
First published: ESM'2016, 30th European Simulation and Modelling Conference, October 26-28, 2016, SIANI - University of Las Palmas, Spain

ARNG: ACCELERATING DISCRETE EVENT SIMULATION RNGs

BY ASYNCHRONOUS RANDOM NUMBER GENERATION

Arne Koors and Bernd Page

Department of Informatics

University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

E-mail: {koors, page}@informatik.uni-hamburg.de

KEYWORDS

Discrete Event Simulation, Random Number Generation,

Functional Decomposition, Functional Parallelism, PRNG,

Parallel Simulation, PDES, DESMO-J.

ABSTRACT

Functional decomposition, also called functional parallelism,

was an approach to introduce inner parallelism into discrete

event simulators in the 1980s, in order to accelerate

simulation experiments. Due to technical restrictions at that

time, it did not gain widespread acceptance. This paper

introduces modifications of the approach, considering

today’s technical possibilities. A focus is set on

asynchronous execution of simulation infrastructure by

thread pools. Applying the concepts of asynchronous

functional parallelism to random number generation leads to

our proposal for asynchronous random number generation

(ARNG), which has been implemented into the discrete

event simulation framework DESMO-J. We describe its

implementation and report on results of experiments which

were conducted to assess the performance potential. The

impact of different parameters is analyzed and advice for

parameterization is given.

We found that the attainable acceleration factor of our

ARNG implementation is limited within a range from circa 2

to 5 on an eight core machine, depending on the concrete

distribution and the number of thread pool workers used.

If two (otherwise idling) processor cores are employed, then

random number generation can be accelerated by a factor of

at least 1.74 in non-trivial simulation models, and by a factor

of at least 3.00, utilizing four processor cores.

INTRODUCTION

Discrete event simulation (DES) is a computationally

intensive software technique, where event routines with

stochastic inter-event times are successively executed, to

advance model state in time (Page and Kreutzer 2005).

Nowadays, discrete event simulation users typically employ

four to eight core computers for office work; however, their

conventional discrete event simulators use rarely more than

one processor core. The cause for this disproportionate

utilization of processing power is that DES conceptually is a

sequential technique: the timely non-coincident event

routines are processed one after another, to ensure realistic

flow of simulation time from past to future and to guarantee

causal validity of experiments.

To overcome this dilemma and better use available

computational units (CUs, i.e. processor cores, CPUs or

computers in a (local) network), historically the following

approaches have been discussed, with the objective of

accelerating DES experiments by parallelization (fig. 1):

1) Replicated Trials 3) Functional Decomposition2) Model Partitioning

DES Parallelization Approaches

b) Space Parallel Partitioning

i) Conservative Synchronization ii) Optimistic Synchronization

a) Time Parallel Partitioning

Figure 1: DES Parallelization Approaches

1) For statistical reasons, DES experiments have to be

repeated with varying random number generator seeds.

These replicated trials can be executed in parallel on

different CUs; e.g. (Pawlikowski et al. 1994).

2) Model partitioning divides simulation experiments into a)

disjoint time intervals (time parallel partitioning) or b)

disjoint sets of state variables (space parallel partitioning)

(Perumalla 2006, Kunz 2010). Each model partition is

assigned to a so called logical processor (LP). Simulation

experiments are carried out by mapping logical processors to

CUs and executing their partitions in parallel.

Whereas time parallel partitioning is only feasible for a

limited number of applications (Fujimoto 2000, p.177–191),

most research in the last two decades concentrated on space

parallel partitioning (cf. Fujimoto 2015): LPs have

independent simulation clocks that need to be synchronized

to avoid causal violations, where events in the present of one

LP request modification of state variables in the past of

another LP. i) Conservative synchronization (Chandy and

Misra 1979) ensures that all LPs proceed orderly to prevent

causal violations, whereas ii) Optimistic synchronization

(Jefferson 1985) allows uncoordinated time advance in

different LPs, but takes precautions enabling LPs to roll back

their local state to previous states, which have been valid

before a causal violation occurred.

3) Functional decomposition, also called functional

parallelism suggests to internally parallelize simulators, e.g.

by dividing the event list and managing their parts on

different CUs (Comfort 1984).

The replicated trials approach 1) is conceptually easy to

comprehend and established in practice. Nevertheless, it

cannot accelerate individual experiments, as required in

online simulations, or in the developmental phase of a

simulation model.

Many contemporary publications use the term Parallel

Discrete Event Simulation (PDES) synonymously with space

parallel model partitioning 2b). If a model can be split into

seldom communicating sub-models in a straightforward

manner, model partitioning is a proven option. However, not

all model classes lend themselves for model partitioning

equally well. Moreover, having to consider technical

constraints of the chosen partitioning and synchronization

scheme upstream, in the logical modeling phase, can

interfere with reasoning about the original system from an

unimpeded functional perspective.

