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Abstract

In this paper we introduce a VR system extension that focuses on the grehitnberactive, dynamic Virtual En-
vironments. The extension uses the recently developed programmiceptoFunctional Reactive Programming.
This paradigm focuses on an explicit and more natural concept of timeimtideling of dynamics, without sac-
rificing interactivity. We present an implementation that embeds the Funtfeesctive Programming concept
into a basic Virtual Reality system, VR Juggler.

Categories and Subject Descriptgascording to ACM CCS) 1.6.0 [Computing Methodologies]: Simulation and
ModelingGeneral; 1.3.7 [Computing Methodologies]: Computer Gragfticee-Dimensional Graphics and Real-
ism

1. Introduction In this paper we present a system based on a new
paradigm for the creation of dynamic, interactive environ-
Today's Virtual Environments (VESs) are often rather ster- ments in VR. Support for creating these environments is
ile. The single interaction possible in many VEs is moving achieved using the Functional Reactive Programming (FRP)
through the world, which is often also the only dynamic paradigm ESYAE94 CNP03. The FRP paradigm has a
component of the VE. In contrast, the world around us is small research community laying the foundations of the sys-
rather dynamic. Everywhere, something is moving or chang- tem, but FRP has not be used in a larger outside project to
ing. With a physical environment that is so rich, the typi- this point. Here, an implementation integrating FRP into the
cal static VE is only interesting for a short time. Why are VR Juggler software system is presented. The use of FRP al-
VEs not more dynamic and interesting? Modern computer lows the programmer of the Virtual Environment to describe
games demonstrate that it is technically possible to have in- the dynamic, interactive nature of their environment in a lan-
teresting, dynamic environments, engaging players for many guage that more closely matches their understanding of the
hundreds of hours. The thousands of man-hours required to dynamics, while the underlying Virtual Reality system con-
create such an environment is often mentioned as a reasontinues to provide the graphical and hardware interface. The
for the difference. Another cited reason is that Virtual Real- system integration method is specifically chosen to allow the
ity (VR) requires interaction in ways that games don't and developed FRP-VR concept to be incorporated in various
requires more general solutions, making VR much more dif- VR systems. A concrete implementation using VR Juggler
ficult to program support structures. One area, where some- is given.
thing can be done, is system support for building such dy-

namic, engaging environments.
The following section presents background on both inter-

The most obvious way of including dynamics in a VE is  active, dynamic systems in VR and on the Functional Reac-
through standard animation techniques. However, standard tive Programming paradigm and how it can be useful ina VR
animation techniques are not also optimal general solutions context. Sectior8 presents an implementation which cou-
for VR. With key-framing techniques, it is difficult to in- ples a recent FRP system with VR Juggler, a system dubbed
troduce interaction. Inverse kinematics partially overcome Functional Reactive Virtual Reality (FRVR). We then dis-
the interaction issues with adaptable character movementscuss the results of our work on FRVR to this point and dis-
at run-time; However, it is lacking as a general solution for cuss the directions of our continuing and future work in Sec-
arbitrary dynamics and for implementing behaviors. tion 4. Finally, we conclude the paper.
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2. Background portant is that they allow little possibility to have a dynami-
cally changing structure to the network, meaning the world’s
behavior, as a whole, has to remain constant, i.e. you can-
not introduce new objects. DIOVE had a limited amount of
graph alteration possible, in that one could turn on and off
gortions of the graph. Constraint networks also tend to have
scaling problems, making them currently unsuitable solving
for large systems in real-time.

In this section we present background information on two
topics. In the first subsection we briefly discuss the support
available in current Virtual Reality systems for the creation
of dynamic, interactive systems. A cursory overview of the
various systems is presented, focusing on the general aspect
of the paradigms used. In the second subsection we intro-
duce the programming paradigm, Functional Reactive Pro-
gramming. While there has been some interest in developing systems
for dynamics, recent research interest seems to be more fo-
cused on interaction in Virtual Reality. This body of work
has largely investigated how to encapsulate interaction tech-
System support for the creation of dynamic and interactive niques and applying them to objects - almost exclusively
environments in VR is widely varied. Some VR systems static objects - in a general way. The notable exception
provide support only for hardware abstractioBJH 01, to this was Zachmann’s work, which described a language
KBHOO] A number of other systems create a dataflow layer for describing behaviors and interactions in Virtual Real-
for programming dynamics and interactions. On the other jty. [Zac9§ This work was theoretical and the authors are
end of the spectrum are a few dedicated projects, whose aimsnot aware of any work applying this to the actual creation of
are to introduce dynamic and/or interactive components to dynamic, interactive environments.

the world. A survey of all the various systems is too large to
be covered in this paper; Instead, we highlight only a few of
the more relevant systems.

