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ABSTRACT 

 

Functional decomposition, also called functional parallelism, 

was an approach to introduce inner parallelism into discrete 

event simulators in the 1980s, in order to accelerate 

simulation experiments. Due to technical restrictions at that 

time, it did not gain widespread acceptance. This paper 

introduces modifications of the approach, considering 

today’s technical possibilities. A focus is set on 

asynchronous execution of simulation infrastructure by 

thread pools. Applying the concepts of asynchronous 

functional parallelism to random number generation leads to 

our proposal for asynchronous random number generation 

(ARNG), which has been implemented into the discrete 

event simulation framework DESMO-J. We describe its 

implementation and report on results of experiments which 

were conducted to assess the performance potential. The 

impact of different parameters is analyzed and advice for 

parameterization is given. 

We found that the attainable acceleration factor of our 

ARNG implementation is limited within a range from circa 2 

to 5 on an eight core machine, depending on the concrete 

distribution and the number of thread pool workers used. 

If two (otherwise idling) processor cores are employed, then 

random number generation can be accelerated by a factor of 

at least 1.74 in non-trivial simulation models, and by a factor 

of at least 3.00, utilizing four processor cores. 

 

INTRODUCTION 

 

Discrete event simulation (DES) is a computationally 

intensive software technique, where event routines with 

stochastic inter-event times are successively executed, to 

advance model state in time (Page and Kreutzer 2005). 

Nowadays, discrete event simulation users typically employ 

four to eight core computers for office work; however, their 

conventional discrete event simulators use rarely more than 

one processor core. The cause for this disproportionate 

utilization of processing power is that DES conceptually is a 

sequential technique: the timely non-coincident event 

routines are processed one after another, to ensure realistic 

flow of simulation time from past to future and to guarantee 

causal validity of experiments. 

To overcome this dilemma and better use available 

computational units (CUs, i.e. processor cores, CPUs or 

computers in a (local) network), historically the following 

approaches have been discussed, with the objective of 

accelerating DES experiments by parallelization (fig. 1): 
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Figure 1: DES Parallelization Approaches 

 

1) For statistical reasons, DES experiments have to be 

repeated with varying random number generator seeds. 

These replicated trials can be executed in parallel on 

different CUs; e.g. (Pawlikowski et al. 1994). 

2) Model partitioning divides simulation experiments into a) 

disjoint time intervals (time parallel partitioning) or b) 

disjoint sets of state variables (space parallel partitioning) 

(Perumalla 2006, Kunz 2010). Each model partition is 

assigned to a so called logical processor (LP). Simulation 

experiments are carried out by mapping logical processors to 

CUs and executing their partitions in parallel. 

Whereas time parallel partitioning is only feasible for a 

limited number of applications (Fujimoto 2000, p.177–191), 

most research in the last two decades concentrated on space 

parallel partitioning (cf. Fujimoto 2015): LPs have 

independent simulation clocks that need to be synchronized 

to avoid causal violations, where events in the present of one 

LP request modification of state variables in the past of 

another LP. i) Conservative synchronization (Chandy and 

Misra 1979) ensures that all LPs proceed orderly to prevent 

causal violations, whereas ii) Optimistic synchronization 

(Jefferson 1985) allows uncoordinated time advance in 

different LPs, but takes precautions enabling LPs to roll back 

their local state to previous states, which have been valid 

before a causal violation occurred. 

3) Functional decomposition, also called functional 

parallelism suggests to internally parallelize simulators, e.g. 

by dividing the event list and managing their parts on 

different CUs (Comfort 1984). 

 

The replicated trials approach 1) is conceptually easy to 

comprehend and established in practice. Nevertheless, it 

cannot accelerate individual experiments, as required in 

online simulations, or in the developmental phase of a 

simulation model. 



 

 

Many contemporary publications use the term Parallel 

Discrete Event Simulation (PDES) synonymously with space 

parallel model partitioning 2b). If a model can be split into 

seldom communicating sub-models in a straightforward 

manner, model partitioning is a proven option. However, not 

all model classes lend themselves for model partitioning 

equally well. Moreover, having to consider technical 

constraints of the chosen partitioning and synchronization 

scheme upstream, in the logical modeling phase, can 

interfere with reasoning about the original system from an 

unimpeded functional perspective. 

