ACTIF: An Interactor Centric Interaction Framework

Nicolai Hess*
Kristopher J. Blom$

Jan D.S. Wischweh

Kirsten Albrecht?
Steffi Beckhaus¥

im/ve, University of Hamburg, Germany

Abstract

The design and implementation of interactions in 3D environments
remains a challenge. This is especially true for novices. Mecha-
nisms to support the creation of interaction have been developed,
but they lack a central metaphor that fits the natural way in which
developers conceptualize interaction techniques. In this paper, we
introduce a new framework whose design mirrors the essence of in-
teraction throughout the Virtual Reality spectrum, where the user is
literally in the center. It also reflects the way in which interactions
are actually understood and described, based on the interactor and
her actions.

Based on the central metaphor of the interactor, an implementa-
tion that is composed of three phases is developed. Those phases
are: input retrieval and shaping, interpretation of user intentions,
and execution of changes to the environment. Through these di-
visions, software requirements like composition and reusability of
components are satisfied. The resultant system ACTIF, an ACTor
centric Interaction Framework, structures interaction development
in a meaningful and understandable way and at the same time eases
the design and creation of new and experimental interactions.

CR Categories: H.5.2 [Information Systems]: Information
Interfaces And Presentation—User Interfaces 1.3.7 [Computing
Methodologies]: Computer Graphics—Three-Dimensional Graph-
ics and Realism 1.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques

Keywords: 3D User Interfaces, User Centered HCI, Virtual Real-
ity

1 Introduction

Interaction in three dimensional (3D) user interfaces remains a chal-
lenging aspect of Virtual Reality and related fields. Mechanisms
supporting the creation of interaction with Virtual Environments
(VEs) are required to ease both development and exploration of
this space, and also to support an expanding growing user base that
includes novices. Various approaches have been taken in the de-
velopment of software to address the support of interaction design
and implementation. These methods have largely focused adapting
well understood software approaches to 3D interaction or on soft-
ware engineering aspects, like component reusability. We propose

*e-mail:nicolaihess @web.de

T e-mail:mail @ wischweh.de
te-mail:Kirsten-Albrecht @ gmx.de
§e-mail:blom @informatik.uni-hamburg.de
Ye-mail:steffi.beckhaus @uni-hamburg.de

©ACM, (2008). This is the authors version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in VRST 2008, October 27-29, 2008.
http://doi.acm.org/10.1145/1450579.1450587.

<)BSERVE\ [|CH5NG|>
<OBSERVE‘ ’CHP;NGI%

INTERPRETATION
| VR-ENVIRONMENT

’CHA‘NG%

@BSERVE‘

Figure 1: The basic concept of our design divides the interaction
process into three phases built around a Virtual Actor.

approaching the creation of a 3D interaction framework from a dif-
ferent direction, centered on the interactor.

In this paper, ACTIF - an ACTor centric Interaction Framework - is
presented. ACTIF is built around the central metaphor of an Virtual
Actor, stemming from the observation that the user is literally in
the center interface. Therefore, a truly “user centered approach”
should be taken. ACTIF is also based on the idea that interactions
are initially understood with respect to what the interactor does. In
traditional systems, that understanding must then be translated into
the representation of the given framework.

The Virtual Actor is the central unifying component of the ACTIF
interaction system. Building a system around this central point,
three different aspects of an interaction implementation were iden-
tified. These phases of the interaction are: input retrieval and shap-
ing, interpretation of user intentions, and execution of changes to
the environment. The structure of this approach to interaction spec-
ification is outlined in Figure 1. Applying this approach reveals
a different way to achieve the traditional requirements of interac-
tion frameworks, like consisting of componentized units that can
be reused and separation of system specifics.

This paper presents the development of the ACTIF interaction
framework, a new approach to supporting interaction development.
The next section reviews the existing approaches to this problem
space. The design and implementation of ACTIF are presented in
Section 3. The ACTIF system is discussed in Section 4, before
concluding the paper.

2 Background

Various methods for supporting interaction via specialized software
have been explored. Three basic methods can be identified from
those works: scene graph coupled manipulators and independent
frameworks that are either dataflow based or event based.

