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ABSTRACT

The creation of engaging, interactive virtual environments is a dif-
ficult task, but one that can be eased with the development of better
software support. This paper proposes that a better understanding of
the problem of building Dynamic, Interactive Virtual Environments
must be developed. Equipped with an understanding of the design
space of Dynamics, Dynamic Interaction, and Interactive Dynam-
ics, the requirements for such a support system can be established.
Finally, a system that supports the development of such environ-
ments is briefly presented, Functional Reactive Virtual Reality.

Keywords: Virtual Environments, Dynamics, Dynamic Interac-
tion, Interactive Dynamics

Index Terms: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism; I.6.0 [Com-
puting Methodologies]: Simulation and Modeling—General

1 INTRODUCTION

Designing and creating interactive virtual environments is a chal-
lenging task. Even basic environments generally require extensive
knowledge, spanning multiple sub-areas: programming, modelling,
and even interactive design. Building environments that are dy-
namic and capture the interest of user for extended periods extend
the difficulties, requiring domain experts. However, the difficulties
of these areas can be reduced through improved software support.

The need for elements of the environment that go beyond static
settings is generally accepted. Interactivity is one way to do this.
Interactivity has been a cornerstone of the power of Virtual Re-
ality (VR), generally even a defining characteristic. Interactivity
envelops the user, making them feel part of the environment. The
other way is including aspects that change over time. Such aspects
can hold the interest of the user. Having parts of an environment
changing over time is not new to VR. However, ever more of the
applications of VR explicitly rely on them, often very heavily. For
instance, the emerging areas of Virtual Reality Exposure Therapy
(VRET) and VR as distraction during physical therapy require the
user to be interested in and feel a part of the environment presented,
often for longer periods of time.

Environments that achieve these things can be built. Modern
computer games demonstrate this well. However, requiring experts,
working over extended time periods, to be able to build the envi-
ronments is limiting. The adoption of VR and related VE based
techniques in broader communities depends on solutions that can
reduce this work load. The acknowledgement of this can be seen
in recent trends in the Web3D community focusing on this and the
creation of the special interest group Software Engineering and Ar-
chitectures for Real-time Interactive Systems (SEARIS) in the VR
community.

That support for the creation of such engaging, interactive envi-
ronments needs to be extended is clear, but it is a problem that has
been approached numerous times. In this paper, we want to incite
the community to take a broader view and a more formal look at
the actual requirements of what needs to be supported. We feel that
previous attempts have failed to fully address the issues present in
the design and implementation of such environments. In order to
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support them fully, an understanding of the actual problem has to
be developed. Though numerous attempts have been made at sup-
port, no works are known to the authors that investigate, formally or
even informally, the requirements of such a system in relation to the
actual design problem (software design requirements withholding).
This paper introduces ongoing research in our group on formally
investigating the design space and defining requirements for such a
system. Finally, we propose a solution that can fulfill the basic set
of requirements presented.

2 DEFINING DYNAMIC, INTERACTIVE VIRTUAL

ENVIRONMENTS

The first step that we take is providing a name to our goal to lighten
discussion of the area. We are calling the type of environments
of interest Dynamic, Interactive Virtual Environments. This name
is chosen for simplicity and because it expresses the three main
points: we are dealing with synthetic (virtual) environments, they
are dynamic, and they are interactive. If any of these factors are
missing, then the goal is truly something different.

The Virtual Environment concept is likely familiar to readers and
the connotations of the term related to VR are implied. More pre-
cisely, we mean synthetic computer generated environment with
possible real components, i.e. mixed and augmented reality, pre-
sented under real-time conditions. A point that needs clarification
is that these environments may be unrealistic. Only the imagination
of the designer and the prowess of the programmer need limit what
is possible, as it is virtual. A common fallacy in the software sup-
port design is too strong a focus on environments recreating reality.