 

From a historical point of view, work on functional 

decomposition 3) has mainly been published in the 1980s. 

The survey (Kaudel 1987) lists ten papers, half of them 

authored or co-authored by John C. Comfort. Apart from 

Comfort’s primary activities, other authors proposed or 

announced further work or reported about ongoing research, 

but most without concrete results. To our best knowledge, 

we could not find evidence of further work on functional 

decomposition or functioning implementations in real 

discrete event simulators after 1993. 

The main criticism on functional decomposition is that it 

does not scale (Fujimoto 2000, p.48). (Kaudel 1987) expects 

speedup to be “probably limited to a factor of two for most 

problems”. These reservations are caused by the basic 

determination that simulation infrastructure components like 

event set processing, random number generation, statistics 

collection, etc. should be processed by a fixed number of 

dedicated computers, resp. networked processors. 

 

The remainder of this paper is structured as follows: 

The next section modifies the traditional functional 

decomposition approach with regard to today’s technical 

possibilities; it particularly proposes introducing thread pool 

based asynchronous parallelism into simulation 

infrastructure components. The following section describes 

our implementation of asynchronous random number 

generation, by applying the principles of asynchronous 

parallelism to parallel random number generation. 

Subsequently, we report on results of experiments that were 

conducted to assess the performance potential of 

asynchronous random number generation. Last, we give an 

outlook and a conclusion. 

 

GENERAL APPROACH 

 

Nowadays, office and even laptop computers have a suitable 

number of cores and run under multi-threaded operating 

systems, providing access to shared memory and lightweight 

synchronization primitives by comfortable APIs. 

Against this background, we were interested to explore 

whether the original idea of accelerating DES by functional 

parallelism could successfully be adapted to today’s 

technical possibilities. The original concept was modified on 

some points: 

 

1. We do not employ networked computers for simulation 

infrastructure anymore, but focus on processor cores 

within single processors, with access to shared memory. 

2. No fix assignment of simulation infrastructure 

components to CUs is made. Instead, method 

invocations of simulator sub-components are flexibly 

executed on demand, by a thread pool which itself is 

backed by the processor cores. 

3. For performance reasons, the simulation infrastructure 

may internally communicate by shared memory 

concurrency. 

4. Special attention is directed to asynchronous parallelism 

as a means of potential experiment acceleration. 

 

Items 2 and 4 of the list above are detailed in the following. 

 

Thread Pools for Simulation Infrastructure Execution 

 

It is advisable to distribute simulator functionality like event 

set processing, random number generation, waiting queue 

operation, etc. to respective simulation infrastructure 

components. There may be more than one object per 

component type (e.g. several random number generators), 

and components should be structured into fine-grained sub-

components (fig. 2, left side). Sub-components are passive 

objects without an own thread. For execution of simulator 

functionality, references to methods of sub-components are 

committed to a thread pool, which consists of several 

workers (fig. 2, center). Every thread pool worker has an 

own thread and can execute one sub-component method at a 

time. In this way, sub-components gain processing power 

only when needed, borrowing it from thread pool workers 

temporarily, and on demand. 

The operating system assigns thread pool workers to 

physical processor cores (fig. 2, right side). Depending on 

the number TPW of thread pool workers and the number of 

actually available processor cores PC, several simulator 

functionalities can be executed in parallel. 
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Figure 2: Relations between Simulator Sub-components, 

Thread Pool Workers and Processor Cores 

 

Figure 2 shows a situation where two simulator sub-

component methods are executed by two thread pool 

workers in parallel. One of the three thread pool workers is 

idle at the moment, one processor core is idle, and one core 

is executing other non-simulation functionality. 

If more method calls are scheduled into the thread pool than 

available workers exist, then the calls will be implicitly 

queued. Generally, multi-tasking within the thread pool is 

cooperative, not preemptive. Therefore, sub-component 

methods should be short and non-blocking, to avoid 

degeneration of simulator responsiveness. 

By contrast, thread pool workers will be executed by 

processor cores in a preemptive way in most modern 

operating systems. Hence, TPW may be set to TPW > PC, if 

long and/or blocking method calls in the simulation 

infrastructure cannot be avoided. In this way, long sub-

component methods will be interrupted indirectly, because 

the backing cores will be re-assigned to other thread pool 

workers by the operating system. 