2.1. Support of Interactive, Dynamic VEsin VR

2.2. Functional Reactive Programming

Various dataflow systems exist and are used by vari- ) ) ) ) )
ous groups. BLRS98 Tra99 The largest class of these Functl.onall Reactive Programmlng.(FRP). is a programming
dataflow systems is the series of systems which are based onparadigm introduced by Conal EIII_Ot. E_Illot_ designed FRP
SGI's Openinventor.$tr93 The Openinventor API is bet- to allow the user t'o model the animation in, yvhat he felt
ter known to many as VRML. In most of these cases, Scene Was, a representation closer to human perception of the mo-
Graphs (SG) are either designed or retro-fitted to have some ion- [ESYAE94 Elliot's solution was implemented in the
sort of overlying layer that forms a dataflow graph. Although Pure functional language, HaskelHgs9§ Behaviors are
itis not inherit to dataflow systems, many of the systems are defined via special time dependent continuous functions.

tightly coupled to the underlying SG and are typically large The system _iS capabl_e of reacti_ng to discrete events, by
systems. changing which behaviors are active.

The user of these systems uses the dataflow graph to spec- As the FRP paradigm is a young principle, it has gone
ify the flow of information through the system, typically  through a number of revisions. Yampa is the current incar-
starting with the system inputs. Dynamics are created, ei- nation of the FRP family of languages and the basis for
ther through the dataflow originating with the system input, our work. [Cou04 CNP0J3 While the FRP principle has re-
the graph’s edges shape values to create the dynamics, ormained the same, several details have changed in the sys-
the nodes themselves create the dynamics. This final option tems. A new concept in functional programming, Arrows, is
is performed either through coding in a scripting language Used in the implementation to make FRP more flexible and
or through C/C++ (the more common option). The dataflow powerful. This has lead to a number of pseudonyms for com-
itself has no notion of time embedded into it, outside of Pponents, include the secondary name for the system, Arrow-
its frame-locked execution. However, most systems include ized FRP (AFRP), which will be used throughout the paper.
time as an input to the dataflow system and a few even dis-

tribute the time delta since the last frame. FRP’s inherit notion of time is embedded in an implemen-

tation of the continuous functions agnals denoted aSig-

Deligiannidis Pel0( investigated using constraint net-  nal Functiors (SFs) in AFRP. SFs in AFRP are implemented
works to control dynamics. A network of constraint is used as continuations, which allows them to be "frozen" and reac-
to specify the relationships between components. Deligian- tivated. Following the standard pure-functional mantra, SFs
nidis’s system, DLOVE, had time as explicit component of require the output of the functions at any time to be depen-
the design. Additionally, programming is performed with dent only on the input at that time and time itself. However,
mathematical syntax that is fairly natural. Unfortunately, SFs can be made stateful by the use of a loop, where the out-
constraint networks require the programmer to think "back- put of the function is connected to the input. Furthermore,
wards" about what they are creating, as one constrains aincorporation of further language extensions make it possi-
motion instead of specifying it. The constraint networks ap- ble to safely integrate retrieval of outside information, which
proach has number of additional detractors. The most im- is important in our implementation.
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AFRP provides numerous tools for building dynamic, in-
teractive VEs. The FRP style of programming is based on a
building block nature, as is typical of functional program-
ming and provides a number of SF primitives as build-
ing blocks. Provided continuous and piece-wise continu-
ous functions include: integral, derivative, hold, and accu-
mulate. Additionally, any standard Haskell function can be
made into a SF, allowing the full usage of Haskell's ex-
pressive power. The reactive portion of AFRP is based on
Events, both external and internal. Numerous functions are
also available for the handling of events, specifically with

User Application - User Application -
FRVR VR side”

behaviour|
gcgnt Shared
Yampa/AFRP
VR Juggler
Haskell

Figure 1. FRVR’s system architecture.

respect to time. Examples are functions that trigger an event flexibility. The VR portion of the implementation presented

after X seconds or at tim¥. These create simple and pow-
erful mechanisms for the dynamic VE creator.