The area of interactivity is likewise familiar to readers. By inter-
activity, we mean that the user can take action in the environment.
VEs typically require interactivity in the form of travel. Immersive
Virtual Reality requires implicit interactivity, in the form of head
tracking. These components are fairly well understood. Interactiv-
ity with parts of the VE turns out to be more narrowly understood.
We define interactivity as: the user being able to take influence on
some part of the environment or its controlling structure.

The final term to define is dynamics, the part that gives “life” to
the environment. We define dynamics as:

any changes over time that affect perceivable changes to
the VE, either directly or indirectly.

This definition is purposefully large and encompassing. This is be-
cause, we believe, any dynamic will influence the user and is likely
to capture the interest of the user, not just virtual humans.

3 DESIGN SPACE AND REQUIREMENTS

Armed with a definition of what we are interested in enabling, the
creation of Dynamic, Interactive Virtual Environments, the next
step is to understand the design space that they entail. An inves-
tigation of the possibilities within the design space provides many
insights and shows the astounding depth which can be created. A
taste of the results of a study we have conducted is provided here.
A more complete review of this will be provided in a future venue.

The design space of interaction is fairly well covered, for in-
stance by Bowman’s Taxonomy [3]. However, we will contend later
that a major aspect is missing from that analysis. The area of dy-
namics is well known to us, but not well understood in the context



of virtual environments. The most common and readily thought of
dynamics of a virtual environment are the 3D movement of objects.
When one considers all of the possibilities, spatial behavior is only
a single category of dynamic that can occur.

We have built taxonomies of the dynamics possible in order to
better understand the design space and in hopes of drawing out in-
sight for the design of support. The sheer breadth of design space
indicates that solutions must reach beyond spatial behavior. This
is in stark contrast to the traditional approach of embedding the
dynamics and interaction systems into the scene graph - a spatial
mechanism. Out of the large design space, classes of types of dy-
namics can be identified. This means structured support for those
individual categories of dynamics can be built.

A second method of categorization is even more informative. If
the possibilities are analyzed by how the dynamic is perceived in
time, clear requirements on the support for programming dynamics
emerge. Time representations are important to the approaches used
in computer science [15] and need be considered for building good
support. Using this approach, one find three categories:

• continuous infinite, [−∞

• continuous over an interval, [−)
• discrete, (−)

When placing the possibilities into these categories it is informa-
tive to see that almost all identified dynamics fall into the one of the
two continuous categories. The difference lies in their boundedness
in time, or in the expectation of how long the dynamic lasts. For
both the continuous over an interval and discrete dynamics an event
semantic can be used. Although events can be understood in many
ways [15], we support a view, where events mean the possibility
and the occurrence of events being distinct, countable incidents of
that event type.

In defining Dynamic, Interactive Virtual Environments, we have
striven to make clear that the point of interest is the confluence of
all components. The conjunction of interaction and dynamics needs
explicit consideration. When considering the combination, two ba-
sic concepts can be identified: Dynamic Interaction and Interactive
Dynamics. These form fundamentally different ideas and need to
be individually considered.

When putting the stress on the interaction portion of the combi-
nation, a concept that deals with the time aspect of the interaction
is developed. Formally, we define it as:

Dynamic Interaction is any interaction (the user taking
influence over the environment), where the interaction
takes place over time.

This style of interaction is not new to VR. As a matter of fact, al-
most all of the basic interactions considered in Bowman’s taxon-
omy fit into this category. This aspect of defining time as a fun-
damental element of the interaction is, unfortunately, rarely done.
When time is considered it is typically in relation to filtering of
input data. Where this view of time is important is in consider-
ing how the interaction should work and how it is implemented.
Categorizing the design space of Dynamic Interactions by the time
representation introduces additional representations:

• continuous infinite, [−∞

• continuous over an interval, [−)
• ordered sets of intervals [−) . . . [−)
• ordered sets of discrete events (−) . . .(−)

Support structures for interaction are not uncommon [9, 14], but
supporting the defining characteristic, time, of this very common
class of interactions is rare. Those that do are mostly concerned
with input filtering. We believe that the time factor needs to be

taken into consideration both in the conceptual design of interaction
and implementation in order to create effective interfaces.

