
IPT-EGVE Symposium (2007)
B. Fröhlich, R. Blach, and R. van Liere (Editors)

Functional Reactive Virtual Reality

K. J. Blom & S. Beckhaus

interactive media / virtual environments, University of Hamburg, Germany

Abstract
In this paper we introduce a VR system extension that focuses on the creation of interactive, dynamic Virtual En-
vironments. The extension uses the recently developed programming concept, Functional Reactive Programming.
This paradigm focuses on an explicit and more natural concept of time in the modeling of dynamics, without sac-
rificing interactivity. We present an implementation that embeds the Functional Reactive Programming concept
into a basic Virtual Reality system, VR Juggler.

Categories and Subject Descriptors(according to ACM CCS): I.6.0 [Computing Methodologies]: Simulation and
ModelingGeneral; I.3.7 [Computing Methodologies]: Computer GraphicsThree-Dimensional Graphics and Real-
ism

1. Introduction

Today’s Virtual Environments (VEs) are often rather ster-
ile. The single interaction possible in many VEs is moving
through the world, which is often also the only dynamic
component of the VE. In contrast, the world around us is
rather dynamic. Everywhere, something is moving or chang-
ing. With a physical environment that is so rich, the typi-
cal static VE is only interesting for a short time. Why are
VEs not more dynamic and interesting? Modern computer
games demonstrate that it is technically possible to have in-
teresting, dynamic environments, engaging players for many
hundreds of hours. The thousands of man-hours required to
create such an environment is often mentioned as a reason
for the difference. Another cited reason is that Virtual Real-
ity (VR) requires interaction in ways that games don’t and
requires more general solutions, making VR much more dif-
ficult to program support structures. One area, where some-
thing can be done, is system support for building such dy-
namic, engaging environments.

The most obvious way of including dynamics in a VE is
through standard animation techniques. However, standard
animation techniques are not also optimal general solutions
for VR. With key-framing techniques, it is difficult to in-
troduce interaction. Inverse kinematics partially overcome
the interaction issues with adaptable character movements
at run-time; However, it is lacking as a general solution for
arbitrary dynamics and for implementing behaviors.

In this paper we present a system based on a new
paradigm for the creation of dynamic, interactive environ-
ments in VR. Support for creating these environments is
achieved using the Functional Reactive Programming (FRP)
paradigm [ESYAE94, CNP03]. The FRP paradigm has a
small research community laying the foundations of the sys-
tem, but FRP has not be used in a larger outside project to
this point. Here, an implementation integrating FRP into the
VR Juggler software system is presented. The use of FRP al-
lows the programmer of the Virtual Environment to describe
the dynamic, interactive nature of their environment in a lan-
guage that more closely matches their understanding of the
dynamics, while the underlying Virtual Reality system con-
tinues to provide the graphical and hardware interface. The
system integration method is specifically chosen to allow the
developed FRP-VR concept to be incorporated in various
VR systems. A concrete implementation using VR Juggler
is given.

The following section presents background on both inter-
active, dynamic systems in VR and on the Functional Reac-
tive Programming paradigm and how it can be useful in a VR
context. Section3 presents an implementation which cou-
ples a recent FRP system with VR Juggler, a system dubbed
Functional Reactive Virtual Reality (FRVR). We then dis-
cuss the results of our work on FRVR to this point and dis-
cuss the directions of our continuing and future work in Sec-
tion 4. Finally, we conclude the paper.

c© The Eurographics Association 2007.



K. Blom & S. Beckhaus / Functional Reactive Virtual Reality

2. Background

In this section we present background information on two
topics. In the first subsection we briefly discuss the support
available in current Virtual Reality systems for the creation
of dynamic, interactive systems. A cursory overview of the
various systems is presented, focusing on the general aspects
of the paradigms used. In the second subsection we intro-
duce the programming paradigm, Functional Reactive Pro-
gramming.

2.1. Support of Interactive, Dynamic VEs in VR

System support for the creation of dynamic and interactive
environments in VR is widely varied. Some VR systems
provide support only for hardware abstraction. [BJH∗01,
KBH00] A number of other systems create a dataflow layer
for programming dynamics and interactions. On the other
end of the spectrum are a few dedicated projects, whose aims
are to introduce dynamic and/or interactive components to
the world. A survey of all the various systems is too large to
be covered in this paper; Instead, we highlight only a few of
the more relevant systems.

