

base.camp Talks 29.07.2020

Eugen Ruppert & Benjamin Heusser ruppert at informatik.uni-hamburg.de

BASE.CAMP TALKS PRACTICE SESSION DEEP LEARNING

Organization

base.camp Talks

- lecture series on current and general topics for Computer Science
- practically oriented
- easy to follow
- interactive examples, not just theoretical knowledge

https://www.inf.uni-hamburg.de/inst/basecamp/events/ basecamp-talks.html

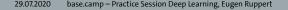
Organization Schedule 29.07.2020

- 16:00 Intro: Practical ML (ER)
- 16:40 Hands-On Session with BSI Brains (BH, BSI)
- 23:59 BSI Brains Accounts time out
 - Login to BSI Brains:

https://partner.bsi-software.com/demo/bsiml_1_2/

Organization Zoom Nettiquette

- Turn on your video, if you can
- If available, use a headset
- Please mute your microphone when not in the conversation mute on/off: Alt + a – Push to Talk: Space
- We want to record the session and make it available for people who could not join today We take privacy seriously. Thus, we will blur/black out your faces, so don't worry about asking questions and giving feedback!



Practical Machine Learning

5 Core Steps of Applied ML

- Exploratory Analysis
- 2 Data Cleaning
- 3 Feature Engineering
- 4 Algorithm Selection
- 5 Model Training

5 Core Steps of Applied ML Exploratory Analysis

simple algorithm applied on current data

- e.g. Desicion Tree algorithms
- Random Forest can capture non-linearity
- Question: can we get any meaningful classification from our data?

5 Core Steps of Applied ML Data Cleaning

- check data for errors, missing values
- work with domain expert:
 - can we provide default values?
 - how to detect outliers or wrong data?

5 Core Steps of Applied ML Feature Engineering

check available data:

- how can you scale/normalize the data meaningfully?
 e.g. does it have an exponential, logarithmic growth? –
 feature scaling important for training
- can you combine multiple data points (e.g. history)?
- can you create new features out of existing ones?
- bring additional data sources for better classification
- sanity check: better data and features should perform better on the simple algorithm

5 Core Steps of Applied ML Algorithm Selection

- how much data do you have?
- how many training resources?
- what is an acceptable classification time?
- do you need live updates (online learning)?

5 Core Steps of Applied ML Model Training

- split data into training and test split e.g. 80 % training, 20 % test
- train the actual model (model parameters)
- update and adjust hyperparameters
- monitor for overfitting

Training

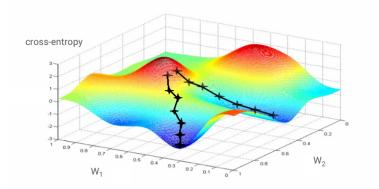
Training Process ML Objective

- find patterns in training data
- correspondence between input (features) and output (label)
- minimize Loss on the training data
- assumption: training data is drawn from the same distribution as test data

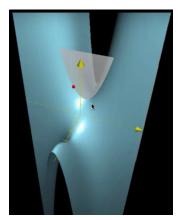
Loss/Cost Function

- missclassifications during training are accumulated into Loss
- ideal Loss functon scales with the magnitude of error e.g. (squared) distance to the correct value
- gradient of the error can be computed, so that a Gradient Descent algorithm can improve the model

(Stochastic) Gradient Descent



Stochastic Gradient Descent Partial Derivatives



https://towardsdatascience.com/ a-quick-introduction-to-derivatives-for-machine-learning-people

Training Learning Rate and Optimizer

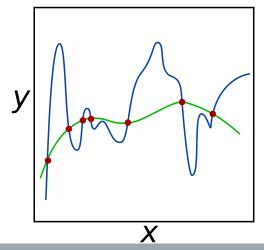
Learning Rate hyperparameter, trade-off:

- high LR (fast, but skipping over optimal solutions)
- low LR (more accurate, but can remain in local minima)
- nice: decaying LR (start fast, slow down gradually)

Optimizer SDG robust

- Adam is usually faster
- hyperparameters need to be tuned for both

Overfitting and Regularization



Regularization

- training optimizes on the training data (overfitting)
 we want robustness for classification of unseen data
 - model complexity fed into the Loss function
 - λ: tradeoff between training accurracy and robustness

best way for regularization: more data!