The finer grained the simulator sub-component functionality 

is, the better the simulator will scale when TPW is increased 



 

 

(e.g. due to subsequent processor generations). Therefore, it 

is desirable to subdivide simulation functionality into 

reasonably fine-grained sub-components from the beginning. 

 

Asynchronous Parallelism in Simulation Infrastructure 

 

In conventional discrete event simulators, one thread 

sequentially executes model logic as well as simulator 

functionality (fig. 3a): all method calls to simulation 

infrastructure are executed by the same (model) thread. 

Synchronous parallelism tries to accelerate simulation 

functionality by distributing it to parallel threads in a fork-

join way (fig. 3b): The model thread calls a separate 

simulator thread, which in turn delegates sub-tasks to 

parallel subordinated worker threads. When all workers have 

finished, the individual results are consolidated, and the 

consolidated result is returned to the waiting model thread. 

Dependent on the specific task and the number of workers 

employed, faster simulator response may be obtainable. In 

consequence, proportionally more time may be spent for 

model computation, and the simulation experiment may 

terminate earlier. However, the model thread has to wait for 

the simulator thread(s), at least for as long as the longest 

internal sub-method call takes, plus the additional fork-join 

overhead. 

 

We propose applying asynchronous parallelism to discrete 

event simulation infrastructure. Model thread and simulator 

infrastructure components should be decoupled to the 

greatest possible extent. 

In this case, the model thread can invoke simulator 

functionality asynchronously, meaning that the model 

directly proceeds with its own functionality after invocation 

(fig. 3c): in many use cases, the model does not necessarily 

have to wait for termination of the called simulator 

functionality. Moreover, simulator sub-components should 

perform asynchronously as well, parallel on several thread 

pool worker threads. 

Compared to sequential or synchronous parallel execution, 

the model thread is not burdened or blocked with regard to 

simulator functionality but can immediately proceed with 

model logic, while simulator functionalities execute 

asynchronously and in parallel in the background. 

 

Naturally, all downstream simulator functionality like 

statistics, writing of trace or log files and display of run time 

status information resp. visualization offers itself for 

asynchronous parallelism. Nonetheless, upstream 

components like random number generation can be 

implemented in an asynchronous manner as well, as this 

paper demonstrates. Further, we are convinced that 

midstream components like event scheduling and waiting 

queue management are able to operate asynchronously in 

parallel, too. Generally, designing simulation infrastructure 

components with asynchrony in mind will enable simulation 

experiments to progress faster. 

 

The revised and updated form of asynchronous functional 

parallelism delineated above has notable potential for 

acceleration of traditional sequential DES experiments. 

Besides, its concept does not oppose the established 

parallelization approaches (model partitioning and replicated 

trials), but can orthogonally complement them as well, by 

putting otherwise unused processor cores to work. 

 

RANDOM NUMBER GENERATION 

 

This section first gives a short overview of parallel random 

number generation and then presents our implementation of 

asynchronous random number generation in DESMO-J. 

DESMO-J (www.desmo-j.de) is our open source discrete 

event simulation framework in Java, developed and 

maintained by the modeling and simulation workgroup at the 

University of Hamburg (Göbel et al. 2013). 

 

Parallel Random Number Generation 

 

Modeling systems in discrete-event style very often involves 

mapping parts of the real system to stochastic distributions, 

because a) the original system actually behaves randomly, b) 

inter-relations beyond the system boundary are modeled 

stochastically (e.g. inter-arrival times) or c) potentially 

deterministic internal system details of secondary relevance 

are idealized to stochastic processes (e.g. service times). 

Algorithmic random number generators (RNGs) provide 

stochastically distributed number streams. They often base 

on uniformly distributed random numbers; more complex 

distributions are obtained by applying a transformation 

function or another algorithm to these uniformly distributed 

random numbers (e.g. Page and Kreutzer 2005, pp.161–168). 

Essential requirements for algorithmic random number 

generation are a) statistical soundness and b) reproducibility. 

a) Statistical soundness means that random numbers within 

one random number stream are statistically independent; no 

predictable patterns should be produced and the generated 

numbers should be uncorrelated and non-cyclic; or at least 

cycles have to be very, very long (Srinivasan et al. 1999). 

b) Reproducibility of random numbers is important to make 

stochastic experiments repeatable, e.g. for debugging, 

analysis of model parameter variation, or for verification by 

other scientists. 