Various dataflow systems exist and are used by vari-
ous groups. [BLRS98, Tra99] The largest class of these
dataflow systems is the series of systems which are based on
SGI’s OpenInventor. [Str93] The OpenInventor API is bet-
ter known to many as VRML. In most of these cases, Scene
Graphs (SG) are either designed or retro-fitted to have some
sort of overlying layer that forms a dataflow graph. Although
it is not inherit to dataflow systems, many of the systems are
tightly coupled to the underlying SG and are typically large
systems.

The user of these systems uses the dataflow graph to spec-
ify the flow of information through the system, typically
starting with the system inputs. Dynamics are created, ei-
ther through the dataflow originating with the system input,
the graph’s edges shape values to create the dynamics, or
the nodes themselves create the dynamics. This final option
is performed either through coding in a scripting language
or through C/C++ (the more common option). The dataflow
itself has no notion of time embedded into it, outside of
its frame-locked execution. However, most systems include
time as an input to the dataflow system and a few even dis-
tribute the time delta since the last frame.

Deligiannidis [Del00] investigated using constraint net-
works to control dynamics. A network of constraint is used
to specify the relationships between components. Deligian-
nidis’s system, DLoVE, had time as explicit component of
the design. Additionally, programming is performed with
mathematical syntax that is fairly natural. Unfortunately,
constraint networks require the programmer to think "back-
wards" about what they are creating, as one constrains a
motion instead of specifying it. The constraint networks ap-
proach has number of additional detractors. The most im-

portant is that they allow little possibility to have a dynami-
cally changing structure to the network, meaning the world’s
behavior, as a whole, has to remain constant, i.e. you can-
not introduce new objects. DloVE had a limited amount of
graph alteration possible, in that one could turn on and off
portions of the graph. Constraint networks also tend to have
scaling problems, making them currently unsuitable solving
for large systems in real-time.

While there has been some interest in developing systems
for dynamics, recent research interest seems to be more fo-
cused on interaction in Virtual Reality. This body of work
has largely investigated how to encapsulate interaction tech-
niques and applying them to objects - almost exclusively
static objects - in a general way. The notable exception
to this was Zachmann’s work, which described a language
for describing behaviors and interactions in Virtual Real-
ity. [Zac96] This work was theoretical and the authors are
not aware of any work applying this to the actual creation of
dynamic, interactive environments.

2.2. Functional Reactive Programming

Functional Reactive Programming (FRP) is a programming
paradigm introduced by Conal Elliot. Elliot designed FRP
to allow the user to model the animation in, what he felt
was, a representation closer to human perception of the mo-
tion. [ESYAE94] Elliot’s solution was implemented in the
pure functional language, Haskell. [Has98] Behaviors are
defined via special time dependent continuous functions.
The system is capable of reacting to discrete events, by
changing which behaviors are active.

As the FRP paradigm is a young principle, it has gone
through a number of revisions. Yampa is the current incar-
nation of the FRP family of languages and the basis for
our work. [Cou04,CNP03] While the FRP principle has re-
mained the same, several details have changed in the sys-
tems. A new concept in functional programming, Arrows, is
used in the implementation to make FRP more flexible and
powerful. This has lead to a number of pseudonyms for com-
ponents, include the secondary name for the system, Arrow-
ized FRP (AFRP), which will be used throughout the paper.

FRP’s inherit notion of time is embedded in an implemen-
tation of the continuous functions assignals, denoted asSig-
nal Functions (SFs) in AFRP. SFs in AFRP are implemented
as continuations, which allows them to be "frozen" and reac-
tivated. Following the standard pure-functional mantra, SFs
require the output of the functions at any time to be depen-
dent only on the input at that time and time itself. However,
SFs can be made stateful by the use of a loop, where the out-
put of the function is connected to the input. Furthermore,
incorporation of further language extensions make it possi-
ble to safely integrate retrieval of outside information, which
is important in our implementation.

c© The Eurographics Association 2007.