Conversely, the combination of interaction and dynamics can be
made to stress the dynamics component. This represents an often
ignored aspect of interaction. Formally we define this as:

Interactive Dynamics are any interaction (the user taking
influence over the environment), where the “object” of
interaction is a dynamic.

Interactive Dynamics are an interesting area for exploration. Exam-
ples of interactive dynamics exist, though are generally very limited
in scope. Often these involve interactions with semi-autonomous
entities, such swarming bees, or with virtual humans. Interaction
research has largely shunned the topic, with only limited special ex-
ceptions (character/avatar interaction and interactive storytelling).
Unfortunately, because this area has been little explored, it is dif-
ficult to draw good conclusions on good representations. The one
area that has addressed interaction with dynamics is animation. The
basic methodology that is developed is defining different transition
functions that enable the movement from one animation (dynamic)
to another when (discrete event) interaction occurs.

A further area emerges when considering interactive dynamics,
dynamic interactions with dynamics. We previously identified that
most of the classical VR interaction involve dynamic interactions;
therefore, it reasons that the interaction involved in the interactive
dynamic could be a dynamic interaction. How this works, even at a
conceptual level is uncertain and a very interesting question. Unfor-
tunately, building software support beyond enabling the exploration
of this space cannot yet be directly performed. Our suggested re-
quirement for this is that the support of continuous time function-
ality needs to be pervasive throughout the support, available at all
levels.

4 REQUIREMENTS

Based on an analysis of the design space, a set of requirements for
software support can finally be captured. Additional requirements
should be taken into consideration, particularly common wished for
functionality and some standard software design requirements for
good practice. Here, the most crucial of the requirements that we
have identified are presented:

• support time representations: continuous infinite, continuous
over interval, discrete time, and ordered sets

• existence of an input “event” type

• interaction induced “event” dynamics

• interaction induced continuous dynamics (dynamic interac-
tions)

• representation of dynamics better matching human under-
standing

• user should not deal directly with δ t

• time’s flow changing itself, i.e. time skewing

• multiple independent time “speeds”

• run-time changeable structure

• support for transitions between behaviors

• undo, including over all time representations

• (soft) real-time capable

• user extensible

• scalable

This core set of requirements should be understood as the ba-
sic set needed, further requirements are relevant in a larger scope.
The requirements stem from the analysis discussed previously and
those after “undo” come from standard practices. Undo is the one
issue that requires additional explanation. An undo capability is
commonly seen as necessary for any interactive system, as errors



f l y i n g l a v a c h e : : a −> SF b P o i n t 3 f

f l y i n g l a v a c h e = proc −> do

v e l o c i t y <− a r r ( ( Vec to r3 (−1) 20 0) + ) <<< i n t e g r a l −< Vec to r3 0 ( −9 .8) 0

( Vec to r3 x y z ) <− a r r ( ( Vec to r3 0 0 0) + ) <<< i n t e g r a l −< v e l o c i t y

returnA −< ( P o i n t 3 x y z )

r u n w o r l d : : ( ( Float , Qua t f ) , S t r i n g ) −> SF Double ( ( Quatf , S t r i n g ) , P o i n t 3 f )

r u n w o r l d i n i t n e w t o n = proc s k e w f a c t o r −> do

l e t s a v e e v e n t = t a g ( consumeEvent ” s a v e E v e n t ” ) Push

u n d o e v e n t = t a g ( consumeEvent ” undoEvent ” ) ( Pop 1)

c o l l e c t e v e n t = merge s a v e e v e n t u n d o e v e n t

b a l l o r i e n t <− undoSF ( timeSkewSFd ( n e w t o n s C r a d l e i n i t n e w t o n ) )

−< ( ( ( ) , s k e w f a c t o r ) , c o l l e c t e v e n t )

l a v a c h e <− s w i t c h ( a r r (\ e −> ( P o i n t 3 0 0 0 , e ) ) <<< ( a f t e r 30 ( ) ) )

f l y i n g l a v a c h e −< ( )

returnA −< ( b a l l o r i e n t , l a v a c h e )

Listing 1: An example of FRVR Yampa code.

do occur. The standard undo method of storing states becomes
intractable, particularly when dynamic interaction is considered.
Storing interaction “messages” is likewise impractical. A method
needs to be considered that takes into account all the dynamics and
interaction that has occurred up to that point, at least in as far as
they influence the development of the environment over time.