From a historical point of view, work on functional

decomposition 3) has mainly been published in the 1980s.

The survey (Kaudel 1987) lists ten papers, half of them

authored or co-authored by John C. Comfort. Apart from

Comfort’s primary activities, other authors proposed or

announced further work or reported about ongoing research,

but most without concrete results. To our best knowledge,

we could not find evidence of further work on functional

decomposition or functioning implementations in real

discrete event simulators after 1993.

The main criticism on functional decomposition is that it

does not scale (Fujimoto 2000, p.48). (Kaudel 1987) expects

speedup to be “probably limited to a factor of two for most

problems”. These reservations are caused by the basic

determination that simulation infrastructure components like

event set processing, random number generation, statistics

collection, etc. should be processed by a fixed number of

dedicated computers, resp. networked processors.

The remainder of this paper is structured as follows:

The next section modifies the traditional functional

decomposition approach with regard to today’s technical

possibilities; it particularly proposes introducing thread pool

based asynchronous parallelism into simulation

infrastructure components. The following section describes

our implementation of asynchronous random number

generation, by applying the principles of asynchronous

parallelism to parallel random number generation.

Subsequently, we report on results of experiments that were

conducted to assess the performance potential of

asynchronous random number generation. Last, we give an

outlook and a conclusion.

GENERAL APPROACH

Nowadays, office and even laptop computers have a suitable

number of cores and run under multi-threaded operating

systems, providing access to shared memory and lightweight

synchronization primitives by comfortable APIs.

Against this background, we were interested to explore

whether the original idea of accelerating DES by functional

parallelism could successfully be adapted to today’s

technical possibilities. The original concept was modified on

some points:

1. We do not employ networked computers for simulation

infrastructure anymore, but focus on processor cores

within single processors, with access to shared memory.

2. No fix assignment of simulation infrastructure

components to CUs is made. Instead, method

invocations of simulator sub-components are flexibly

executed on demand, by a thread pool which itself is

backed by the processor cores.

3. For performance reasons, the simulation infrastructure

may internally communicate by shared memory

concurrency.

4. Special attention is directed to asynchronous parallelism

as a means of potential experiment acceleration.

Items 2 and 4 of the list above are detailed in the following.

Thread Pools for Simulation Infrastructure Execution

It is advisable to distribute simulator functionality like event

set processing, random number generation, waiting queue

operation, etc. to respective simulation infrastructure

components. There may be more than one object per

component type (e.g. several random number generators),

and components should be structured into fine-grained sub-

components (fig. 2, left side). Sub-components are passive

objects without an own thread. For execution of simulator

functionality, references to methods of sub-components are

committed to a thread pool, which consists of several

workers (fig. 2, center). Every thread pool worker has an

own thread and can execute one sub-component method at a

time. In this way, sub-components gain processing power

only when needed, borrowing it from thread pool workers

temporarily, and on demand.

The operating system assigns thread pool workers to

physical processor cores (fig. 2, right side). Depending on

the number TPW of thread pool workers and the number of

actually available processor cores PC, several simulator

functionalities can be executed in parallel.

Physical

Processor Cores

Thread Pool

Workers

Simulator

Sub-Components

Figure 2: Relations between Simulator Sub-components,

Thread Pool Workers and Processor Cores

Figure 2 shows a situation where two simulator sub-

component methods are executed by two thread pool

workers in parallel. One of the three thread pool workers is

idle at the moment, one processor core is idle, and one core

is executing other non-simulation functionality.

If more method calls are scheduled into the thread pool than

available workers exist, then the calls will be implicitly

queued. Generally, multi-tasking within the thread pool is

cooperative, not preemptive. Therefore, sub-component

methods should be short and non-blocking, to avoid

degeneration of simulator responsiveness.

By contrast, thread pool workers will be executed by

processor cores in a preemptive way in most modern

operating systems. Hence, TPW may be set to TPW > PC, if

long and/or blocking method calls in the simulation

infrastructure cannot be avoided. In this way, long sub-

component methods will be interrupted indirectly, because

the backing cores will be re-assigned to other thread pool

workers by the operating system.

The finer grained the simulator sub-component functionality

is, the better the simulator will scale when TPW is increased

(e.g. due to subsequent processor generations). Therefore, it

is desirable to subdivide simulation functionality into

reasonably fine-grained sub-components from the beginning.

Asynchronous Parallelism in Simulation Infrastructure

In conventional discrete event simulators, one thread

sequentially executes model logic as well as simulator

functionality (fig. 3a): all method calls to simulation

infrastructure are executed by the same (model) thread.