The main tool Yampa provides for interactivity and for
run-time changes to the complete simulations structure is
a series of different event triggered switches. Switches, in
their basic form, have a SF that is active until a specified
event happens, at which point they switch into another de-
fined function - which can contain any large tree of behav-

here focuses on VR Juggler, as the implementation of FRVR

with a basic VR system is slightly less complicated. How-

ever, FRVR is designed to be fairly simply integrated in most

VR systems and an implementation based in the high-level
VR system, AVANGO, has also been written. Both GHC and

VR Juggler are cross-platform software systems, providing
for a highly portable system.

The FRVR implementation is built using a component ar-

jors underneath it. The various versions of the switch, like chitecture. The four basic components are: the bindings to
the recursive switch, simplify usage, and the special kswitch the AFRP/Haskell systems, bindings to the VR system, the
makes it possible to take a "snapshot" of an SF, capturing connection between the AFRP aspect and VR system, and

its current state. Using this continuation based method, the the FRVR Haskell module. A diagram of FRVR’s structure
snapshot can be passed around as another piece of data andan be seen in Figurg In the follow, each of the compo-

reactivated at a later point. This makes a very power tool for
the user. Combining the switches with composition SFs, dy-
namic sets of SFs can be defined and modified at run-time.

Finally, FRP has the advantage of being capable of sat-
isfying the real-time and scalability constraints required for
VR. Haskell compiles to quick code, performing almost as
well as C++, as evident in the comparison in the Computer
Language Shootout [http://shootout.alioth.debian.org/]. This
is partially do to Haskell being a "lazy evaluation language,”
which roughly means that only required values are cal-
culated. Concurrent programming concepts are built into
Yampa itself and projects such as Parallel FRPshow the
potential for expansion, if the simulated environments be-
come too large for simple FRP usage.

3. Functional Reactive VR

In this section we describe a system that has been dubbed

FRVR (Functional Reactive Virtual Reality), which inte-
grates a recent FRP implementation into VR systems. This

section describes the details necessary for the integration of

FRP into VR Juggler and gives an example of its usage.

3.1. Implementation

In our implementation we have elected to use the freely
available Yampa (AFRP) libraries for Haskell from Yale
University. While AFRP will work with most Haskell com-
pilers, we are currently using the Glasgow Haskell Compiler
(GHC), as it provides the highest level of portability and

(© The Eurographics Association 2007.

nents is individually handled, starting with the connecting
components, and followed by the AFRP/Haskell extensions.

3.1.1. Connecting AFRP/Haskell and the VR system

The connection between AFRP and the VR system consists
of two aspects. The first aspect is adapting the control struc-
tures of the two systems to get them to work together. This
portion deals the setup of the system and is mostly invisible
to the user. The second aspect is delivering the input values
from the VR system to the AFRP environment and return-
ing the newly calculated values to the VR system, i.e. the
run-time aspects.

Yampa’s basic design assumes that it controls the main
loop, running the simulated environment at the highest rate
possible. A Haskell control loop holds a special handle to the
AFRP simulation environment and is responsible for the 1/0
of the inputs and results of the AFRP code. Unfortunately,
Haskell's mechanism for referencing such handles from for-
eign code is currently broken. For this reason, the Haskell
environment must be run in a separate thread and synchro-
nized to the VR environment through some other mecha-
nism. This is performed by FRVR using conditionals built
into the data passing method described below.