5 FUNCTIONAL REACTIVE VIRTUAL REALITY

Meeting even this basic set of requirements for a system in sup-
port of Dynamic, Interactive Virtual Environments is difficult. Few
systems support a continuous representation of time and, more im-
portantly, allow their implementation. The systems that come clos-
est to achieving this are constraint network based systems [7, 17].
However, these fail on other requirements, notably real-time ca-
pabilities, scalability, runtime configurability, and events are diffi-
cult. The Web3D community has investigating the issue, but has
focused primarily on modeling such environments [6, 11]. Those
works have not supplied any help for the actual implementation of
dynamics and interaction.

Alternatively, a class of systems have focused on the ease of pro-
gramming/creation of such such environments. Examples of these
are Alice [12] and Virtools [16]. The basic premise is to provide the
user with building blocks of functionality to allow them to build up
what they need by applying and combining those basics. To go be-
yond the predefined behaviors and interactions, the user must once
again program everything by hand, with little specific support for
the problem. We propose the use of a different approach, one that
can handle the all of the requirements listed above.

5.1 System Introduction

Our proposed system is based on the programming paradigm, Func-
tional Reactive Programming (FRP). FRP was originally conceived
for programming animation in a manner that matched more closely
the way movement is understood by people [8]. The “functional”
aspect of the paradigm is the creation of continuous time “behav-
iors.” To include interaction, the system is also reactive; the re-
active nature is performed by changing which behaviors are run-
ning, based on discrete events. This design, although first later for-
mally recognized, directly enables the creation of hybrid systems,
i.e. combining continuous functions and discrete events [13]. VEs,
particularly those in immersive technologies, are prime examples
of hybrid systems. Our system, Functional Reactive Virtual Real-
ity (FRVR), builds on top of the FRP paradigm, combining it with
existing VR frameworks. The details of how FRVR achieves this
combination can be found in [1, 2].

FRVR is based on the most recent incarnation of the FRP
paradigm, Yampa. Yampa is programmed in the Haskell language

- a strictly typed, pure functional language. Haskell’s syntax is
based on mathematics, particularly that of mathematical proofs.
This makes much of the structure familiar and also enables formal
proofs of the validity of code. Yampa relies heavily on the Arrows
extensions to Haskell, which enables a procedural style of program-
ming based on computations. Various books provide coverage of
the Haskell language and the book from one of FRP’s architects,
Hudak, covers the the full spectrum of Yampa’s Haskell usage [10].
An introduction to the Yampa system can be found in [5].

FRP is designed on a building block style of programming and
hierarchical building of functionality. The basic types that make up
the Yampa implementation are: Signal Functions, Events, switches,
and “parallelizers.” Signal Functions (SFs) are the implementa-
tions continuous time functions, implemented as signals. The basic
functionality for continuous time functions is the integral function,
though not the only method. Events are discrete occurrences of a
specific Event type and may carry additional information. The basic
functionality for reaction, are the switches. Switches are triggered
by Event occurrences, causing a change to a new behavior (SF). Fi-
nally, the parallelizing functionalities allow grouping of functional-
ities together, for instance individual Boids into a flock. Complex
functionalities are built by aggregating SF functionalities together.

Listing 1 provides an excerpt of FRVR Yampa code. The code
simulates two different objects. The full simulation code for a cat-
apulted cow is present; the cow is first “launched” 30 seconds after
the start of the simulation. The other component is the simula-
tion of an interactive Newton’s Cradle, originally presented in [1].
Here, that functionality is simply used, but extended to allow the
user to skew time, for instance slow it done to make selection of
the balls easier, and the addition of an undo function. Most of the
functionalities used in the example code are explained in following
paragraphs.