Synchronous parallelism tries to accelerate simulation

functionality by distributing it to parallel threads in a fork-

join way (fig. 3b): The model thread calls a separate

simulator thread, which in turn delegates sub-tasks to

parallel subordinated worker threads. When all workers have

finished, the individual results are consolidated, and the

consolidated result is returned to the waiting model thread.

Dependent on the specific task and the number of workers

employed, faster simulator response may be obtainable. In

consequence, proportionally more time may be spent for

model computation, and the simulation experiment may

terminate earlier. However, the model thread has to wait for

the simulator thread(s), at least for as long as the longest

internal sub-method call takes, plus the additional fork-join

overhead.

We propose applying asynchronous parallelism to discrete

event simulation infrastructure. Model thread and simulator

infrastructure components should be decoupled to the

greatest possible extent.

In this case, the model thread can invoke simulator

functionality asynchronously, meaning that the model

directly proceeds with its own functionality after invocation

(fig. 3c): in many use cases, the model does not necessarily

have to wait for termination of the called simulator

functionality. Moreover, simulator sub-components should

perform asynchronously as well, parallel on several thread

pool worker threads.

Compared to sequential or synchronous parallel execution,

the model thread is not burdened or blocked with regard to

simulator functionality but can immediately proceed with

model logic, while simulator functionalities execute

asynchronously and in parallel in the background.

Naturally, all downstream simulator functionality like

statistics, writing of trace or log files and display of run time

status information resp. visualization offers itself for

asynchronous parallelism. Nonetheless, upstream

components like random number generation can be

implemented in an asynchronous manner as well, as this

paper demonstrates. Further, we are convinced that

midstream components like event scheduling and waiting

queue management are able to operate asynchronously in

parallel, too. Generally, designing simulation infrastructure

components with asynchrony in mind will enable simulation

experiments to progress faster.

The revised and updated form of asynchronous functional

parallelism delineated above has notable potential for

acceleration of traditional sequential DES experiments.

Besides, its concept does not oppose the established

parallelization approaches (model partitioning and replicated

trials), but can orthogonally complement them as well, by

putting otherwise unused processor cores to work.

RANDOM NUMBER GENERATION

This section first gives a short overview of parallel random

number generation and then presents our implementation of

asynchronous random number generation in DESMO-J.

DESMO-J (www.desmo-j.de) is our open source discrete

event simulation framework in Java, developed and

maintained by the modeling and simulation workgroup at the

University of Hamburg (Göbel et al. 2013).

Parallel Random Number Generation

Modeling systems in discrete-event style very often involves

mapping parts of the real system to stochastic distributions,

because a) the original system actually behaves randomly, b)

inter-relations beyond the system boundary are modeled

stochastically (e.g. inter-arrival times) or c) potentially

deterministic internal system details of secondary relevance

are idealized to stochastic processes (e.g. service times).

Algorithmic random number generators (RNGs) provide

stochastically distributed number streams. They often base

on uniformly distributed random numbers; more complex

distributions are obtained by applying a transformation

function or another algorithm to these uniformly distributed

random numbers (e.g. Page and Kreutzer 2005, pp.161–168).

Essential requirements for algorithmic random number

generation are a) statistical soundness and b) reproducibility.

a) Statistical soundness means that random numbers within

one random number stream are statistically independent; no

predictable patterns should be produced and the generated

numbers should be uncorrelated and non-cyclic; or at least

cycles have to be very, very long (Srinivasan et al. 1999).

b) Reproducibility of random numbers is important to make

stochastic experiments repeatable, e.g. for debugging,

analysis of model parameter variation, or for verification by

other scientists.

Intensive research has gone into high quality sequential

random number generation; a good overview is given in

(Knuth 1997, chap. 3). For the purpose of this paper, it is

Model Thread

Simulator Thread 1

Simulator Thread n

Simulator Thread 2

..
.

..
.

..
.

b) c)
Simulation Model

Simulation

Infrastructure

a)

Figure 3: a) Sequential Execution, b) Synchronous Parallelism, c) Asynchronous Parallelism in Simulation Experiments

http://www.desmo-j.de/

enough to be sure that very good off-the-shelf sequential

random number generators exist. For example, our

simulation framework DESMO-J uses a Mersenne Twister

or alternatively a Linear Congruential Generator.

Parallel random number generators (PRNGs) are concerned

with providing reproducible streams of random numbers that

are statistically sound also when examining pairs or sets of

random number streams. Moreover, PRNGs should be

scalable and without data sharing or synchronization apart

from an initialization phase (Coddington 1997; Srinivasan et

al. 1999). The techniques employed here either partition one

sequential random number stream into different sub-streams

returned to parallel client threads (sequence splitting,

random spacing or leap frog) or generate different random

number streams per client, by individually parameterizing

algorithms.

