Eurographics Symposium on Virtual Environments (2006)
Roger Hubbold and Ming Lin (Editors)

vjVTK: atoolkit for interactive visualization in
Virtual Reality

K.J. Blont linteractive media/virtual environments, University of Hamburg, Geryma

Abstract

VjVTK is a small toolkit enabling the use of the Visualization ToolKit (VTK) nbtiwgthin the VRJuggler Vir-
tual Reality framework. The toolkit enables a departure from the traditioisaklization calculation-conversion-
immersive viewing cycle. vjVTK leverages the OpenGL capabilities of VTHote & to run as a native graphics
generation tool within the VRJuggler framework. This removes the neatfffioie visualization generation and
format conversion. Most importantly, vjVTK introduces the ability to interatyichange the visualization, ex-
ploiting VTK’s full capabilities and providing researchers with a more pduieool.

Categories and Subject Descriptdescording to ACM CCS) 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism 1.3.8 [Computer Graphics]: Applications

1. Introduction their understanding and analysis of their data, an example

Scientific Visualization has become a mainstay application can be seen in Figurk In extreme cases, the visualizations
y app allows scientists to discover new information previously hid-

for Virtual Environments. The visualization of data and phe- den in the massive amounts of data [Tufo99]. Visualization

nomena enab!gs scientists to understand thglr data and re_programs commonly provide desktop visualization support,
sults by exploiting the power of the human visual system.

While exploring scientific data in Virtual Reality (VR) set- but often no or only limited support for Virtual Reality (V)

. : : T displays. In order for the scientists to exploit the power of
tings Is pecomlng amore commoply used. tool for S.C'em'StS immersive VR display systems, the visualization software
from various fields, th_e programming requlrement§ mvolveql must be somehow coupled with a VR system.

in creating these environments forms a large barrier for sci-

entists. The most frequent method for scientific visualization
in VR is a visualization generation - format conversion - im-
mersive viewing cycle, where static visualizations are cre-
ated in the visualization software, converted to a format for
the VR system, and finally viewed. When parameters need to
be adjusted, as is often the case, the cycle must be repeated
since the adjustments are made in the visualization software. vide the ability to export to various standard 3D formats.

Inthis paper, we present a software library, viVTK, designed £, the general visualization tool, the Visualization ToolKit
to further simplify this process for scientists, while also en- (VTK), a popular converter exists. It converts VTK's vi-

abling true interaction with visualizations. sual entities, Actors, to a SGI Perform¥iscene-graph for-
mat, vtkActor2Performehtt p://bri ghton. ncsa. ui uc.

edu/ ~praj I'i ch/ vt kAct or ToPF/ . In all cases, these con-
verters enable immersive exploration of the generated static
Scientific Visualization has become a well developed field. visualizations. Moreover, this conversion method generally
Various existing commercial applications and open-source is off-line and, therefore, does not allow for user interac-
programs, such as the Visualization ToolKBNIL98], al- tion with the visualization process. In vtkActor2Performer’s
low scientists to visualize their data in meaningful ways. case, with some effort it can be embedded into the VR sys-
This transformation of the data enables the scientists to ex- tem render loop, creating interactivity at the cost of the con-
ploit the power of the their visual systems, thereby assisting version process.

A few methods are available for viewing scientific vi-
sualization in VR displays. The most predominate is pro-
cessing the data within the scientific visualization program,
producing 3D geometric information, which is in turn dis-
played in a VR system. Commercial products, which of-
ten are focused on specific research areas, commonly pro-

2. Background

(© The Eurographics Association 2006.

http://brighton.ncsa.uiuc.edu/~prajlich/vtkActorToPF/

K. Blom / vjVTK

While in some applications immersively navigating the
information space may yield results, in many applications
interactively changing values in the visualization process
would be more instructive. A simple example of this, oc-
curring often in scientific visualization, would be moving a
cutting plane through a field. With the conversion method,
this becomes possible only through generating the cutting
plane for every position and then picking the correct texture
at run-time. A further detractor of this method is that the
conversion method often adds the overhead of learning how
to use a scene graph system, required only for the display of
the visualization. While for many in the VR community this
is a light endeavor, for many scientists and researchers this
is a superfluous and difficult proposition.