Intensive research has gone into high quality sequential 

random number generation; a good overview is given in 

(Knuth 1997, chap. 3). For the purpose of this paper, it is 
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Figure 3: a) Sequential Execution, b) Synchronous Parallelism, c) Asynchronous Parallelism in Simulation Experiments 
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enough to be sure that very good off-the-shelf sequential 

random number generators exist. For example, our 

simulation framework DESMO-J uses a Mersenne Twister 

or alternatively a Linear Congruential Generator. 

 

Parallel random number generators (PRNGs) are concerned 

with providing reproducible streams of random numbers that 

are statistically sound also when examining pairs or sets of 

random number streams. Moreover, PRNGs should be 

scalable and without data sharing or synchronization apart 

from an initialization phase (Coddington 1997; Srinivasan et 

al. 1999). The techniques employed here either partition one 

sequential random number stream into different sub-streams 

returned to parallel client threads (sequence splitting, 

random spacing or leap frog) or generate different random 

number streams per client, by individually parameterizing 

algorithms. 

In the context of this paper, it should be stressed that parallel 

random number generation is not about accelerating random 

number production by n threads working in parallel on one 

random number stream. PRNG rather ensures that n threads 

concurrently producing n random number streams (with no 

acceleration at all) will maintain statistical soundness, when 

pairs of these random number streams are examined. 

A good survey on parallel random number generation is 

given in (Hill et al. 2013). For the purpose of this paper, it is 

sufficient to be aware that decent parallel random number 

generators are available (e.g. JAPARA (Coddington and 

Newell 2004) or SPRNG (Mascagni et al. 1999)). Any of 

these PRNGs can be used as a high-quality black-box 

component in asynchronous random number generation, as 

exposed in the following sub-section. 

 

Asynchronous Random Number Generation 

 

The main idea of asynchronous random number generation 

(ARNG) is to produce blocks of random numbers in 

advance, in order to immediately provide single random 

numbers when a distribution is sampled. 

A similar concept is described in (Hill 2003): Here, millions 

of random numbers are pre-computed before the start of an 

experiment. The generated stream of random numbers is pre-

compiled and linked to the simulation program, like a 

program library. Whenever the simulation model needs to 

sample random numbers, the pre-computed stream is 

unrolled and single numbers are drawn from it, with short 

constant access time. 

Our asynchronous functional parallelism approach provides 

short constant access times as well, but differs in that it 

neither needs a separate pre-computation phase nor memory 

for millions of random numbers. Instead, the stream of 

random numbers is pre-computed on demand, parallel to a 

simulation experiment, and in an asynchronous and block 

wise manner. 

 

Our implementation presented here is only one of several 

variants conceivable. More sophisticated procedures may be 

introduced in the future. 

The asynchronous random number generator described here 

consists of two types of sub-components: 

 

A random number cache (hereinafter referred to as cache) 

holds a reference to a block of pre-computed random 

numbers (cf. fig. 4, left). If a sample is requested, the next 

random number from this current sample block is read and 

instantly returned. 

If the whole current sample block is consumed, a new block 

is taken from one of the internal cache lines of the cache. 

Cache lines are used cyclically, in a round robin procedure. 

A variable called current cache index refers to the current 

cache line. For replacement of the exhausted block, the 

current cache index is set to the following cache line. Then, 

the thread utilizing the cache (usually the model thread) tries 

to copy the sample block reference of the (newly) indexed 

current cache line to the current sample block variable. If 

this succeeds, the content of the current cache line is 

invalidated and a corresponding random number producer 

sub-component is scheduled into the thread worker pool, for 

generation of a new sample block. Finally, the first sample of 

the (new) current sample block is returned to the model. 
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Figure 4: Sub-Components of  

Asynchronous Random Number Generation 

 

If the cache cannot copy the content of the new current cache 

line because of invalidity, then the executing (model) thread 

blocks until the awaited sample block will be inserted into 

the current cache line. 