In the context of this paper, it should be stressed that parallel

random number generation is not about accelerating random

number production by n threads working in parallel on one

random number stream. PRNG rather ensures that n threads

concurrently producing n random number streams (with no

acceleration at all) will maintain statistical soundness, when

pairs of these random number streams are examined.

A good survey on parallel random number generation is

given in (Hill et al. 2013). For the purpose of this paper, it is

sufficient to be aware that decent parallel random number

generators are available (e.g. JAPARA (Coddington and

Newell 2004) or SPRNG (Mascagni et al. 1999)). Any of

these PRNGs can be used as a high-quality black-box

component in asynchronous random number generation, as

exposed in the following sub-section.

Asynchronous Random Number Generation

The main idea of asynchronous random number generation

(ARNG) is to produce blocks of random numbers in

advance, in order to immediately provide single random

numbers when a distribution is sampled.

A similar concept is described in (Hill 2003): Here, millions

of random numbers are pre-computed before the start of an

experiment. The generated stream of random numbers is pre-

compiled and linked to the simulation program, like a

program library. Whenever the simulation model needs to

sample random numbers, the pre-computed stream is

unrolled and single numbers are drawn from it, with short

constant access time.

Our asynchronous functional parallelism approach provides

short constant access times as well, but differs in that it

neither needs a separate pre-computation phase nor memory

for millions of random numbers. Instead, the stream of

random numbers is pre-computed on demand, parallel to a

simulation experiment, and in an asynchronous and block

wise manner.

Our implementation presented here is only one of several

variants conceivable. More sophisticated procedures may be

introduced in the future.

The asynchronous random number generator described here

consists of two types of sub-components:

A random number cache (hereinafter referred to as cache)

holds a reference to a block of pre-computed random

numbers (cf. fig. 4, left). If a sample is requested, the next

random number from this current sample block is read and

instantly returned.

If the whole current sample block is consumed, a new block

is taken from one of the internal cache lines of the cache.

Cache lines are used cyclically, in a round robin procedure.

A variable called current cache index refers to the current

cache line. For replacement of the exhausted block, the

current cache index is set to the following cache line. Then,

the thread utilizing the cache (usually the model thread) tries

to copy the sample block reference of the (newly) indexed

current cache line to the current sample block variable. If

this succeeds, the content of the current cache line is

invalidated and a corresponding random number producer

sub-component is scheduled into the thread worker pool, for

generation of a new sample block. Finally, the first sample of

the (new) current sample block is returned to the model.

1

2

3

P

Current

Cache

Index 4

..
.

Random Number

Producer Threads

Cache

Lines

1

2

3

4

P

Current

Sample

Block

Random Number Cache

Figure 4: Sub-Components of

Asynchronous Random Number Generation

If the cache cannot copy the content of the new current cache

line because of invalidity, then the executing (model) thread

blocks until the awaited sample block will be inserted into

the current cache line.

Random number producers (hereinafter called producers)

are sub-components which access basic RNG or PRNG

functionality (see previous sub-section). On execution by a

thread pool worker, a producer creates an array of block size

samples and inserts a reference to this array into its

corresponding cache line (see fig. 4, right, producer no. 1).

If the cache was blocked awaiting just this cache line, the

model thread will be resumed, move the new sample block

reference to the current sample block variable, invalidate the

cache line again and instantly re-order another sample block

by re-scheduling the producer.

If the cache was not blocked awaiting the inserted cache line,

it will simply continue its normal operation (cf. fig. 4).

Cache lines should be implemented using a synchronized

data structure like a Java ArrayBlockingQueue of size

1 (i.e. space for 1 sample block reference per cache line).

By the execution sequence given above, producers are only

scheduled if their corresponding cache lines are empty.

Therefore, no producer can insert more than one sample

block into its cache line. Moreover, each producer holds only

one private reference to its corresponding cache line. It is

impossible for a producer to access cache lines of other

producers.

Upon cache initialization, producers are immediately

scheduled for asynchronous pre-production of sample blocks

to cache lines. Thus, samples may already be available on

first demand of a model thread.

Fig. 4 shows a situation where the model thread plus three

thread pool workers execute in parallel: The model thread

accesses the current sample block of the random number

cache (originally stemming from cache line 3), while

producer 1 inserts his pre-computed sample block into cache

line 1, and producers 2 and 3 are still busy with re-generating

their sample blocks.

It should be noted that the random number stream created by

this implementation is reproducible, but may differ from a

sequentially generated random number stream, because here

sample blocks originating from different (identically

distributed) random number streams are deterministically

interlocked.