Many of the monolithic VR systems include interaction support in-
tegrated into their scene graph representation. The most prevalent
is the approach taken by the SGI Inventor system [Strauss 1993].
Special manipulators that work in conjunction with extended scene
graph nodes to define interactions. These systems start every frame
with special “Sensors” that insert input from the world. A manip-
ulator receives the input data and is responsible for converting the
input into a change in the environment.

The dataflow based approach models interaction as a series of op-
erations on the data as it flows from the device interfaces to com-
ponents that actually change the graphics. Each operation is a sort
of filter that changes the data. The advantage of the dataflow is that
the filters can be created such that they build minimal components
and can be reused in different contexts. A current example of such
a system is the InTmL framework [Figueroa et al. 2001]. An al-
ternative approach to the dataflow system is an event based system.
Such event based systems are similar to the standard method used
in desktop based systems. The basic idea here is that some compo-
nent reacts to events generated by the user input. Kessler’s SVIT
system is an example of this method [Kessler 1999].

At an abstract level, the work of Wingrave and Bowman [Wingrave
and Bowman 2008] is the most relevant work to our approach. They
term their approach as being “developer-centric.” Although the
concrete approach of the Chasm tool is quite different than ours,
the approach likewise strives to assist the developer by adding a
conceptual structure to the development of the interaction methods.
As with their approach, our design strives to assist the developer by
structuring the interaction in a way that simplifies the conceptual-
ization and ultimately the development of interaction methods.

3 ACTIF Interaction Framework

The development presented here is the result of and also influenced
by the context in which it was created. As part of a course focus-
ing on interaction in VR, a set of students were asked to develop
a new framework for interaction under a diverse set of conditions.
The overarching goal of the development was to design and build
a new method for supporting the creation of interactions. Creating
interactions was also part of the course work, which meant that the
framework was to be used by the developers themselves in a sec-
ond stage, as well as by their classmates and even future classes.
However, the course also took place in a time of transition, where a
change in VR systems was expected, meaning their system had to
be very flexible.

The combination of abstraction from input, component reusabil-
ity, incremental prototyping, VR system abstraction, and teaching
other students how the new system worked led to the conclusion
that the existing design patterns were not optimal. The introduction
of a Virtual Actor to the system unifies and clarifies those concepts,
creating a system that fulfills those diverse requirements. With the
Virtual Actor as a centerpiece of the idea and the system proposal,
a new view of the interaction composition was made possible. The
movement from a conceptualized interaction method to an imple-
mentation can be approached from the point of the interactor. In this
approach, the interactor in the virtual world is found in the center
of the interaction implementation.

The ACTIF interaction framework is the result of applying this ap-
proach. The central Virtual Actor concept gives rise to a convenient
and advantageous method of dividing the interaction into compo-
nents. ACTIF distinguishes between three different aspects of de-
veloping interaction techniques: (a) mapping data from input de-
vices to meaningful data in the virtual world, (b) interpreting what
the intention of the user is, (c) taking actions to carry out the users
will. This process is depicted graphically in Figure 1.

ACTIF is a C++ library that is cross platform and cross VR sys-
tem. The implementation is component based, where each step of
the process is encapsulated in its own component. The entire sys-
tem is controlled by a central kernel that enforces this three stage
process. The kernel runs registered components each frame. Modal
and smart update mechanisms allow ACTIF to implement complex
interactions.

In this section we introduce the ACTIF design and implementation
in more detail. As the central concept of the system, the Virtual
Actor is introduced first. The details of the implementation of the
three phases are introduced after that. The control loop of ACTIF is
then presented. Finally, the integration of ACTIF into existing VR
systems is presented the final portion of this section.

3.1 Virtual Actor

The Virtual Actor plays a central and major role in ACTIF. How-
ever, it is rather a simple component. The Virtual Actor is data
structure instead of a being an active component. The Virtual Actor
is an abstraction of all aspects of the user’s behavior. The Virtual
Actor is not an avatar, though it may steer one. It is the interactor
in the virtual world that is steered by the user in the physical world.
Developing interactions in ACTIF is, therefore, about manipulating
and observing the Virtual Actor.