 

Random number producers (hereinafter called producers) 

are sub-components which access basic RNG or PRNG 

functionality (see previous sub-section). On execution by a 

thread pool worker, a producer creates an array of block size 

samples and inserts a reference to this array into its 

corresponding cache line (see fig. 4, right, producer no. 1). 

If the cache was blocked awaiting just this cache line, the 

model thread will be resumed, move the new sample block 

reference to the current sample block variable, invalidate the 

cache line again and instantly re-order another sample block 

by re-scheduling the producer. 

If the cache was not blocked awaiting the inserted cache line, 

it will simply continue its normal operation (cf. fig. 4). 

Cache lines should be implemented using a synchronized 

data structure like a Java ArrayBlockingQueue of size 

1 (i.e. space for 1 sample block reference per cache line). 

By the execution sequence given above, producers are only 

scheduled if their corresponding cache lines are empty. 

Therefore, no producer can insert more than one sample 

block into its cache line. Moreover, each producer holds only 

one private reference to its corresponding cache line. It is 

impossible for a producer to access cache lines of other 

producers. 

Upon cache initialization, producers are immediately 

scheduled for asynchronous pre-production of sample blocks 



 

 

to cache lines. Thus, samples may already be available on 

first demand of a model thread. 

 

Fig. 4 shows a situation where the model thread plus three 

thread pool workers execute in parallel: The model thread 

accesses the current sample block of the random number 

cache (originally stemming from cache line 3), while 

producer 1 inserts his pre-computed sample block into cache 

line 1, and producers 2 and 3 are still busy with re-generating 

their sample blocks. 

 

It should be noted that the random number stream created by 

this implementation is reproducible, but may differ from a 

sequentially generated random number stream, because here 

sample blocks originating from different (identically 

distributed) random number streams are deterministically 

interlocked. 

If no basic PRNG is used, then statistical soundness of the 

resulting stream output by the cache has to be investigated 

carefully: Though all sample blocks trace back to the same 

distribution, an unfortunate combination of long-distance 

correlation in the underlying random number stream together 

with producers starting their block sequences at just these 

correlated entry points may lead to short-distance 

correlations in the random number stream provided by the 

cache. We apply random seeding to mitigate this problem, in 

case producers use conventional RNGs like the Mersenne 

Twister. 

However, if an advanced PRNG is used which supports the 

so-called jump-ahead technique (random numbers s steps 

ahead in the stream are directly accessible), then p producers 

can use p parallel entry points with block size distance into 

the same underlying random number stream. In this case, the 

cache will reproducibly output the same sound random 

numbers as the underlying sequential stream, but more 

rapidly, because obtained in parallel. 

 

Two further options should be mentioned:  

First, the cache may adapt the size of sample blocks 

requested from producers dynamically (blockSize is a 

parameter of the producer’s requestSampleBlock 

method). If the model needs samples at higher frequencies, 

then smaller block sizes are advisable: they allow thread 

pool workers to switch more quickly between different sub-

components, thereby increasing responsiveness of the thread 

pool as a whole. 

As a second option, the cache may create or lay off 

producers dynamically, for similar motives as above. 

 

EXPERIMENTAL RESULTS 

 

This section compares performance impacts of asynchronous 

random number generation with conventional sequential 

random number generation. 

 

Experiment Design 

 

All experiments have been carried out on a Windows 7 64 

bit machine with 8GB RAM and an Intel i7-3610QM 

processor, running at 2.30 GHz with 4 physical cores plus 4 

hyper-threaded cores. 

 

Overall, 650 random number generation experiments have 

been performed, each based on 100 replications of sampling 

10 million random numbers by the model thread. 

 

The following parameters were varied per experiment: 

– Distribution type (Uniform, Exponential, Normal and 

Poisson; Poisson distribution with different mean parameter 

settings); or mixes of the aforementioned distribution types 

– Number of thread pool workers (1 up to number of 

processor cores, i.e. 1…8, cf. fig. 2). The number of cache 

lines equaled the number of processor cores, i.e. 8, cf. fig. 4. 

– Sample block size (4
3
…4

10
 samples per sample block, i.e. 