If no basic PRNG is used, then statistical soundness of the

resulting stream output by the cache has to be investigated

carefully: Though all sample blocks trace back to the same

distribution, an unfortunate combination of long-distance

correlation in the underlying random number stream together

with producers starting their block sequences at just these

correlated entry points may lead to short-distance

correlations in the random number stream provided by the

cache. We apply random seeding to mitigate this problem, in

case producers use conventional RNGs like the Mersenne

Twister.

However, if an advanced PRNG is used which supports the

so-called jump-ahead technique (random numbers s steps

ahead in the stream are directly accessible), then p producers

can use p parallel entry points with block size distance into

the same underlying random number stream. In this case, the

cache will reproducibly output the same sound random

numbers as the underlying sequential stream, but more

rapidly, because obtained in parallel.

Two further options should be mentioned:

First, the cache may adapt the size of sample blocks

requested from producers dynamically (blockSize is a

parameter of the producer’s requestSampleBlock

method). If the model needs samples at higher frequencies,

then smaller block sizes are advisable: they allow thread

pool workers to switch more quickly between different sub-

components, thereby increasing responsiveness of the thread

pool as a whole.

As a second option, the cache may create or lay off

producers dynamically, for similar motives as above.

EXPERIMENTAL RESULTS

This section compares performance impacts of asynchronous

random number generation with conventional sequential

random number generation.

Experiment Design

All experiments have been carried out on a Windows 7 64

bit machine with 8GB RAM and an Intel i7-3610QM

processor, running at 2.30 GHz with 4 physical cores plus 4

hyper-threaded cores.

Overall, 650 random number generation experiments have

been performed, each based on 100 replications of sampling

10 million random numbers by the model thread.

The following parameters were varied per experiment:

– Distribution type (Uniform, Exponential, Normal and

Poisson; Poisson distribution with different mean parameter

settings); or mixes of the aforementioned distribution types

– Number of thread pool workers (1 up to number of

processor cores, i.e. 1…8, cf. fig. 2). The number of cache

lines equaled the number of processor cores, i.e. 8, cf. fig. 4.

– Sample block size (4
3
…4

10
 samples per sample block, i.e.

64, 256, 1024, 4096, 16384, 65536, 262144, 1048576)

To compensate for runtime irregularities like garbage

collection etc., 101 replications were performed per

experiment. Results of the first replication were discarded; it

was considered a warm up replication. The time needed for

consecutively sampling 10 million random numbers was

measured and arithmetically averaged for the following 100

replications. A pause of 3 seconds was applied between

replications, as cool-down period.

Experiment setup time and other non-sampling times were

not incorporated in the experimental results, but pre-

production of producers upon cache initialization was

included.

Apart from 10 sequential base line experiments, production

and consumption of random numbers occurred

asynchronously and concurrently in all other experiments.

In consequence, every data point in the following line graphs

refers to 1 random number generation experiment backed by

100 replications of sampling 10 million random numbers.

All experiments were implemented in Java 8u101, using our

discrete event simulation framework DESMO-J. Every

experiment consisted of initializing the simulation

infrastructure and scheduling one single external event

which then sampled ten million random numbers in a for-

loop.

The basic uniform random number generator used was the

same Mersenne Twister as in the standard DESMO-J

sequential random number generators.

The algorithms that transformed uniform random numbers to

different distributions were the same as those used for

sequential random number generation. In fact, the standard

algorithms were passed as constructor parameters (Lambdas

in Java 8) to random number producers.

Different instances of producers were initialized by random

spacing (random seeding).

Additional Memory Consumption

Additional storage requirements of asynchronous random

number generation are determined by a) the number of cache

lines CL per cache and b) the sample block sizes SBS (cf. fig.

4).

In total, (CL + 1) * SBS * 8 Bytes of memory are needed per

cache, e.g. 72MB on our machine with 8 cache lines + 1

current sample block, and sample block size 1,048,576. 8

Bytes are necessary for storage of the Java data type long

resp. double.

Generic implementations will have a higher memory

footprint, because in this case the sample blocks hold

references to Long or Double objects. On 64 bit machines,

these references have a size of 8 Byte as well, but now

additional 8 Byte per Long or Double object referred to will

double the storage requirements.

Though maximally 144MB seem to be tolerable on today’s

computers, later results will show that very high sample

block sizes should be avoided anyway, since they increase

sampling times and congest the thread pool.

Effort Ratios of Sequential Random Number Generation

The time necessary for random number generation varies,

depending on the concrete type of distribution chosen. When

time for sequential generation of ten million uniformly

distributed random numbers is set as 100%, then sequential

generation of exponentially distributed random numbers

takes about 60% longer in DESMO-J (cf. fig. 5), and

sequentially generating normally distributed samples takes

about twice the time of uniformly distributed random

numbers.