K. Blom & S. Beckhaus / Functional Reactive Virtual Reality

AFRP provides numerous tools for building dynamic, in-
teractive VEs. The FRP style of programming is based on a
building block nature, as is typical of functional program-
ming and provides a number of SF primitives as build-
ing blocks. Provided continuous and piece-wise continu-
ous functions include: integral, derivative, hold, and accu-
mulate. Additionally, any standard Haskell function can be
made into a SF, allowing the full usage of Haskell’s ex-
pressive power. The reactive portion of AFRP is based on
Events, both external and internal. Numerous functions are
also available for the handling of events, specifically with
respect to time. Examples are functions that trigger an event
afterX seconds or at timeY. These create simple and pow-
erful mechanisms for the dynamic VE creator.

The main tool Yampa provides for interactivity and for
run-time changes to the complete simulations structure is
a series of different event triggered switches. Switches, in
their basic form, have a SF that is active until a specified
event happens, at which point they switch into another de-
fined function - which can contain any large tree of behav-
iors underneath it. The various versions of the switch, like
the recursive switch, simplify usage, and the special kswitch
makes it possible to take a "snapshot" of an SF, capturing
its current state. Using this continuation based method, the
snapshot can be passed around as another piece of data and
reactivated at a later point. This makes a very power tool for
the user. Combining the switches with composition SFs, dy-
namic sets of SFs can be defined and modified at run-time.

Finally, FRP has the advantage of being capable of sat-
isfying the real-time and scalability constraints required for
VR. Haskell compiles to quick code, performing almost as
well as C++, as evident in the comparison in the Computer
Language Shootout [http://shootout.alioth.debian.org/]. This
is partially do to Haskell being a "lazy evaluation language,"
which roughly means that only required values are cal-
culated. Concurrent programming concepts are built into
Yampa itself and projects such as Parallel FRP [?] show the
potential for expansion, if the simulated environments be-
come too large for simple FRP usage.

3. Functional Reactive VR

In this section we describe a system that has been dubbed
FRVR (Functional Reactive Virtual Reality), which inte-
grates a recent FRP implementation into VR systems. This
section describes the details necessary for the integration of
FRP into VR Juggler and gives an example of its usage.

3.1. Implementation

In our implementation we have elected to use the freely
available Yampa (AFRP) libraries for Haskell from Yale
University. While AFRP will work with most Haskell com-
pilers, we are currently using the Glasgow Haskell Compiler
(GHC), as it provides the highest level of portability and

Figure 1: FRVR’s system architecture.

flexibility. The VR portion of the implementation presented
here focuses on VR Juggler, as the implementation of FRVR
with a basic VR system is slightly less complicated. How-
ever, FRVR is designed to be fairly simply integrated in most
VR systems and an implementation based in the high-level
VR system, AVANGO, has also been written. Both GHC and
VR Juggler are cross-platform software systems, providing
for a highly portable system.

The FRVR implementation is built using a component ar-
chitecture. The four basic components are: the bindings to
the AFRP/Haskell systems, bindings to the VR system, the
connection between the AFRP aspect and VR system, and
the FRVR Haskell module. A diagram of FRVR’s structure
can be seen in Figure1. In the follow, each of the compo-
nents is individually handled, starting with the connecting
components, and followed by the AFRP/Haskell extensions.

3.1.1. Connecting AFRP/Haskell and the VR system

The connection between AFRP and the VR system consists
of two aspects. The first aspect is adapting the control struc-
tures of the two systems to get them to work together. This
portion deals the setup of the system and is mostly invisible
to the user. The second aspect is delivering the input values
from the VR system to the AFRP environment and return-
ing the newly calculated values to the VR system, i.e. the
run-time aspects.

Yampa’s basic design assumes that it controls the main
loop, running the simulated environment at the highest rate
possible. A Haskell control loop holds a special handle to the
AFRP simulation environment and is responsible for the I/O
of the inputs and results of the AFRP code. Unfortunately,
Haskell’s mechanism for referencing such handles from for-
eign code is currently broken. For this reason, the Haskell
environment must be run in a separate thread and synchro-
nized to the VR environment through some other mecha-
nism. This is performed by FRVR using conditionals built
into the data passing method described below.

The data passing between the AFRP environment and the
VR system could be performed directly through the foreign
function interface. However, in order to improve usability,
the connection between AFRP and the VR system has been
abstracted. Through this abstraction we also help guarantee
portability, flexibility, and scalability of the system. The cur-

c© The Eurographics Association 2007.