64, 256, 1024, 4096, 16384, 65536, 262144, 1048576) 

 

To compensate for runtime irregularities like garbage 

collection etc., 101 replications were performed per 

experiment. Results of the first replication were discarded; it 

was considered a warm up replication. The time needed for 

consecutively sampling 10 million random numbers was 

measured and arithmetically averaged for the following 100 

replications. A pause of 3 seconds was applied between 

replications, as cool-down period. 

Experiment setup time and other non-sampling times were 

not incorporated in the experimental results, but pre-

production of producers upon cache initialization was 

included. 

Apart from 10 sequential base line experiments, production 

and consumption of random numbers occurred 

asynchronously and concurrently in all other experiments. 

In consequence, every data point in the following line graphs 

refers to 1 random number generation experiment backed by 

100 replications of sampling 10 million random numbers. 

 

All experiments were implemented in Java 8u101, using our 

discrete event simulation framework DESMO-J. Every 

experiment consisted of initializing the simulation 

infrastructure and scheduling one single external event 

which then sampled ten million random numbers in a for-

loop. 

The basic uniform random number generator used was the 

same Mersenne Twister as in the standard DESMO-J 

sequential random number generators.  

The algorithms that transformed uniform random numbers to 

different distributions were the same as those used for 

sequential random number generation. In fact, the standard 

algorithms were passed as constructor parameters (Lambdas 

in Java 8) to random number producers. 

Different instances of producers were initialized by random 

spacing (random seeding). 

 

Additional Memory Consumption 

 

Additional storage requirements of asynchronous random 

number generation are determined by a) the number of cache 

lines CL per cache and b) the sample block sizes SBS (cf. fig. 

4). 

In total, (CL + 1) * SBS * 8 Bytes of memory are needed per 

cache, e.g. 72MB on our machine with 8 cache lines + 1 

current sample block, and sample block size 1,048,576. 8 

Bytes are necessary for storage of the Java data type long 

resp. double. 

Generic implementations will have a higher memory 

footprint, because in this case the sample blocks hold 



 

 

references to Long or Double objects. On 64 bit machines, 

these references have a size of 8 Byte as well, but now 

additional 8 Byte per Long or Double object referred to will 

double the storage requirements. 

Though maximally 144MB seem to be tolerable on today’s 

computers, later results will show that very high sample 

block sizes should be avoided anyway, since they increase 

sampling times and congest the thread pool. 

 

Effort Ratios of Sequential Random Number Generation 

 

The time necessary for random number generation varies, 

depending on the concrete type of distribution chosen. When 

time for sequential generation of ten million uniformly 

distributed random numbers is set as 100%, then sequential 

generation of exponentially distributed random numbers 

takes about 60% longer in DESMO-J (cf. fig. 5), and 

sequentially generating normally distributed samples takes 

about twice the time of uniformly distributed random 

numbers. 

 

 
 

Figure 5: Ratios of Sequential 

Random Number Production Times 

 

These relationships hold independently of the respective 

distribution parameters (lower and upper bound; mean; 

standard deviation). However, generating samples of Poisson 

distribution is dependent on the parameter value (mean) in 

DESMO-J. It will take about 345% to 720% of the time 

needed for uniform random number generation, if the mean 

is in the range from 1.0 to 5.0, and longer for higher 

parameter settings. We will further refine our algorithms, but 

for the sake of this paper, the different Poisson generation 

efforts will be regarded as instances of computationally 

intensive random number generation algorithms of any 

distribution. 

In the following, the sampling times for conventional 

sequential random number distributions are set as base lines 

for comparison with their asynchronous variants. The 

Acceleration Factor AF is defined as the quotient of the base 

line and the sampling time for a specific combination of 

thread pool size and sample block size, per distribution. 

AF = 1 means that conventional random number generation 

and asynchronous random number generation need the same 

time, whereas AF = 2 means that asynchronous random 

number generation only takes half the time of the base line, 

resp. samples can be drawn at twice the speed of 

conventional random number generation. 

 

Impact of Sample Block Size 

 

First, the impact of sample block size on the acceleration 

factor is studied. Fig. 6 visualizes experimental results for 

asynchronous random number generation for a) one Uniform 

distribution b) one Poisson(5) distribution and c) a 

distribution mix, mimicking a minimal client-server system 

with one Exponential, one Uniform and two Normal 

distributions, for inter-arrival times, job type choice and 

service times of two servers. 