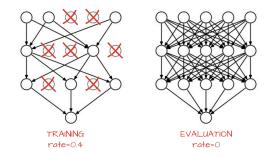
$$Loss_{R}(f) = \sum_{i=1}^{n} V(f(x_{i}), y_{i}) + \lambda R(f)$$

Regularization L1, L2 Regularization

- L1 minimize overall model complexity can introduce sparsity: many values are zero
- L2 higher values are penalized more reduction of high values, many values become close to zero

$$L_1(f) = \sum_{i=1}^n |w(x_i)|$$
$$L_2(f) = \sum_{i=1}^n w(x_i)^2$$

Regularization Dropout



- in deep networks, neurons can provide 'bad' output e.g. overfitted on training data
- dropout deactivates random nodes during training
- network becomes more robust and more general, not depending on individual nodes

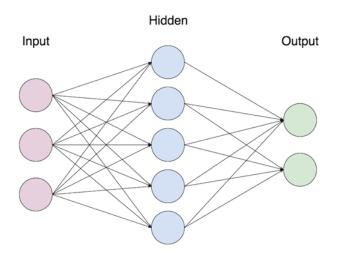
29.07.2020 base.camp – Practice Session Deep Learning, Eugen Ruppert

Deep Learning

Deep Learning

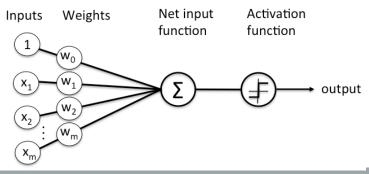
- ML with Deep Neural Networks
- inspired by neurons in the brain
- 'automatic' feature extraction and combination
- several layers of processing, e.g. image recognition: lines – shapes – eyes – face – person
- large parameter space benefits greatly from GPUs

Neural Network

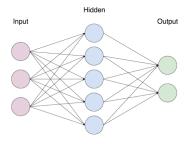


Neuron / Perceptron

- weighted sum of inputs
- bias
- activation function

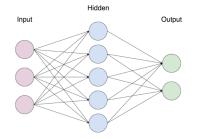


Forward and Back Propagation



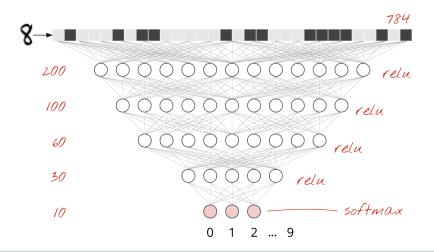
- input is fed through the network (forward propagation)
- error is computed on the output layer
- error is back-propagated through all layers
- gradient of the error is identified, weights are updated

Batches and Epochs



- we compile loss on batches of input elements e.g. 1 batch = 100 input examples
- more robustness, stronger direction of the gradient
- 1 epoch = all input examples have been processed
- with complex neural nets, many epochs are required

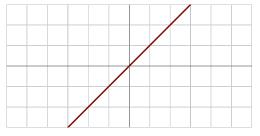
Network Structure



- funneling structure to force feature combinations
- high number of layers leads to many combination options good for large datasets
- BUT: high number of layers increases memory capacity the network learns all the training examples "by heart" – strong overfitting

Activation Functions

Linear/Identity Activation



- + easy derivation
- uniformity does not help differentiation
- correct classifications contribute to learning \rightarrow overfitting

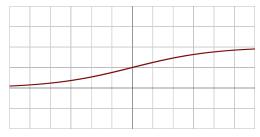
Step Activation



- + error class explicitly defined
- + only error class activates the neuron
- no learning is possible, gradient has no direction

Universität Hamburg

Sigmoid Activation



- + non-linear
- + strong differentiation at decision boundary
- + similar to brain neuron activation
- gradient becomes zero on large errors

Rectified Linear Unit (ReLU) Activation

- + non-linear
- + can handle all errors margins
- + usually faster conversion than sigmoid
- cannot learn from positive examples

Leaky ReLU Activation

- + non-linear
- + can handle all errors margins
- + similar to brain neuron activation
- + usually faster conversion than sigmoid
- + learning from positive examples at a lower rate