K. Blom & S. Beckhaus / Functional Reactive Virtual Reality

Figure 2: A diagram of the system flow of the FRVR run-time
environment.

rent version of FRVR uses a simple shared memory space
with named tagging of values for the exchange of informa-
tion between the VR system and the FRP environment. This
named tagging allows easier access across the two languages
to the information, an idea used in various AI research fields.
The memory accesses are controlled through single compo-
nent with interfaces for both sides. The data structures cur-
rently supported by our system are those of the GMTL math
library, which VR Juggler uses.

The resultant basic system flow is graphically represented
in Figure2 and proceeds in the following steps:

1. VR system: The inputs to the system are placed in the
shared memory

2. VR system: Notification given that the FRP processing
should start

3. FRVR: Haskell processing starts
4. FRVR: Haskell retrieves the input values from the shared

memory
5. FRVR: FRP simulation environments are called, process-

ing the input events and calculating the new values
6. FRVR: Haskell takes the returned values from the FRP

simulation and places them in the shared memory
7. VR system: The processed values are retrieved and

packed into the appropriate places in the CG generation.

3.1.2. Interfacing to AFRP

There are several issues to address when interfacing the
AFRP built simulation to the outside world. Two of the ma-
jor issues to be addressed are the handling of data, i.e. how
it is inserted into the AFRP environment, and marshalling
the data to a format that Haskell can use. The issue of mar-
shalling data, changing it from the external C++ format to
a format valid within Haskell, is straightforward. As long
as simple types or those composed of a few simple types,
Haskell includes functions to handle this. All of this is built

into FRVR’s Haskell interface to the shared memory, so the
user need not worry about it for normal usage.

FRVR currently supports two ways of handling data input.
Following the pure functional nature, one needs to have all
input delivered into the FRP from the Haskell call, delivered
in a special "sense" function. This method has the drawback,
that for complex environments, a large data structure must
be created to hold all of the input and, then, the individual
values have to be distributed to the correct SFs. A second
methods involves using a function that works around the IO
restriction, breaking pure functionality. By embedding it in
a special Arrow, this can be reduced to a single set of code
to verify and is how Haskell performs "valid" I/O. FRVR in-
corporates functions that retrieve and write values from the
shared memory, accessed by the tag. This functionality also
helps in easing the creation of complex, changing environ-
ments, as each behavior can then specify what is required,
within itself. The user is free to choose whichever method is
appropriate.

3.1.3. Interfacing to the VR system

On the VR system side of the FRVR implementation there
are two aspects that have to be handled. The Haskell/AFRP
thread has to be started and control loop managed and the
data has to be marshalled between the VR system and the
shared memory. The system level components are encapsu-
lated into the FRVR system, in this case a mixin-class for
VR Juggler’s app classes. The shared memory initialization
is also handled automatically by FRVR. However, the user
must connect the appropriate input to the AFRP system via
the shared memory and connect the values generated on the
AFRP side to the proper places in their environment manu-
ally. This functionality is confined to the main VR applica-
tion loop: setting inputs, calling the AFRP side, then reading
back the generated values.

3.1.4. The FRVR Module

One final aspect of the implementation is the FRVR Haskell
module, which is implemented in AFRP and Haskell. The
module is composed of the various parts required on the
AFRP/Haskell side. A modified version of the AFRP library
is included, largely for extensions to the basic control loop.
For many dynamics simulations the time delta between loops
of the AFRP has to remain small in order to maintain compu-
tational stability. A modified control loop allows the AFRP
simulation to run with a minimum time delta, regardless of
how long the VR loop requires. A related extension allows
time skewing.

The other components of the module are: the Haskell
shared memory interface, a Math module, and collection
of building blocks of common code. Although Haskell is a
mathematically based language and has support for many
mathematical functions, the standard math of computer
graphics, such as vectors, quaternions, and matrices, are not

c© The Eurographics Association 2007.



K. Blom & S. Beckhaus / Functional Reactive Virtual Reality

Figure 3: A user can be seen interating with the Newton’s
Cradle. When, interacting, the rotation of the wand controls
the angle of the ball.

part of the basic libraries. For that reason we have created
a library of graphics math functions. The library mirrors the
libraries that one finds in many VR systems. The Math types
also form the basic types the shared memory system deals
with, and values in the memory are automatically marshalled
to types in the Math library. Finally, a library of useful func-
tionality for VR environments is also included.