The Virtual Actor is composed of Limbs. Limbs are not to be seen
as literal limbs of the user or an avatar, but are each a high-level
and specific abstraction for one part of interaction. Each Limb rep-
resents one aspect of the user’s behavior that is relevant for the ap-
plication. For instance, a Virtual Actor may have a foot Limb that
represents the position of the user in the VE. A hand Limb may
represent what the user is holding or where she is grabbing.

All Limbs contain coordinate information, an orientation and a po-
sition. Limbs can also be extended to hold more information, as
needed for their domain. The Virtual Actor defines a hierarchy of
Limbs, arranged in a tree structure (a directed acyclic graph). This
is used in the same way a scene graph works, accumulating the po-
sition and orientation of each Limb in the hierarchy. When a parent
changes its position or orientation, its children will be changed ac-
cordingly. This structure has a number of benefits. In the case of
building up a user representation, the dependence of body parts on
one another is obvious. For handling input data, this can also be
helpful, for instance gloves that deliver finger orientations can be
placed under the hand to get the right world position.

3.2 Three Phase Interaction Processing

The Virtual Actor is the unifying and central component of the con-
cept, but the actual creation of the interactions is performed in the
other components of the system. The first phase of ACTIF’s in-
teraction processing is the acquisition of data from input devices
and mapping of that data onto the Virtual Actor. This may be the
abstract mapping of desktop input or direct mapping of a tracking
data onto the Virtual Actor’s Limbs. The next phase is to determine
the intended interaction, by interpreting the actions of the Virtual
Actor. Finally, that intention has to be executed in the environment.

3.2.1 Input Processing

The mapping of data from input device to the Virtual Actor is im-
plemented in the Device Mappers. The main goal of this phase is to
provide abstraction from the devices, both at a device interface level
and at a semantic level. The Device Mappers perform their task in
two phases: first polling the device and, then, mapping that data
onto a specific Limb (or more than one Limb). The DeviceMap-
per class defines an abstract interface composed of two functions
that implement the two phases of input processing: pollDevice()
and updateActor(). All Device Mappers that are registered with the
Kernel are run each frame.

Sensor B

Driver B
Mapper B

Driver A
Mapper A

Driver C
Mapper C

T T T T
InterpretationModules

2 4%,,
] Y
O1
Consequence 1 | I Consequence 2| IConsequence 3

Scenegraph

Figure 2: The components of the ACTIF interaction frameworks
implementation are highlighted in connection in this diagram.

3.2.2 Interpretation

The next phase of processing is to react to changes on the Virtual
Actor. The intentions of the interactor have to be interpreted from
the data in the Virtual Actor and changes to them. This function-
ality is embedded into Interpretation Modules. They observe the
interactor’s behavior based on the data from the Virtual Actor and
notify the framework when relevant actions should be performed.
The Interpretation Modules are the components where the most of
the interaction logic is found. The InterpretationModule contains
a single function, dolnterpretation(), that is called by the Kernel.
Typically, an interaction technique consists of more than one Inter-
pretation Module. A complex task is divided into basic subtasks.
Each subtask is written as an Interpretation Module. This enables
piecewise development of complex interactions and the modules
can easily be reused in other interaction techniques as well.

Interpretation Modules do not affect the VE directly. Instead, the in-
teractor’s intentions are encapsulated in Actions. Actions are simple
messages that indicate that a particular change to the system should
be performed. The Action contains the necessary information from
the interpretation phase so that the changes can be affected. They
establish an extensible event system. Separating the detection of the
interactor’s intentions from their execution increases the reusabil-
ity of the interpretations, as they are no longer specific to certain
objects, etc. Through the loosely coupled event mechanism these
components form, changing connections in new ways is simple as
well as the creation of multiple reactions to a single event.

3.2.3 Consequences

The last phase of an interaction in the ACTIF system, is affecting
the interaction on the virtual world. This phase is the abstraction
layer to the specifics of the virtual world representation of the VR
system. As such, it is highly dependent of the VR system. The

| Kernel | | DeviceMapper H InterpretationModule H ActorLimb ‘ l Consequence H ScengraphNode

1 I ; |
| poliDevice() | ;
! I
I

I

|
updateActor(). ! setPositi‘pn(pos)

I
dolnterpretation()

setOrientétion(ori)

R

2 i my s st e it

i

ol

[manipulate()

Figure 3: The control loop of the ACTIF implementation is shown.
Each of the Kernel calls shown is called for all active components
of that type before moving on to the next stage.

