numbers (1..10) in the diagram denote the 

start of one year segments. Without the need to resort to 

the original time series diagrams, it can quickly be spotted 

that in years 1-3 and 7-8 salary and satisfaction were rather 

stable. Years 4 and 10 saw a fast rise in salary, whereas in 

years 3, 4 and 9 the detected phenomenon of negative cor-

relation between satisfaction and salary was particularly 

pronounced. 

 

Time-segmented scatter plots document the historical de-

velopment process of standard scatter plots by colour 

codes. They often relieve the modeller from the overhead 

of resorting to the original pair of time series diagrams, 

ending up analysing three diagrams side by side. Time-

segmented scatter plots facilitate relating (connected) scat-

ter plot patterns to simulation time intervals. Vice versa, 

they can help detecting temporary relationships between 

two variables at given sub-intervals of overall simulation 

time. In this respect, time-segmented scatter plots can help 

determine whether the relationship between two variables 

is either characterised by stable patterns in time or subject 

to consecutive regime changes. 



 

 

Filtered Time-Segmented Scatter Plots 

Next, analysis focuses on the ten year recording of manag-

er’s average weekly working hours compared to their aver-

age assessment of life quality. Average manager working 

hours were recorded in weekly events every Friday even-

ing; average life quality assessment was recorded in man-

ager interview events, irregularly carried out by the 

personnel department, on average four times per month. 

The scatter plot of manager working hours vs. perceived 

life quality is shown in figure 12. 

 

 
 

Figure 12: Scatter Plot of Manager Working Hours 

versus Manager Life Quality 

 

At first glance, the scatter plot appears unremarkable, and 

working hours and life quality seem to be uncorrelated. For 

arbitrary weekly working hours (from 28 to 52 hours per 

week), the whole range of life quality (from 20% to 90%) 

has been recorded. 

However, employing the new approach of time-segmented 

scatter plots gives a different picture (figure 13; ten time 

segments again): The sequence of co-observations follows 

a certain path, and some scatter plot regions can easily be 

assigned to time intervals, e.g. low working hours and high 

perceived life quality exclusively in year 10. 

 

 
 

Figure 13: Time-Segmented Scatter Plot  

of Manager Working Hours versus Manager Life Quality 

 

Unfortunately, the increased number of observations and 

their stochastic nature hamper discovery of a clear path 

which life quality vs. working hours may follow. 

At this point, it is proposed to first filter (i.e. smooth) the 

original co-observation sequence and only afterwards time-

segment the new filtered co-observation sequence, as in-

troduced in the previous sub-section. To avoid visual blur, 

original co-observations remain unconnected, but still col-

oured according to their correspondent time segment. Fig-

ure 14 shows the result of this procedure. 

 

 
 

Figure 14: Filtered Time-Segmented Scatter Plot 

of Manager Working Hours versus Manager Life Quality 

 

In this example, filtering is performed by a simple moving 

average on the co-observation components (i.e. abscissa 

and ordinate values are averaged independently). The mov-

ing average window size 𝑤 is automatically set to 5% of 

co-observations, but may be set manually to any natural 

number. The moving average function itself may be substi-

tuted by alternative functions which implement a given 

software interface.  

In order not to drop the first window of 𝑤 co-observations 

(the 𝑤-moving average is undefined before), the 𝑤-moving 

average of the first 𝑣 co-observations (𝑣 < 𝑤) is replaced 

by the respective 𝑣-moving averages. Therefore, the first 𝑤 

filtered values are less smooth then the rest of the series, 

but not lost. 

 

When now looking again at the filtered time-segmented 

scatter plot, a clear development of life quality vs. working 

hours is recognisable over time: In the first five years, life 

quality and working hours were positively correlated: The 

longer managers worked, the higher their perceived life 

quality was. Presumably life quality was linked to income, 

which again might have been dependent on hours worked. 

The positive correlation gradually became weaker from 

year 1 to 5, and almost vanished in year 6. Year 7 saw a 

turning point: With work load remaining very high, per-

ceived life quality decreased. In years 8 to 10 life quality 

increased again as work load tended to lower levels. Per-

haps in the last four years, managers had reached a life 

standard where additional material income did not further 

impact on perceived life quality, and spare time became 

more a defining factor of life quality than higher wages. 



 

 

Employing the proposed filtered time-segmented scatter 

plot, the apparently uncorrelated scatter plot of figure 12 

turned out to have been shaped by three consecutive phas-

es, inconsistently relating working hours and life quality 

over time: The role of working hours in definition of life 

quality radically changed over the examined ten year peri-

od, from strong positive correlation to strong negative cor-

relation. As a consequence, further analysis of these two 

factors, alone or in combination, should be handled with 

special attention. 

It should be noted here that similar conclusions as above 

also could have been drawn by directly comparing the orig-

inal time series from figure 8 side by side; however with 

less comfort and precision, and only due to the simple na-

ture of this example. The more complex relationships resp. 

dynamics of time series become, the more beneficial the 

integrative time-annotated scatter plot approach turns out.  