Different sample block sizes are mapped to the line graph 

abscissas, the acceleration factor AF to the ordinates, and 8 

lines with different colors and icons denote thread pool sizes 

from 1 to 8 (black to red) thread pool workers (TPW). 

Please note that line graphs ordinates have differing scales. 

 

Obviously, extreme sample block sizes (SBS) have a 

negative influence on the acceleration factor AF: Irrespective 

of distribution and number of thread pool workers, all lines 

rise for SBS < 1,024 and almost all fall for SBS > 65,536. By 

contrast, the AF stays on a central plateau for SBS in [1024; 

65536], with different variations per distribution (mix). 

Graphs for other distributions or distribution mixes (not 

shown here) confirm this finding. 

 

Accordingly, it is advisable to generate sample blocks with 

sizes in the interval [1024; 65536] for best asynchronous 

random number generation performance in practice. 

We recommend smaller sample block sizes, because then 

thread pool workers are released more quickly and can turn 

to serving other requests faster. In consequence, the 

simulation background architecture becomes more 

responsive, which finally helps the foreground simulation 

model thread to proceed quicker. 

 

To facilitate further experimental result visualization, sample 

block size is set w.l.o.g. to 4,096. In consequence, additional 

 
 

Figure 6: Acceleration Factor by Sample Block Size for a) Uniform Distribution, b) Poisson(5) Distribution, c) Distribution Mix 
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memory demand for 8 + 1 sample blocks is reduced to 

576KB per distribution (in generic implementations). 

 

Impact of Thread Pool Size 

 

Figure 7 relates the number of workers employed in the 

thread pool (1…8) to the obtainable acceleration factor AF 

for different distributions and distribution mixes. As stated 

above, all data points in this graph base on sample block size 

SBS 4,096, but graphs for other SBS closely resemble figure 

7 when SBS is in the practically advisable range from 1,024 

to 65,536. 

The seven acceleration lines base on the following 

distributions: Uniform (black, U), Normal (blue, N), 

Exponential (green, E), Mix 1 (orange, M1), Mix 2 (brown, 

M2), Poisson(1) (purple, P(1)) and Poisson(5) (red, P(5)). 

Mix 1 consists of 1 Exponential, 1 Uniform and 2 Normal 

distributions, sampled consecutively (cf. fig. 6c). 

Mix 2 mimics a more comprehensive client-server scenario 

with 5 Exponential, 5 Uniform and 10 Normal distributions, 

modeling different inter-arrival times, job type choices and 

service times. 

 

 
 

Figure 7: Acceleration Factor by Thread Pool Size 

for different Distributions and Distribution Mixes 

 

For one thread pool worker, the acceleration factor AF 

ranges from 0.84 (Uniform) to 1.0 (Poisson(5)), indicating 

that asynchronous random number generation comes with a 

certain overhead. Naturally, the overhead is relatively higher 

for fast Uniform random number generation (16%) and 

almost negligible for the computationally intensive 

Poisson(5) distribution (< 0.5%), cf. fig. 5. 

The three basic Uniform, Normal and Exponential 

distributions benefit from asynchronous random number 

generation with AF ranging from 1.43 (Uniform, 2 workers) 

to 2.79 (Exponential, 7 workers). These lines reach 

saturation plateaus when more than five workers are 

employed. Five workers obviously suffice for asynchronous 

pre-computation of random numbers here; there is no 

additional utility in bigger thread pool sizes. 

 

Practically relevant simulation models typically will use 

more than one distribution. It is noteworthy that the mixes 

M1 and M2 of the basic three distributions benefit more than 

the basic distributions themselves from asynchronous 

random number generation. This can be explained by 

reasoning that consecutive cyclic sampling decreases the 

sampling frequency per distribution, while at the same time 

more background workers can be used for parallel cache line 

re-generation. In consequence, we measured an AF from 

1.74 (Mix 1, 2 workers) up to 3.60 (Mix 2, 5 workers). The 

Mix AFs surpassed the basic distribution AFs by up to 81% 

(Mix 2 AF 3.32 vs. Uniform AF 1.83, both with 4 workers). 