Figure 5: Ratios of Sequential

Random Number Production Times

These relationships hold independently of the respective

distribution parameters (lower and upper bound; mean;

standard deviation). However, generating samples of Poisson

distribution is dependent on the parameter value (mean) in

DESMO-J. It will take about 345% to 720% of the time

needed for uniform random number generation, if the mean

is in the range from 1.0 to 5.0, and longer for higher

parameter settings. We will further refine our algorithms, but

for the sake of this paper, the different Poisson generation

efforts will be regarded as instances of computationally

intensive random number generation algorithms of any

distribution.

In the following, the sampling times for conventional

sequential random number distributions are set as base lines

for comparison with their asynchronous variants. The

Acceleration Factor AF is defined as the quotient of the base

line and the sampling time for a specific combination of

thread pool size and sample block size, per distribution.

AF = 1 means that conventional random number generation

and asynchronous random number generation need the same

time, whereas AF = 2 means that asynchronous random

number generation only takes half the time of the base line,

resp. samples can be drawn at twice the speed of

conventional random number generation.

Impact of Sample Block Size

First, the impact of sample block size on the acceleration

factor is studied. Fig. 6 visualizes experimental results for

asynchronous random number generation for a) one Uniform

distribution b) one Poisson(5) distribution and c) a

distribution mix, mimicking a minimal client-server system

with one Exponential, one Uniform and two Normal

distributions, for inter-arrival times, job type choice and

service times of two servers.

Different sample block sizes are mapped to the line graph

abscissas, the acceleration factor AF to the ordinates, and 8

lines with different colors and icons denote thread pool sizes

from 1 to 8 (black to red) thread pool workers (TPW).

Please note that line graphs ordinates have differing scales.

Obviously, extreme sample block sizes (SBS) have a

negative influence on the acceleration factor AF: Irrespective

of distribution and number of thread pool workers, all lines

rise for SBS < 1,024 and almost all fall for SBS > 65,536. By

contrast, the AF stays on a central plateau for SBS in [1024;

65536], with different variations per distribution (mix).

Graphs for other distributions or distribution mixes (not

shown here) confirm this finding.

Accordingly, it is advisable to generate sample blocks with

sizes in the interval [1024; 65536] for best asynchronous

random number generation performance in practice.

We recommend smaller sample block sizes, because then

thread pool workers are released more quickly and can turn

to serving other requests faster. In consequence, the

simulation background architecture becomes more

responsive, which finally helps the foreground simulation

model thread to proceed quicker.

To facilitate further experimental result visualization, sample

block size is set w.l.o.g. to 4,096. In consequence, additional

Figure 6: Acceleration Factor by Sample Block Size for a) Uniform Distribution, b) Poisson(5) Distribution, c) Distribution Mix

0,50

0,75

1,00

1,25

1,50

1,75

2,00

64 256 1024 4096 16384 65536 262144 1048576

Uniform : AF by Sample Block Size

1 2 3 4 5 6 7 8# TPW:

a)

0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50
5,00

64 256 1024 4096 16384 65536 262144 1048576

Poisson(5) : AF by Sample Block Size

1 2 3 4 5 6 7 8# TPW:

b)

0,40

1,00

1,60

2,20

2,80

3,40

64 256 1024 4096 16384 65536 262144 1048576

Mix EU2N : AF by Sample Block Size

1 2 3 4 5 6 7 8# TPW:

c)

memory demand for 8 + 1 sample blocks is reduced to

576KB per distribution (in generic implementations).

Impact of Thread Pool Size

Figure 7 relates the number of workers employed in the

thread pool (1…8) to the obtainable acceleration factor AF

for different distributions and distribution mixes. As stated

above, all data points in this graph base on sample block size

SBS 4,096, but graphs for other SBS closely resemble figure

7 when SBS is in the practically advisable range from 1,024

to 65,536.

The seven acceleration lines base on the following

distributions: Uniform (black, U), Normal (blue, N),

Exponential (green, E), Mix 1 (orange, M1), Mix 2 (brown,

M2), Poisson(1) (purple, P(1)) and Poisson(5) (red, P(5)).

Mix 1 consists of 1 Exponential, 1 Uniform and 2 Normal

distributions, sampled consecutively (cf. fig. 6c).

Mix 2 mimics a more comprehensive client-server scenario

with 5 Exponential, 5 Uniform and 10 Normal distributions,

modeling different inter-arrival times, job type choices and

service times.

Figure 7: Acceleration Factor by Thread Pool Size

for different Distributions and Distribution Mixes

For one thread pool worker, the acceleration factor AF

ranges from 0.84 (Uniform) to 1.0 (Poisson(5)), indicating

that asynchronous random number generation comes with a

certain overhead. Naturally, the overhead is relatively higher

for fast Uniform random number generation (16%) and

almost negligible for the computationally intensive

Poisson(5) distribution (< 0.5%), cf. fig. 5.