 

Filtered time-segmented scatter plots superimpose an extra 

polyline of time-segmented filtered co-observations onto 

an unconnected cloud of time-coloured co-observations. In 

presence of many and/or stochastic co-observations, they 

help working out basic relationships of two variables over 

time, where otherwise too many co-observations would 

distract from the underlying nature of relationships.  

 

Tiled Time-Segmented Scatter Plots 

Last, the relationship between client processing time and 

client rating will be analysed. 

Recall that clients were requested to rate their total experi-

ence at the smart card ticket machine, when service had 

ended. Client ratings were recorded along with their total 

processing times (= waiting time + service time). Both 

client processing times and client ratings are transient ob-

servation types, without a persisting impact on their state 

variables, beyond the instant when they were recorded. 

With regard to sub-section Handling of Transient Observa-

tions the data constellation is unproblematic, because both 

observations logically become available at the same time 

(system exit) and are synchronously recorded as well. 

Also note that average client rating decreases over time 

(figure 6, right), which causes management to deploy more 

and more workers according to their new service strategy. 

The scatter plot of client processing time vs. client rating is 

shown in figure 15. 

 

 
 

Figure 15: Scatter Plot of Client Processing Time 

versus Client Rating 

Overplotting poses a problem here (cf. sub-section Scatter 

Plots in Statistics), due to the high number of nearly two 

thousand co-observations, which were recorded in two six-

day weeks of ten-hour working days. In this context, time-

segmented scatter plots cannot clearly reveal a time-

dependent structure, because connection lines also suffer 

from heavy overplotting (figure 16, left). Filtered time-

segmented scatter plots are just as unhelpful: Compared to 

the highly autocorrelated time series of the previous exam-

ple, observations now are not locally correlated, but widely 

dispersed. Thus, all (smoothed moving) averages of the 

scattered time segments consistently gravitate towards their 

geometrical centre (figure 16, right). 

 

  
 

Figure 16: Time-Segmented Scatter Plot and  

Filtered Time-Segmented Scatter Plot  

of Client Processing Time versus Client Rating 

 

In this situation, it is proposed to replace the multitude of 

data points by coarser structures that possibly reveal inher-

ent relationships with less noise: The plane is divided into 

squares of equal parametrisable size, called tiles. Within 

every tile, the number of co-observations per time segment 

is counted and ranked. The time segment with the maxi-

mum number of co-observations per tile passes its associ-

ated colour to the whole tile (figure 17).  

 

 
 

Figure 17: Tiled Time-Segmented Scatter Plot  

of Client Processing Time versus Client Rating 

 

In this way, local concentrations of time segments become 

more recognisable. Compared to standard time-segmented 

scatter plots, not the last (topmost) drawn segments resp. 

segments with long diameters determine overall colour 

patterns (figure 16, left), but the very time segments actual-

ly dominating certain scatter plot regions. 



 

 

Tiles are drawn on top of an unconnected time-segmented 

scatter plot. By setting a threshold level, the user can re-

quire a minimum number of “winning” co-observations for 

a tile before it is displayed. In this manner, tiles may be 

overlaid only in highly frequented scatter plot regions, 

whereas seldom frequented regions will still display their 

original (small) data points. 

An alternative option of colouring tiles (not implemented 

yet) could guarantee each time segment the same fixed 

number of tiles, e.g. number of populated tiles / number of 

time segments. By distributing tiles to segments (and not 

segments to tiles) it could be prevented that certain time 

segments never show up, because they never reach the 

topmost rank in any tile. Apart from that, further tile col-

ouring schemes are conceivable, e.g. cellular automata-like 

rules etc. 

 

To explore possible temporal relationships in the ware-

house managers’ new service strategy, the basic scatter plot 

(figure 15) is divided into twelve time segments, one per 

operating day within the examined two-week period (see 

figure 17). At a glance, a clear time-dependency between 

client processing time and client rating is observable: In the 

first days of normal operation mode, client processing time 

and client rating are negatively correlated. The longer a 

client waits for hand-over of the pallet jack, the lower his 

rating turns out (red, orange and yellow tiles). When the 

new service strategy becomes effective due to decreasing 

client ratings (figure 6, right), client waiting times shorten 

and service time becomes the major component of total 

processing time. In consequence, client rating schemes 

change fundamentally towards the end of the observation 

period (blue, purple and pink tiles): Eventually client pro-

cessing time and client rating are positively correlated, as 

more intensive and longer service is rewarded by higher 

client ratings. 

A first formal result is that the basic time series (cf. figure 

6) are not suitable for standard descriptive statistics as a 

whole, because they were generated by a non-stable under-

lying process. 

In substance, the warehouse managers’ new strategy does 

not prove successful: Gradually, clients take instant service 

for granted and commence assigning poor marks for short-

er service, despite high costs incurred by additional work-

ers. Moreover and despite all efforts, the average client 

rating still decreases over time. 

 

Tiled time-segmented scatter plots support identification of 

state regions where certain time segments are predominant, 

in circumstances where overplotting, high variance and/or 

low autocorrelation would blur standard, connected or (fil-

tered) time-segmented scatter plots. Analysis of tile pat-

terns can support detection of inherent state-time 

relationships that may be hard to recognise otherwise. 