’ getPosition()
|
E getOrientation() i
broadcastAction(Action) 1
- i
notify(Action) !
I 1
doConsequence() i 7
i
1
1
1

working of this phase is implemented as Consequences. The regis-
tered Consequences are called after the interpretation phase to ex-
ecute the Actions sent by the Interpretation Modules. Each Conse-
quence reacts to specific Actions. changing the virtual world based
on the information contained in those Actions. Multiple Conse-
quences may react to the same Action and a single Consequence
may react to multiple Actions.

3.3 Control Loop

The control loop of ACTIF is performed by a central mechanism,
the Kernel. Although it is of fairly trivial complexity, it’s necessary
to understand its strict cycle. Figure 3 presents the control loop
graphically. Each phase of processing is executed completely be-
fore continuing to the next phase. To enable systems of multiple
interactions and modally phased interactions, a state system is im-
plemented in the Kernel. The Kernel determines at the beginning
of each frame the components that are in active states and executes
only those components.

First, the method pollDevice of all DeviceMappers is called to re-
trieve new data via the device interfaces. Next, the updateActor
method of the DeviceMapper’s is called to propagate input data to
the Virtual Actor. These calls are divided, so that the data of all
inputs is collected as close to the same moment as possible. After
the Virtual Actor is completely updated, the Interpretation Modules
take their turn and the framework calls each modules dolnterpreta-
tion method. Each Interpretation Module examines the Limbs of the
Virtual Actor in which it is interested and determines if the changes
in the Virtual Actor can be interpreted as certain Actions. If so, the
Action message is sent using the Kernel’s broadcastAction method.

Once all Interpretation Modules have been processed and, thus, all
the Actions have been collected, the Kernel notifies all active Con-
sequences of the Actions that exist. The doConsequence method
of each Consequence is then called. An ordering of the Conse-
quences is enabled by the addition of a priority level. Within each
priority level, the ordering is considered random. If the Conse-
quence receives the Action(s) necessary for it to run, it performs all
changes in the underlying Virtual Environment. The Consequence
may have side-effects within the framework. It may update por-
tions of the Virtual Actor, or it may also cause state changes in the
Kernel. Changes to the Virtual Actor will be seen by any Conse-

quences yet to be executed. The state changes take effect first in the
next cycle.

3.4 Implementation of VR Systems Specifics

ACTIF is designed to localize the dependencies on systems
specifics, making integration in different systems easier. There are
three areas that require integration: the Device Mappers, the system
Kernel, and the Consequences. The Device Mappers are dependent
on the device or low-level interface that they use to retrieve the in-
put. The ACTIF Kernel has to be integrated into the VR system’s
update loop. The centralized control of the Kernel means that this
involves a single call in the update loop. Finally, the Consequences
are dependent on the software used to represent the virtual world.
This typically means adapting existing Consequences or writting
them to deal with the appropriate scene graph.

ACTIF has been integrated into two different VR systems and uses
a number of different input systems. The initial development of the
system was done in the AVANGO system [Tramberend 1999]. This
required the development of special structures in order to introduce
it into the tightly controlled cycle of AVANGO. The Kernel is run
as a service, so that it is first to execute. ACTIF is additionally
embedded into the scripting language that AVANGO uses, making
the setup of the interaction set easy. A port to VR Juggler was
completed in short order [Bierbaum et al. 2001]. Bindings to both
the OpenGL Performer scene graph and OpenSceneGraph (OSG)
have been created.

4 Discussion

Our experience so far with ACTIF has been very positive. The basic
concept fits well to the developer’s needs when programming inter-
actions. Creating new and experimental interactions is straightfor-
ward, since the descriptions of interactions can be followed in their
implementation. This proved particularly helpful for novices to in-
teraction creation. The division of the complete interaction into the
three phases seems to be easy to grasp and to map into an imple-
mentation. The componentized nature of the system, in combina-
tion with the well defined interfaces, allows good reuse and compo-
sition of components to create new interactions. With a basic set of
developed components, many interactions can be programmed by
extending a single element.