 

The more computationally intensive random number 

generation for a distribution or a mix of distributions is, the 

better asynchronous random number generation scales with 

increasing thread pool size. As opposed to lines for Uniform, 

Normal and Exponential distributions, which remain on 

horizontal plateaus for more than five workers, the lines for 

the Poisson distributions continuously slope upwards, 

reaching an AF of 4.86 (Poisson(5)) with eight thread pool 

workers in use. 

It is comprehensible that comparatively more time spent in 

random number generation methods (cf. fig. 5) can be better 

offset by more parallel worker threads than fast random 

number generation like in the Uniform distribution case: 

Longer RNG method calls have a better ratio of additional 

acceleration versus overhead for asynchronous operation; 

thus more workers can gradually be employed, until the 

specified ratio approaches 1.0 and the acceleration line 

finally reaches saturation. 

 

Summarizing fig. 7, the acceleration factor rises when more 

thread pool workers are employed for asynchronous random 

number generation. However, the attainable maximum 

acceleration factor seems to be limited to a range from 

around 2.0 (single basic distributions) to around 3.5 (mixes 

of basic distributions). These acceleration factors are reached 

when employing 5 to 6 workers; therefore asynchronous 

random number generation does not scale unlimitedly with 

thread pool size. Only some computationally intensive 

distributions like the DESMO-J Poisson implementation 

benefit from further workers and can approach acceleration 

factors of 5.0 and possibly more. 

Non-trivial simulation models with a mix of random number 

generators similar to Mix 1, or more comprehensive ones 

like Mix 2, experience an acceleration factor of at least 1.74, 

if two workers are employed, and an acceleration factor of at 

least 3.02 when utilizing four workers. 

 

In consequence, it seems worthwhile to employ two to four 

otherwise idling processor cores for asynchronous random 

number generation, by accordingly dimensioning the thread 

pool. However, it should be noted that the operating system 

finally assigns processor cores to thread pool workers. 

Therefore it is not guaranteed that every worker is 

continuously backed by a processor core. Vice versa, 

processor cores are not tied to workers, meaning that the 

physical cores may be used for other tasks (e.g. other 

simulation functionality) when workers in the thread pool 

idle. 

 

OUTLOOK 

 

The experiments reported about are artificial in that they 

only sample random numbers, but do not carry out other 

simulation or model functionality. This is of course 

necessary and justified when studying asynchronous random 

number generation on its own, uninfluenced by side effects 

of other program code. But it would of course be interesting 



 

 

to examine the interdependencies when utilized in realistic 

simulation models and – even more – when applied together 

with other simulation infrastructure components that 

implement the concepts of asynchronous functional 

parallelism as well. 

For example, we expect that in conjunction with real 

simulation code, fewer parallel workers will suffice for the 

same acceleration factors as stated in the section above, 

because of reduced utilization intensity of asynchronous 

random number generation and thus a lower demand 

frequency of sample block re-generation. 

 

Apart from studying asynchronous random number 

generation “in the wild”, we intend to introduce the 

principles of asynchronous functional parallelism into further 

components of DESMO-J, like event set processing, waiting 

queue operations and statistics, to accelerate standard 

sequential simulation experiments in a transparent way. 

 

CONCLUSION 

 

This paper was concerned with conception and 

implementation of asynchronous random number generators, 

applying the principles of asynchronous functional 

parallelism to random number generation. 

The experiments conducted gave an overview of the 

potential and limitations of our implementation of 

asynchronous random number generation in discrete event 

simulators and discussed settings of parameters. 

Specifically, it is recommended to prefer smaller sample 

block sizes of the interval [1024; 65536], to minimize 

additional memory consumption and increase thread pool 

responsiveness, with regard to the main simulation model 

thread. 

It is particularly worthwhile using two to four otherwise 

idling processor cores, backing a simulation worker thread 

pool of equal size. For non-trivial simulation models using 

four distributions or more, an acceleration factor of about 

1.75 for two workers and of at least 3.0 for four workers can 

be expected, compared to conventional random number 

generation. 

Though highly computationally intensive distributions can 

benefit from further workers and approach an acceleration 

factor of 5.0 on an eight core machine, acceleration of 

asynchronous random number generation does not scale 

linearly up to an arbitrary number of processor cores. 

However, if otherwise idling cores are available, there is no 

reason to not apply ARNG, as proposed in this paper. 
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