 

Delimited Time-Segmented Scatter Plots 

Tiled scatter plots concentrate on indicating highly fre-

quented state regions. At the same time, seldom frequented 

time segment sections are layered by tiles of other colours 

and are visually lost (which is intended). Consequently, 

tiled scatter plots hide the full state region in which time 

segments extend. 

Sometimes, knowledge of the full area covered by time 

segments is expedient, e.g. when it can be shown that their 

form is not constant over time but changes according to an 

underlying process. For this kind of scenarios it is suggest-

ed to first generate an unconnected time-segmented scatter 

plot and to subsequently construct the convex hull for eve-

ry time segment. Then, every convex hull is coloured ac-

cording to the time segment it delimits (figure 18). 

 

 
 

Figure 18: Delimited Time-Segmented Scatter Plot 

of Client Processing Time versus Client Rating 

 

Following the colour-ordered sequence of convex hulls can 

reveal development tendencies in the cloud of co-

observations. Object of investigation may e.g. be a) loca-

tion b) form c) orientation d) perimeter and diameters and 

e) centroids of convex hulls. 

It is conceivable to exclude outlier co-observations from 

convex hulls, to keep delimited areas more compact and 

concentrate on their basic form. On the other hand, pro-

truding co-observations can well be distinguishing marks 

of certain hulls and carry non-negligible information, like 

relative position to the main cloud of a time segment, 

thereby indicating the (history of) direction(s) in which 

unusual behaviour might be expected. 

As an option and in case of abundant co-observations in 

the scatter plot, a large number of shorter time segments 

may be chosen. Then, each time segment would receive its 

own delimited time-segmented scatter plot, containing only 

its own co-observation cloud and the corresponding hull. 

Stringing this sequence of snapshots together (e.g. in a .gif-

file) would result in a film that could be traversed forward 

and backward as desired. Doing so would add a new analy-

sis dimension, because in this manner the original scatter 

plot formation process could comfortably be tracked and 

possibly better comprehended. 

 

In the context of the warehouse model, the sequence of 

convex hulls 1..12 in figure 18 shows the state space de-

velopment of processing time vs. client rating over time. 

The same conclusions as for tiled time segmented scatter 

plots may be drawn, but additional insight can be gained: 

On days 6 and 7, client ratings are rather moderate between 

1 and 8. There are no extreme ratings, and maximum pro-

cessing time is quite short, below 11 minutes. The two 

convex hulls are rather compact and have horizontal orien-



 

 

tation. This means that clients appreciate comparatively 

short, reliable processing times: in these cases they assign 

moderate, lower-variance ratings which are virtually inde-

pendent of processing time – even though a number of 

clients do not receive costly extra services. 

As a consequence, the warehouse managers could be ad-

vised to focus on the parameters and processes of days 6 

and 7 (number of workers, waiting time / rating threshold 

for additional services, etc.), to base further optimisation 

measures on these configurations. 

 

Delimited time-segmented scatter plots show convex hull 

boundaries of time segments. Analysis of their develop-

mental process can yield insight into possibly time-varying 

relationships of the original variables, even under difficult 

conditions where other methods described before may fall 

short or mask relevant observations. 

 

SUMMARY AND CONCLUSION 

Discrete event time series are characterised by their asyn-

chronous nature, often hampering direct application of 

downstream analysis methods used by other simulation 

techniques. In order to correctly use common scatter plots 

in discrete event simulation, pairs of asynchronous discrete 

event time series first have to be pre-processed and merged 

into new synthetic time series of compound co-

observations. On this basis, standard scatter plots can pro-

mote state pattern discovery, with extended connected scat-

ter plots optionally complementing sequence information. 

The family of time-segmented scatter plots introduced here 

additionally contributes time information, by dividing co-

observations into time-related coloured segments. Time-

segmented scatter plots permit to correlate scatter plot pat-

terns respectively regions with time intervals, in order to a) 

confirm or object relationship hypothesis gained from e.g. 

standard scatter plots b) analyse time-stability of state rela-

tionships c) discover unexpected relational patterns or 

event dynamics, of local or global type in state/time d) 

possibly detect and describe an underlying process that 

drives the formation of co-observation relationships. 

Advancing from basic time-segmented scatter plots, en-

hanced concepts like filtered, tiled or delimited time-

segmented scatter plots are recommended for unfavourable 

conditions like very high number of co-observations, over-

plotting, high variance or low autocorrelation. These exten-

sions add visual aids, to concentrate on the basic nature of 

co-observation relations and their possible relationship 

development. 

The standard, connected and time-segmented scatter plot 

classes described in this paper have been implemented as 

extensions of our open source discrete event simulation 

framework DESMO-J. DESMO-J is developed and main-

tained in the Informatics Modelling and Simulation 

Workgroup at the University of Hamburg and free for 

download at www.desmo-j.de. 

Concluding, the method family of time-segmented scatter 

plots often can relieve the modeller from the overhead of 

complementing standard scatter plots with their two origi-

nal time series diagrams. It substitutes three traditional 

diagrams by one integrative approach, adding supplemen-

tary information to more deeply explore time-dependency 

of co-observation states, state patterns and state relation-

ships. 
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