The other possbile method is building the visualization])
software directly into the VR system. This method has many Figure 1. A user exploring streamtubes representing the
natural benefits. Having the visualization generate geome- &irflow through an office space in an adaptation of one of
try directly in the VR system reduces development cycles VTK’s standard examples. The source of the st_reamtubes is
and, dependant on the visualization software, introduces the S€lectable by the user and can be moved, altering the seed-
possibility of interactivity with the visualization generation. Nd and creating new flow paths through the environment.
The largest notable drawback is that VR is highly dependant
on the graphics generation being performed in real-time.
Unfortunately, many of the visualization techniques require
longer times to be calculated. This problem is exasperated by
the introduction of interaction with the visualization. When
the interaction requires updating the visualization, the frame
rate of the VR system can be significantly undermined. This ~ The core of vjVTK is the classes which handle this mesh-
method of combining VR and visualization has been used ing of the systems, consisting of: VTK derived RenderWin-
for various commercial products and in some locals for their dow and Renderer classes, a Renderer facade, and VRJug-
individual use. In most cases the VR component is limited, gler derived GIApp classes. The VTK derived classes over-
particularly in its flexibility. One notable commercial prod- ride virtual functions, which deal with frustums and context

rendering and interaction processes. VRJuggler, to provide
its abstraction layers and flexibility, must control the win-
dowing, contexts, frustum, etc.

uct for general visualization, Amirdved, fits into this cat- sensitive code. A few new functions allow the VTKApp, a
egory. As it is built on a scene-graph system, it usable in VR class derived from GLApp, to set some parameters in a non-
through an additional plug-in. traditional way. The VTKApp classes then setup and call

the Renderer and RenderWindows at appropriate places in
the frame loop, invisible to the user. This solution works,
but one difficulty remains. The user must add or delete Ac-
The design goals of vjVTK focus on making open-source tors to each Renderer, an OpenGL context sensitive func-
based visualization in VR easier, particularly for engineers tion call. In VRJuggler, the context is only valid during the
and scientists. To achieve this, vjVTK embeds VTK into an draw callback, creating a complex and messy coding envi-
open-source VR software framework, VRJuggBJH*01]. ronment. Unfortunately, this dependency is buried in private
The design is based on the premise of the undistributed vtk- non-virtual functions of the underlying VTK classes. To cir-
CAVE [TFPB99, a library embedding VTK into the cavelib ~ cumvent this, a facade design pattern was introduced for the
libraries developed at Argonne National Laboratories. The Renderer class, vjRenderer. The user simply add/removes
marriage of VTK'’s native OpenGL based visualization sys- their Actors to this Renderer. The facade operates in con-
tem with VRJuggler's hardware and display system abstrac- junction with the VTKApp classes to make all changes at
tions creates a powerful and flexible system. Users have only the appropriate times in the frame-loop.

to learn VTK and a minimal part of VRJuggler to take ad-
vantage of visualization in VR and gain the ability to add
interactivity.

3. Design and Implementation

VjVTK also provides VTK based Pickers and Interactors,
which respectively enable ray picking and the use of spe-
cial interaction classes to simplify interaction programming.

The biggest challenge in combining the two such sys- Use of the Pickers to select Actors or individual cells is
tems is that both expect to have control of the rendering straight forward and interaction with the VTK pipeline can
pipeline, specifically the windows and contexts. VTK ex- be coded by the user in the usual ways. To simplify this
pects not only to open the windows and control viewing pa- for the end user, VTK has special interaction sets, combin-
rameters, it queries and uses the current context often in its ing Interactors and Widgets, which provide prototypical in-

(© The Eurographics Association 2006.

K. Blom / vjVTK

teraction metaphors. Such a development is naturally use-
full for a user friendly design. Currently in development for
VjVTK is a series of example Widgets, e.g. the PlaneWidget
which allows a plane to be translated, scaled, rotated, where
the plane can be a source within the visualization pipeline
(see Figurd). Unfortunately, the interaction methods imple-
mented in the Widgets are strong dependant on VTK'’s desk-
top environment. In converting each Widget implementation
to VR, they become highly dependent on the built-in inter-
action metaphor; more troubling is that writing the Widgets
is not straightforward. The examples are provided to give a
starting point for advanced users to develop their own Wid-
gets. Functional examples at the time of writing include the
PlaneWidget and BoxWidget.