The three basic Uniform, Normal and Exponential

distributions benefit from asynchronous random number

generation with AF ranging from 1.43 (Uniform, 2 workers)

to 2.79 (Exponential, 7 workers). These lines reach

saturation plateaus when more than five workers are

employed. Five workers obviously suffice for asynchronous

pre-computation of random numbers here; there is no

additional utility in bigger thread pool sizes.

Practically relevant simulation models typically will use

more than one distribution. It is noteworthy that the mixes

M1 and M2 of the basic three distributions benefit more than

the basic distributions themselves from asynchronous

random number generation. This can be explained by

reasoning that consecutive cyclic sampling decreases the

sampling frequency per distribution, while at the same time

more background workers can be used for parallel cache line

re-generation. In consequence, we measured an AF from

1.74 (Mix 1, 2 workers) up to 3.60 (Mix 2, 5 workers). The

Mix AFs surpassed the basic distribution AFs by up to 81%

(Mix 2 AF 3.32 vs. Uniform AF 1.83, both with 4 workers).

The more computationally intensive random number

generation for a distribution or a mix of distributions is, the

better asynchronous random number generation scales with

increasing thread pool size. As opposed to lines for Uniform,

Normal and Exponential distributions, which remain on

horizontal plateaus for more than five workers, the lines for

the Poisson distributions continuously slope upwards,

reaching an AF of 4.86 (Poisson(5)) with eight thread pool

workers in use.

It is comprehensible that comparatively more time spent in

random number generation methods (cf. fig. 5) can be better

offset by more parallel worker threads than fast random

number generation like in the Uniform distribution case:

Longer RNG method calls have a better ratio of additional

acceleration versus overhead for asynchronous operation;

thus more workers can gradually be employed, until the

specified ratio approaches 1.0 and the acceleration line

finally reaches saturation.

Summarizing fig. 7, the acceleration factor rises when more

thread pool workers are employed for asynchronous random

number generation. However, the attainable maximum

acceleration factor seems to be limited to a range from

around 2.0 (single basic distributions) to around 3.5 (mixes

of basic distributions). These acceleration factors are reached

when employing 5 to 6 workers; therefore asynchronous

random number generation does not scale unlimitedly with

thread pool size. Only some computationally intensive

distributions like the DESMO-J Poisson implementation

benefit from further workers and can approach acceleration

factors of 5.0 and possibly more.

Non-trivial simulation models with a mix of random number

generators similar to Mix 1, or more comprehensive ones

like Mix 2, experience an acceleration factor of at least 1.74,

if two workers are employed, and an acceleration factor of at

least 3.02 when utilizing four workers.

In consequence, it seems worthwhile to employ two to four

otherwise idling processor cores for asynchronous random

number generation, by accordingly dimensioning the thread

pool. However, it should be noted that the operating system

finally assigns processor cores to thread pool workers.

Therefore it is not guaranteed that every worker is

continuously backed by a processor core. Vice versa,

processor cores are not tied to workers, meaning that the

physical cores may be used for other tasks (e.g. other

simulation functionality) when workers in the thread pool

idle.

OUTLOOK

The experiments reported about are artificial in that they

only sample random numbers, but do not carry out other

simulation or model functionality. This is of course

necessary and justified when studying asynchronous random

number generation on its own, uninfluenced by side effects

of other program code. But it would of course be interesting

to examine the interdependencies when utilized in realistic

simulation models and – even more – when applied together

with other simulation infrastructure components that

implement the concepts of asynchronous functional

parallelism as well.

For example, we expect that in conjunction with real

simulation code, fewer parallel workers will suffice for the

same acceleration factors as stated in the section above,

because of reduced utilization intensity of asynchronous

random number generation and thus a lower demand

frequency of sample block re-generation.

Apart from studying asynchronous random number

generation “in the wild”, we intend to introduce the

principles of asynchronous functional parallelism into further

components of DESMO-J, like event set processing, waiting

queue operations and statistics, to accelerate standard

sequential simulation experiments in a transparent way.

CONCLUSION

This paper was concerned with conception and

implementation of asynchronous random number generators,

applying the principles of asynchronous functional

parallelism to random number generation.

The experiments conducted gave an overview of the

potential and limitations of our implementation of

asynchronous random number generation in discrete event

simulators and discussed settings of parameters.

Specifically, it is recommended to prefer smaller sample

block sizes of the interval [1024; 65536], to minimize

additional memory consumption and increase thread pool

responsiveness, with regard to the main simulation model

thread.