The interworking of the Interpretation Modules and Consequences
is one area that deserves consideration. The ideas was to move
all interaction with the graphics system to the Consequences. For
many interactions this is trivial to do. However, in some cases, the
implementation of highly VE dependent interactions is complicated
when adhering this strong separation. An alternative is to allow
some knowledge of the graphics systems into Interpretation Mod-
ules. The unfortunate part of this is that the Interpretation Modules
become system dependent. From a system side, there is little way
to enforce the strict separation from the system in the Interpretation
Modules. Although we have yet to find a case that cannot be rel-
atively easily addressed with this strict separation, such cases may
exist. We are continuing to look for mechanisms to make the im-
plementation clearer in this regard.

A possible direction that would be interesting to look at in the fu-
ture would be to change the implementation of portions of the sys-
tem to leverage previously developed systems. In particular, the
decision to make the Device Mapper a single component could be
reconsidered. One possibility could be to simply separate the two
components. An attractive approach for this phase would be to im-
plement an openTracker-like filter system [Reitmayr and Schmal-
stieg 2001]. For trivial mappings, this is a bit of an overkill, since

the current system works well. However, for the implementation
of complex filters or in applications that require sensor fusion, the
current method lacks support.

5 Summary

In this paper we have introduced a new framework for the devel-
opment of interactions. The structuring of interaction support is
approached from an interactor centric perspective. Building from
this focus, the framework divides the interaction into three phases:
mapping of devices to the Virtual Actor that abstractly represents
the interactor, interpreting the Virtual Actor’s state into actions, and,
finally, changing the environment as the consequences of those ac-
tions. The interpretation and consequence phases are connected via
an event based system, allowing flexibility and greater system inde-
pendence. The state and priority mechanisms built into the control
structures of the system support the design and implementation of
complex interactions and environments containing a multitude of
interactions.

An implementation of this interactor centric design has been pre-
sented ACTIF. ACTIF is designed to be adaptable to various VR
systems, and implementations for two VR systems and three ren-
dering systems already exist. The component based software design
enables easy reusability and composability in interaction creation.
ACTIF has proven flexible and an easily understood approach even
for novices.

6 Acknowledgments

We would like to thank Gideon Otte for his assistance in the devel-
opment of the Interaction Framework. We would also like to extend
our thanks to the members of the VR course that implemented their
interactions in a system still in development.

References

BIERBAUM, A., JUST, C., HARTLING, P., MEINERT, K., BAKER,
A., AND CRUZ-NEIRA, C. 2001. VR Juggler: A Virtual Plat-
form for Virtual Reality Application Development. In Proceed-
ings of the Virtual Reality 2001 conference (VR’01), 89.

FIGUEROA, P., GREEN, M., AND WATSON, B. 2001. A Frame-
work for 3D Interaction Techniques. In CAD/Graphics’2001 Au-
gust 22-24, International Academic Publishers, Kunming, China.

KESSLER, G. D. 1999. A Framework for Interactors in Immer-
sive Virtual Environments. In VR ’99: Proceedings of the IEEE
Virtual Reality, IEEE Computer Society, Washington, DC, USA,
190.

REITMAYR, G., AND SCHMALSTIEG, D. 2001. An Open Software
Architecture for Virtual Reality Interaction. In ACM conference
on Virtual Reality Software and Technology (VRST’01), ADM.

STRAUSS, P. S. 1993. IRIS Inventor, a 3D Graphics Toolkit. In
OOPSLA 93 Conference Proceedings, vol. 28, ACM SIGPLAN,
192-200.

TRAMBEREND, H. 1999. Avango: A Distributed Virtual Real-
ity Framework. In Proceedings of IEEE Virtual Reality, IEEE
Society Press, 14-21.

WINGRAVE, C. A., AND BOwMAN, D. A. 2008. Tiered
Developer-Centric Representations for 3D Interfaces: Concept-
Oriented Design in Chasm. In IEEE Virtual Reality Conference,
2008. VR °08., IEEE, 193-200.