5.2 FRVR’s Functionalities

Yampa provides functionalities that fulfill a portion of the require-
ments. The basic functionalities provided were presented above.
Using them, all of the time representations required can be created.
The programmer does not deal with the time delta when program-
ming dynamics in Yampa. Utilizing the connection to existing VR
systems, interactions, both discrete and continuous style interac-
tions, are possible; for details of this aspect and for an example
see [1]. Unfortunately, Yampa falls short on various of the remain-
ing requirements. Those are addressed in this section.

One of the most pervasive issues with Yampa is that it is designed
to hide the internals from the programmer; This is done so that the
programmer can not create “space-time leaks,” but also inhibits the
extension of the system. FRVR contains a revised version of Yampa



that restructures and opens the implementation up to allow the ex-
tension of the functionality by the advanced user. This access is
only required in cases where the provided building blocks are not
sufficient and should rarely be needed. For the remaining function-
alities FRVR takes advantage of the FRP concept and, in particular,
the implementation method used by Yampa, to create extensions to
the Yampa language that meet the requirements listed above. The
key to being able to create many of them is Yampa’s continuation
based signal implementation of the continuous behaviors. Details
of the continuation based signal approach can be found in [4].

The details surrounding time’s progression are handled internally
by Yampa code. However, many aspects of time are desirable to
control. Standard timing functionalities (e.g. after 30 seconds) are
included in Yampa. FRVR introduces further time based function-
alities. Control of the time resolution of the simulation is one of the
most fundamental. Time skewing is another. The time resolution,
that is the size of the δ t, is directly tied to the graphics frame loop.
This update rate is often insufficient for simulation. Special exten-
sions allow the simulation, either component-wise or complete, to
be sampled at a higher time resolution. Along with this, switching
is improved to find a more exact time of internally generated events,
an issue that previously caused even simple higher-order time de-
pendent functions to become unstable.

An often considered extension is changing the flow of time.
Time skewing functionalities allow this, based on a scaling factor.
Time skewing can be performed on the entire simulation or on in-
dividual portions of the simulation independently. The time skew
can be any non-negative value; skewing time by a factor of zero ef-
fectively freezes time. Two versions of this functionality allow both
fixed run-time established skew factors as well as run-time dynamic
skewing of time.

FRVR also adds an “undo” functionality available at every level.
By exploiting Yampa’s continuation based stream implementation,
the stand of the system at any moment can be saved. The system
can jump back to the old time of the simulation as desired. What
makes this powerful is that the frozen behavior effectively captures
the system “state” consisting of all inputs and decisions up to that
point, by “freezing” the continuation. This is achieved simply by
wrapping the behavior with a single function.

Finally, a series of transitions functions have been created to help
support interactive dynamics, inspired by the methods of comput-
eranimation. Transitioning switches are set up to handle the stan-
dard “keyframe” animation style transitions (e.g. linear interpo-
lation between the values of old and new for 5 seconds) and also
for the relations of interval algebra developed by Allen [15]. This
functions form a framework of support mechanisms, assisting the
exploration of interesting area.

6 CONCLUSIONS

This paper has focused the generation of support for the creation of
what we are terming, Dynamic, Interactive Virtual Environments.
We have approached this by suggesting that the design space and
requirements of such systems need to be better and more thoroughly
defined in order to be successful. Our initial insights into the actual
design space of these environments, focusing on particularly on:
Dynamics, Interactive Dynamics, and Dynamic Interaction. Cou-
pled with interaction, these form the basic points of interest of what

must be enabled by a system of support. Based on that investi-
gation, a list of essential requirements for support of creating Dy-
namic, Interactive Virtual Environments was developed.

Finally, we have presented a system that fulfills the requirements
laid out, Functional Reactive Virtual Reality. The FRVR system
is based on the Functional Reactive Programming paradigm and
is loosely coupled with existing VR frameworks. Leveraging the
power and flexibility of the Yampa FRP implementation, FRVR ex-

pands its functionality to handle things like transition functions, in-
dependent time skewing, and even undo.
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