It is particularly worthwhile using two to four otherwise

idling processor cores, backing a simulation worker thread

pool of equal size. For non-trivial simulation models using

four distributions or more, an acceleration factor of about

1.75 for two workers and of at least 3.0 for four workers can

be expected, compared to conventional random number

generation.

Though highly computationally intensive distributions can

benefit from further workers and approach an acceleration

factor of 5.0 on an eight core machine, acceleration of

asynchronous random number generation does not scale

linearly up to an arbitrary number of processor cores.

However, if otherwise idling cores are available, there is no

reason to not apply ARNG, as proposed in this paper.

REFERENCES

Chandy, K.M. and J. Misra. 1979. "Distributed Simulation: A Case

Study in Design and Verification of Distributed Programs".

IEEE Transactions on Software Engineering, Number SE-5,

No.5, 440–452.

Coddington, P.D. and A.J. Newell. 2004. "JAPARA - A Java

Parallel Random Number Generator Library for High-

Performance Computing". In Proceedings of the 18th

International Parallel and Distributed Processing Symposium

(IPDPS'04), Number 5, 156–166.

Coddington, P.D. 1997. "Random Number Generators for Parallel

Computers". Northeast Parallel Architecture Center.

Comfort, J.C. 1984. "The simulation of a master-slave event set

processor". Simulation, Number 42, No.3, 117–124.

Fujimoto, R.M. 2000. Parallel and Distributed Simulation Systems.

Wiley, New York.

Fujimoto, R.M. 2015. "Parallel and Distributed Simulation". In

Proceedings of the 2015 Winter Simulation Conference, 45–59.

Göbel, J.; P. Joschko; A. Koors; and B. Page. 2013. "The Discrete

Event Simulation Framework DESMO-J: Review, Comparison

to other Frameworks and Latest Development". In Proceedings

of the 27th European Conference on Modelling and Simulation,

European Council for Modelling and Simulation, W.

Rekdalsbakken, R.T. Bye; and H. Zhang (Eds.) (Aalesund -

Norway, 27th-30th May 2013), 100–109.

Hill, D.R.C. 2003. "URNG: A portable optimization technique for

software applications requiring pseudo-random numbers".

Simulation Modelling Practice and Theory, Number 11, No.7,

643–654.

Hill, D.R.C.; C. Mazel; J. Passerat-Palmbach; and M.K. Traoré.

2013. "Distribution of Random Streams for Simulation

Practitioners". Concurrency and Computation: Practice and

Experience, Number 25, No.10, 1427–1442.

Jefferson, David, R. 1985. "Virtual time". ACM Transactions on

Programming Languages and Systems, Number 7, No.3, 404–

425.

Kaudel, F.J. 1987. "A literature survey on distributed discrete event

simulation". ACM SIGSIM simulation digest, Number 18, No.2,

11–21.

Knuth, D.E. 1997. The Art of Computer Programming -

Seminumerical algorithms. Addison-Wesley, Reading, MA.

Kunz, G. 2010. "Parallel Discrete Event Simulation". In Modeling

and Tools for Network Simulation. Springer, 121–131.

Mascagni, M.; D. Ceperley; and A. Srinivasan. 1999. "SPRNG: A

Scalable Library for Pseudorandom Number Generation". In

Proceedings of the 9th SIAM conference on parallel processing

for scientific computing.

Page, B. and W. Kreutzer. 2005. The Java simulation handbook.

Simulating discrete event systems with UML and Java. Shaker,

Aachen.

Pawlikowski, K.; V.W.C. Yau; and D. McNickle. 1994.

"Distributed Stochastic Discrete-Event Simulation in Parallel

Time Streams". In Proceedings of the 26th Winter Simulation

Conference, 723–730.

Perumalla, K. S. 2006. "Parallel and Distributed Simulation:

Traditional Techniques and Recent Advances". In Proceedings

of the 38th Winter Simulation Conference, 84–95.

Srinivasan, A.; D.M. Ceperley; and M. Mascagni. 1999. "Random

Number Generators for Parallel Applications". Advances in

chemical physics, Number 105, 13–36.

AUTHOR BIOGRAPHIES

ARNE KOORS obtained his master degree in Computer

Science from University of Hamburg, Germany. Since then

he has been working as a software developer and

management consultant in the manufacturing industry,

primarily in the field of demand forecasting and planning.

Furthermore, he works as a research associate and on his

PhD thesis in the Modelling & Simulation research group led

by Prof. Dr. Page.

BERND PAGE holds degrees in Applied Computer Science

from the Technical University of Berlin, Germany and from

Stanford University, USA. As professor for Modelling &

Simulation at the University of Hamburg he researches and

teaches in Computer Simulation and Environmental

Informatics. He is the head of the workgroup which

developed DESMO-J and the author of several simulation

books.