3.2. Example - Newton’s Cradle

In this section, we present a small example of the use of
FRP for defining dynamic, interactive objects. In this exam-
ple we create a Newton’s Cradle, a popular physics based
"office toy" seen in Figure3.2. While the example is small,
it demonstrates how the FRVR system works with FRP to
create both dynamics and interaction. It also shows how the
pseudo physics of a much more complex system can be sim-
ply modeled in FRP. We start with a look at how to code the
system’s basis, a simple pendulum.

A physical pendulum’s motion is defined by many fac-
tors. If we describe an undamped, undriven pendulum, the
formula reduces to a single equation, yielding the angular ac-
celeration, seen in Equation 1. In the formulaL is the length
of the pendulum arm. Using a set of differential equations
we can retrieve the angle,θ , through a set of integrations.

α = −g/Lsinθ (1)

From the mathematical formula one can derive the FRVR
FRP code. This function follows the following steps: retrieve
the current orientation of the pendulum stored in the shared
memory and find the angle it forms with the direction of
gravity, the angular acceleration is calculated according to
Equation 1, the integral is taken with respect to time to get
the angular velocity, and the new rotation is produced by a
second integral on the quaternion orientation.

Figure 4: This diagram illustrates the code structure to han-
dle the dynamics and interaction of the Newton’s Cradle.
Dotted lines show initialization inputs and the shaded boxes
show accesses to the shared memory for data.

testPendulum :: SF () Quatf
testPendulum = proc () -> do

- -y axis for OGL coords
ang2grav <- identity -<

(getQuat "Pendulum") / (Quat 0 0 1 0)
ang_accel <- arr calcAngAccel -< ang2grav
ang_vel <- integral -< ang_accel

-quaternion rotational integration
rot <- integral -<

0.5 *^ ((Quat 0 0 ang_vel 0)*rot)

On the basis of the pendulum we can create a dynamic, in-
teractive Netwton’s Cradle. The diagram in Figure4 shows
the design of the code described here. In the Newton’s Cra-
dle, the outer balls behave as a pendulum, when in motion.
However, as they make contact with the remaining balls, the
momentum of the ball is transfered through the other balls,
and the ball on the opposite side begins to travel. This ex-
ample is interesting, as it is not particularly well suited for a
physics engine, due to the many collisions of the balls; How-
ever, a pseudo physics can easily be produced with FRVR.
This is done using a switch SF and creating an event that oc-
curs when the active ball (SF) collides with the other balls.
The transfer of momentum is produced by initializing the a
new SF for the opposite ball with the values of the current
ball’s angular velocity and orientation. This mechanism is
configured to be a repeating switch, continuing indefinitely.

The Newton’s Cradle example can easily be extended to
include interaction. When the user interacts with the ball, the
ball simply follows the user’s movements. This can be per-
formed in AFRP with a simple SF that retrieves the user’s in-
put position or orientation and constrains the derived move-
ment to the pendulum movement. A simple version uses the
orientation of the wand, requiring only that the wand’s orien-

c© The Eurographics Association 2007.



K. Blom & S. Beckhaus / Functional Reactive Virtual Reality

tation be introduced into the shared memory. When the user
releases the ball, simply switching into the system above
restarts everything by setting the initial angle to that of the
user’s interaction. If the user grasps the ball in flight, a switch
above the system, waiting on the event triggered from the
VR system, can switch once again into the manipulation SF.

4. Discussion and Future Work

During the creation of the FRVR implementation many of
the strengths and weaknesses of both the decision to use
FRP and its implementation have become apparent. Fortu-
nately, most of the weaknesses have been on the implemen-
tation side, and the strengths have been in the design. At
this point, we are satisfied with the support that FRVR gives
for creating dynamic, interactive environments. The actual
implementation of the math, even for complex systems, has
been simple, indicating the FRP design is quite effective.
The area, for which we feel FRVR could be improved, is
in being easier for people to learn and for non-programmers.
To that end, a project investigating the use of Visual Pro-
gramming techniques is currently underway.