The data passing between the AFRP environment and the
VR system could be performed directly through the foreign
function interface. However, in order to improve usability,
the connection between AFRP and the VR system has been
abstracted. Through this abstraction we also help guarantee
portability, flexibility, and scalability of the system. The cur-



K. Blom & S. Beckhaus / Functional Reactive Virtual Reality

VR System Shared Memory into FRVR’s Haskell interface to the shared memory, so the
M% user need not worry about it for normal usage.
preFrame from Inputs ) .
Signal to start _ Haskell FRV'R currently supports two ways of handling data input.
start FRP Signal Following the pure functional nature, one needs to have all
Get AFRP input delivered into the FRP from the Haskell call, delivered
‘E’sfe%ﬁ AE“V'm“me”tS in a special "sense" function. This method has the drawback,
'« Processing that for complex environments, a large data structure must
i Processing be created to hold all of the input and, then, the individual

cet values have to be distributed to the correct SFs. A second
e

-~ Return methods involves using a function that works around the 10
o ‘r’:(';:ﬁ;—> Values restriction, breaking pure functionality. By embedding it in
Graphics Retrieve new values a special Arrow, this can be reduced to a single set of code
i e to verify and is how Haskell performs "valid" I/0. FRVR in-
Draw corporates functions that retrieve and write values from the

shared memory, accessed by the tag. This functionality also
Figure2: A diagram of the system flow of the FRVR run-time - hejps in easing the creation of complex, changing environ-
environment. ments, as each behavior can then specify what is required,
within itself. The user is free to choose whichever method is
appropriate.

re_nt version of F_RVR uses a simple shared memory space 5 4 3 Interfacing to the VR system

with named tagging of values for the exchange of informa-

tion between the VR system and the FRP environment. This On the VR system side of the FRVR implementation there
named tagging allows easier access across the two languagegre two aspects that have to be handled. The Haskell/AFRP
to the information, an idea used in various Al research fields. thread has to be started and control loop managed and the
The memory accesses are controlled through single compo-data has to be marshalled between the VR system and the
nent with interfaces for both sides. The data structures cur- shared memory. The system level components are encapsu-
rently supported by our system are those of the GMTL math lated into the FRVR system, in this case a mixin-class for
library, which VR Juggler uses. VR Juggler's app classes. The shared memory initialization
is also handled automatically by FRVR. However, the user
must connect the appropriate input to the AFRP system via
the shared memory and connect the values generated on the

1. VR system: The inputs to the system are placed in the AFRP side to the proper places in their environment manu-

The resultant basic system flow is graphically represented
in Figure2 and proceeds in the following steps:

shared memory ally. This functionality is confined to the main VR applica-
2. VR system: Notification given that the FRP processing tion loop: setting inputs, calling the AFRP side, then reading
should start back the generated values.

3. FRVR: Haskell processing starts
4. FRVR: Haskell retrieves the input values from the shared 31 4 The FRVR Module

memory
5. FRVR: FRP simulation environments are called, process- One final aspect of the implementation is the FRVR Haskell

ing the input events and calculating the new values module, which is implemented in AFRP and Haskell. The
6. FRVR: Haskell takes the returned values from the FRP module is Composed of the various parts required on the

simulation and places them in the shared memory AFRP/Haskell side. A modified version of the AFRP library
7. VR system: The processed values are retrieved and g incjyded, largely for extensions to the basic control loop.

packed into the appropriate places in the CG generation. o many dynamics simulations the time delta between loops

of the AFRP has to remain small in order to maintain compu-

3.1.2. Interfacingto AFRP tational stability. A modified control loop allows the AFRP
simulation to run with a minimum time delta, regardless of
how long the VR loop requires. A related extension allows
time skewing.

There are several issues to address when interfacing the
AFRP built simulation to the outside world. Two of the ma-
jor issues to be addressed are the handling of data, i.e. how
it is inserted into the AFRP environment, and marshalling The other components of the module are: the Haskell
the data to a format that Haskell can use. The issue of mar- shared memory interface, a Math module, and collection
shalling data, changing it from the external C++ format to of building blocks of common code. Although Haskell is a

a format valid within Haskell, is straightforward. As long mathematically based language and has support for many
as simple types or those composed of a few simple types, mathematical functions, the standard math of computer
Haskell includes functions to handle this. All of this is built  graphics, such as vectors, quaternions, and matrices, are not
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- NewtonsCradle
1 |' _______ ‘I
| B simulate ball _}{selected:
E-F"l' 3 right : AL _
pendulumi-—-. simulate
L R Y quat pendulum
A
{wand }—} manipulate |/
| E— pendulum
ey f";'.'.:::::::: I
simulate ball |
left - .'““"‘r“-
pendulum}---} simulate =pendu umi
quat pendulum L__quat |
A
{wand }——-L manipulate |
. . . . b pendulum
Figure 3: A user can be seen interating with the Newton’s