One of the benefits of working with converters has been,
ironically, working in the scene-graph. Visualizations sys-
tems, such as VTK, typically focus on the scientific vi-
sualization problem and only that problem. Visualizations
often have components, which are not part of the simula-
tion, particularly in VR the context surrounding can be im-
portant. VTK does include some ability to place additional
geometry in the environment; however, it is not truly de-
signed for that nor for interaction with such objects. Working
with a scene-graph for additional graphics made this eas-
ier, and this advantage is lost when switching to a purely
VTK based rendering. vjVTK offers a way to assist in this
case. Since VTK and scene-graphs, such as O8G; / /
wwv. openscenegraph. org, and OpenSGhttp:// ww.
opensg. org, are OpenGL based, they can be combined
in the same rendering loop. We have created two applica-
tion classes, combining VTK with the forementioned scene-
graphs. At this point the two systems are unaware of each
other, not even sharing lighting. As OpenGL is state ma-

chine, this means that each system must reset the correct

state each frame. These inherent limitations will be ad-
dressed in a coming version of vjVTK.

As the impetus driving vjVTK’s development is making
visualization in VR more accessible, we will here discuss
briefly how the user sees vjVTK. With vjVTK, the render-
ing aspect of VTK becomes more transparent to the user
than in traditional VTK usage. VRJuggler handles all of the
setup of windows and input devices, freeing VTK users from
this duty. As is usual in working with VRJuggler, two main
functions are required to be filled in by the users, initScene
and preFrame. The initScene is the function call where the
user establishes their VTK pipeline, ending with the addi-
tion of Actors to the special vjRenderer provided by the base
VTKApp. The preFrame function is called before each ren-
der frame, allowing calculations and changing of the VTK
pipeline, e.g. changing the position of a cutting plane. One
difficulty which remains on the shoulders of the user is main-
taining a update rate that is reasonable for VR. vjVTK re-
moves some of the overhead from other methods, but vi-
sualization calculations remain time consuming. Perform-
ing changes to the VTK pipeline in the form of interaction

(© The Eurographics Association 2006.

may cause serious frame-rate problems. Fortunately, VTK
has built-in functionality to attempt to limit the affected por-
tions of the pipeline, giving the user some relief.

3.1. Conclusions

In this paper we have introduced vjVTK, an embedding of
the Visualization Toolkit into the VR framework VRJuggler.
This enables researchers to easier and more quickly exploit
the interactive power of VTK, while providing the ability to
use VR technology. The VRJuggler interface provides ab-
straction from the display and flexibility in display technol-
ogy which the VTK user previously lacked. vjVTK supports
interactivity through VTK derived methods including Pick-
ers and Interactor/Widget based interaction methods. Addi-
tionally, researchers benefit as they need only learn VTK and
a small portion of VRJuggler.

VjVTK s still a work in progress. While the base function-
ality is present, there are improvements to be made. As men-
tioned in the discussion above, examples of interaction Wid-
gets are under development currently. A method in which
to make VTK and the deployed scene-graph aware of one
and other is needed, at least in so far as lighting is properly
done between the systems. As one of the goals of this soft-
ware package is to make visualization in VR easier for users,
particularly for non-computer scientists, we are exploring
the possibility of introducing Python bindings for vjVTK.
This could potentially be done by coupling and extending
the pyJuggler extension with the Python language binding
of VTK. Users could then program their pipelines in Python
instead of C++, which for many, would be a lighter language
to learn.

References

[BJH*01] BIERBAUM A., JusT C., HARTLING P.,
MEINERT K., BAKER A., CRUz-NEIRA C.: VR Jug-
gler: A Virtual Platform for Virtual Reality Application
Development. InVR '01: Proceedings of the Virtual Re-
ality 2001 Conference (VR'0{Washington, DC, USA,
2001), IEEE Computer Society, p. 89.

[Mec] MEcCURY COMPUTER SYSTEMS INC.:
http://ww.tgs. comchecked Mar 31, 2006.

[SML98] ScHROEDERW., MARTIN K. M., LORENSEN
W. E.: The visualization toolkit (2nd ed.): an object-
oriented approach to 3D graphicsPrentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1998.

[TFPB99] Turo H. M., FISCHERP. F., RPKA M. E.,
BLom K. J. Numerical simulation and immer-
sive visualization of hairpin vortices. IfProc. Su-
perComputing '99 (1999), IEEE Computer Society.
(ANL archives)ftp://info. nts. anl . gov/ pub/tech_
reports/reports/P779. ps. Z.

Amira.

http://www.openscenegraph.org
http://www.opensg.org
http://www.tgs.com
ftp://info.mcs.anl.gov/pub/tech_reports/reports/P779.ps.Z