Another area of potential future exploration is in reliev-
ing the user of the burden of retrieving the information from
the shared memory and placing it into the proper place in
the graphical system. One possible direction is to couple
FRVR more closely with a specific VR system, alleviating
or even eliminating the need for programming this connec-
tion at such a low level. We have chosen not to do this in
our initial work, as it seems an unnecessary constraint on
the system’s usability and creates an undesirable VR system
dependence. Integration in high-level systems already helps
alleviate this. Our existing AVANGO bindings, which inserts
values into the standard data-flow system, simply the user’s
work to establishing connections between components.

5. Conclusion

We have presented a new system for VR supporting the
creation of interactive, dynamic Virtual Environments. This
new system is based on Functional Reactive Programming,
a programming concept pioneered by Conal Elliot for com-
puter animation. The FRP implementation, Yampa, is writ-
ten in Haskell, a programming language with mathemati-
cally similar syntax. The FRP adds an explicit time com-
ponent, allowing the programmer to program dynamics in a
continuous manner. Through events, the system is capable
of reacting to input, changing the dynamics of the system or
even reorganizing the simulation environment at run-time.

The presented system combines the FRP environment
with a VR system, creating a system called FRVR (Func-
tional Reactive Virtual Reality). The described implemen-
tation incorporates the Yampa system into VR Juggler. The
designed system is highly independent from specific VR sys-
tems; A second binding to the AVANGO system already ex-

ists. We have also shown, via an example creating an interac-
tive Newton’s Cradle, how FRVR can be used to create dy-
namics and interactions with this simulation. In total, FRVR
has proven effective for creating interactive, dynamics and
forms a system we feel can help advance the field.

References

[BJH∗01] BIERBAUM A., JUST C., HARTLING P., MEIN-
ERT K., BAKER A., CRUZ-NEIRA C.: VR Juggler: A
Virtual Platform for Virtual Reality Application Develop-
ment. InProceedings of the Virtual Reality 2001 confer-
ence (VR’01)(2001), p. 89.

[BLRS98] BLACH R., LANDAUER J., RÖSCHA., SIMON

A.: A Highly Flexible Virtual Reality System.Future
Generation Computer Systems 14, 3-4 (1998), 167–178.

[CNP03] COURTNEY A., NILSSON H., PETERSON J.:
The Yampa Arcade. InACM SIGPLAN Haskell Work-
shop(2003), ACM SIGPLAN, pp. 7–18.

[Cou04] COURTNEY A.: Modeling User Interfaces in a
Functional Language. PhD thesis, Yale University, May
2004.

[Del00] DELIGIANNIDIS L.: DLoVe: A specification
paradigm for designing distributed VR applications for
single or multiple users. PhD thesis, Tufts University, Feb.
2000.

[ESYAE94] ELLIOTT C., SCHECHTER G., YEUNG R.,
ABI-EZZI S.: TBAG: A high level framework for in-
teractive, animated 3D graphics applications.Computer
Graphics 28(1994), 421–434.

[GB95] GREENHALGH C., BENFORD S.: MASSIVE:
A distributed virtual reality system incorporating spatial
trading. InInternational Conference on Distributed Com-
puting Systems(1995), pp. 27–34.

[Has98] HASKELL LANGUAGE AND L IBRARY COMMI -
TEE: Haskell 98 Language and Libraries The Revised Re-
port. Tech. rep., 1998.

[KBH00] K ESSLER G., BOWMAN D., HODGES L.:
The Simple Virtual Environment Library: An Extensi-
ble Framework for Building VE Applications.Presence:
Teleoperators and Virtual Environments 9, 2 (2000), 187–
208.

[Str93] STRAUSS P. S.: IRIS Inventor, a 3D Graphics
Toolkit. In OOPSLA 93 Conference Proceedings(Oct.
1993), vol. 28, ACM SIGPLAN, pp. 192–200.

[Tra99] TRAMBEREND H.: Avocado: A distributed virtual
reality framework. InProceedings of IEEE Virtual Reality
(1999), IEEE Society Press, pp. 14–21.

[Zac96] ZACHMANN G.: A language for describing be-
havior of and interaction with virtual worlds. InACM
VRST Conf.(Hongkong, July 1996).

c© The Eurographics Association 2007.