Cradle. When, interacting, the rotation of the wand controls
the angle of the ball. Figure4: This diagram illustrates the code structure to han-
dle the dynamics and interaction of the Newton’s Cradle.
Dotted lines show initialization inputs and the shaded boxes
show accesses to the shared memory for data.

part of the basic libraries. For that reason we have created
a library of graphics math functions. The library mirrors the
libraries that one finds in many VR systems. The Math types
also form the basic types the shared memory system deals
with, and values in the memory are automatically marshalled
to types in the Math library. Finally, a library of useful func-

testPendulum:: SF () Quatf
test Pendul um = proc () -> do
- -y axis for OG coords

. . . . . ang2grav <- identity -<

tionality for VR environments is also included. (get Quat "Pendul unt) / (Quat 0 0 1 0)
ang_accel <- arr cal cAngAccel -< ang2grav
ang_vel <- integral -< ang_accel

3.2. Example - Newton’s Cradle

-quaternion rotational

rot <- integral -<
0.5 *~ ((Quat 0 0O ang_vel

. . integration
In this section, we present a small example of the use of 9

FRP for defining dynamic, interactive objects. In this exam-
ple we create a Newton’s Cradle, a popular physics based
"office toy" seen in Figur&.2 While the example is small, On the basis of the pendulum we can create a dynamic, in-
it demonstrates how the FRVR system works with FRP to teractive Netwton's Cradle. The diagram in Figdrehows
create both dynamics and interaction. It also shows how the the design of the code described here. In the Newton’s Cra-
pseudo physics of a much more complex system can be sim- dle, the outer balls behave as a pendulum, when in motion.

ply modeled in FRP. We start with a look at how to code the However, as they make contact with the remaining balls, the
system’s basis, a simple pendulum. momentum of the ball is transfered through the other balls,

) o ) and the ball on the opposite side begins to travel. This ex-

A physical pendulum’s motion is defined by many fac-  ample is interesting, as it is not particularly well suited for a
tors. If we describe an undamped, undriven pendulum, the physics engine, due to the many collisions of the balls; How-
formulareduces to a single equation, yielding the angular ac- eyver, a pseudo physics can easily be produced with FRVR.

0) xrot)

celeration, seen in Equation 1. In the formulé the length
of the pendulum arm. Using a set of differential equations
we can retrieve the anglé, through a set of integrations.

a =—g/LsinB 1)
From the mathematical formula one can derive the FRVR
FRP code. This function follows the following steps: retrieve
the current orientation of the pendulum stored in the shared
memory and find the angle it forms with the direction of

This is done using a switch SF and creating an event that oc-
curs when the active ball (SF) collides with the other balls.
The transfer of momentum is produced by initializing the a
new SF for the opposite ball with the values of the current
ball's angular velocity and orientation. This mechanism is
configured to be a repeating switch, continuing indefinitely.

The Newton’s Cradle example can easily be extended to
include interaction. When the user interacts with the ball, the
ball simply follows the user's movements. This can be per-

gravity, the angular acceleration is calculated according to formed in AFRP with a simple SF that retrieves the user’s in-
Equation 1, the integral is taken with respect to time to get put position or orientation and constrains the derived move-
the angular velocity, and the new rotation is produced by a ment to the pendulum movement. A simple version uses the
second integral on the quaternion orientation. orientation of the wand, requiring only that the wand’s orien-
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tation be introduced into the shared memory. When the user ists. We have also shown, via an example creating an interac-
releases the ball, simply switching into the system above tive Newton’s Cradle, how FRVR can be used to create dy-
restarts everything by setting the initial angle to that of the namics and interactions with this simulation. In total, FRVR
user’s interaction. If the user grasps the ball in flight, a switch has proven effective for creating interactive, dynamics and
above the system, waiting on the event triggered from the forms a system we feel can help advance the field.

VR system, can switch once again into the manipulation SF.
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