Universality

- non-linear data requires non-linear activation functions
- non-linear data requires non-linear feature representation
- you can approximate any non-linear function with non-linear activation functions

http://playground.tensorflow.org/

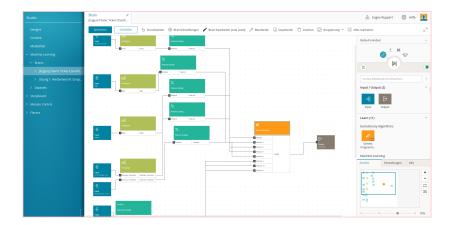
Conclusion

Conclusion

Take-away points:

- how to do practical ML
- understanding network engineering and hyperparameter tuning
- knowledge to aid in understanding papers and lectures
- motivation to try out neural networks

BSI Brains Overview



BSI Brains Put ideas into practice!

- Online Tool for data handling and ML experiments https://partner.bsi-software.com/demo/bsiml_1_2/
- backend based on DeepLearning4J https://deeplearning4j.org/
- easily configurable network structures
- hyperparemeter settings

BSI Brains Network Configuration

Configuration L	ow Level				🕷 Neural Classifier			;
Neural Classifier	Train Para	meter	Metrics		Name			
⊕亡	Ð				Input R ¹ Decimal Vector V			
					R Feature	۲	Û	=
					R Feature 2	0	ů	=
					R Feature 3	0	ů	-
					R Feature 4	۲	ů	=
					R Feature 5	۲	ů	=
32					R Feature 9	0	ů	=
Layer Type	Dense			Q Frozen (j)	R Feature 10	٢	ů	=
nitialization	Zero	Q	Number of Outputs	32	R Feature 11	0	Û	=
Activation	ReLu	Q			Output R ¹ Decimal Vector	÷		
 Regularization 					R Target	٢		
Regularization	L1 Regularization			Q				
Value		0,1	Bias					

43 base camp

BSI Brains Hyperparameters

Neural Classifier	Train Param	eter	Metrics			
∨ General						
Number of Epochs		100	Data Balance Strategy	Unbalanced Q		
Bias Init	Bias Init 1		Randomize Training Set			
Seed	123.456		Use multiple GPUs for training			
Batch Size		20				
> Updater						
> Regularization						
 Updater 						
Updater	NAdam	Q	Beta 2	0,999		
Beta1		0,9	Epsilon	0,0000001		
Schedule	Fixed	Q	Initial learning rate	0,001		

- Tensorflow Playground http://playground.tensorflow.org/
- Tensorflow Tutorial

https://codelabs.developers.google.com/codelabs/ cloud-tensorflow-mnist/

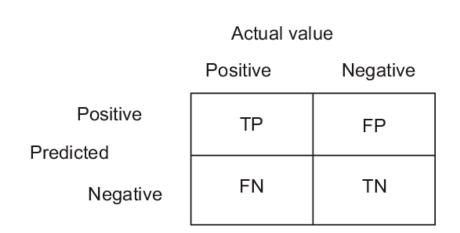
Code: https://github.com/GoogleCloudPlatform/ tensorflow-without-a-phd/tree/master/

tensorflow-mnist-tutorial

Neural Networks and Deep Learning book http://neuralnetworksanddeeplearning.com/

Fin

Evaluation



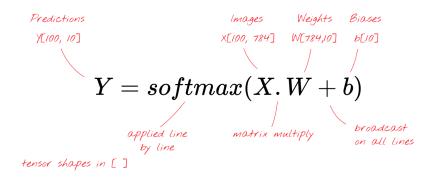
Evaluation

- Accuracy = TP / TP + FP + TN + FN
- Precision = TP / TP + FP
- Recall = TP / TP + FN
- F-score = 2 * Pr * Rec / Prec + Rec

Baselines

- complex ML models need to be justified
- baselines can provide justification
- simple baselines
 - random
 - most frequent class
- strong baselines
 - perceptron
 - related work
 - simple neural networks

Softmax Activation



Softmax Activation

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

- on output layer
- transforms activations into probability distribution
- exponential funciton to increase contrast and give the highest activation a value close to 1.0

