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Abstract 
Interaction ruptures in human-robot interaction (HRI) refer to sce-
narios when seamless interactions are disrupted. Such ruptures can 
be directly observed by the robot at times, e.g., not responding to a 
human utterance. However, often the ruptures could be more pas-
sive and subtle and require an analysis of the human’s behavior. In 
this work, we focus on detecting such ruptures by analyzing multi-
modal information in a face-to-face interaction setting. More specif-
ically, this paper describes the PRISCA team’s participation in the 
ERR@HRI Challenge 2024, which was recently proposed to bench-
mark multimodal learning approaches to interaction rupture detec-
tion in HRI. Central to our approach is a feature-fusion strategy for 
multimodal representation learning, where we train a neural net-
work with separate recurrent layers that act as temporal encoders to 
learn modality-specifc representations. Our approach was ranked 
3rd in the ERR@HRI challenge. We present detailed experimen-
tation on the released dataset from the challenge and a thorough 
analysis of the results. We further discuss the limitations of current 
approaches and implications for future works. Code will be made 
available at https://github.com/pradippramanick/prisca-errhri/. 

CCS Concepts 
• Computing methodologies → Machine learning approaches; 
• Computer systems organization → Robotics; • Human-centered 
computing → Empirical studies in HCI . 
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1 Introduction 
Enabling seamless human-robot interaction (HRI) requires robust 
methods for processing information from various modalities in real 
time. In practice, this is quite challenging even if the interaction 
is limited to one modality, e.g., speech, where the quality of tran-
scriptions can be afected by several factors and lead to incorrect 
interpretation of the human utterance [13, 18]. Further, without 
accurate turn-taking predictions, spoken dialog systems used in 
HRI are prone to timing errors [7]. For example, incorrect turn-
taking can lead to a robot interrupting a person while they are still 
talking [15]. 

Detection of such interaction ruptures, when a seamless inter-
action between a human and a robot is disrupted is an important 
problem in HRI [16]. In most cases, the efects of interaction fail-
ures are negative, e.g., leading to reduced trust [10]. Whereas, being 
aware of the presence or even a high likelihood of interaction rup-
tures enables robots to employ strategies to repair the interaction. 
For example, language understanding errors and ambiguity can 
be repaired using dialog [14, 18]. Speech recognition errors can 
be minimized using additional information from other modalities, 
e.g., vision, when errors are expected [12]. Further, information 
from multiple modalities may contain robust indicators of inter-
action ruptures, compared to a single modality. Most prior works 
have focused on analyzing human reactions for automatic detec-
tion of such ruptures [4, 15, 18]. However, the lack of large-scale 
benchmark datasets with sufcient diversity and well-defned anno-
tations remains a challenge. Recently, the ERR@HRI 2024 challenge 
was proposed to benchmark methods to detect interaction failures 
during human-robot interactions [16]. Subsequently, a multimodal 
dataset consisting of preprocessed features comprising facial ex-
pressions, speech, and relative pose from interactions with a robotic 
coach was released. The facial expressions are represented as Ac-
tion Units (AU) activation and the corresponding intensities, ex-
tracted using OpenFace [1]. For speech, the dataset contains the 
eGeMAPSv02 feature set, extracted using openSMILE [8]. For the 
pose, the features represent the relative distance and velocity be-
tween keypoints extracted using Openpose [5]. In this challenge, 
an interaction rupture is defned as the presence of either a robot 
making a mistake or a human user showing awkwardness during 
the interaction. The objective is to detect binary interaction-rupture 
labels, given a sequence of the aforementioned features. 

This work describes our participation in the challenge, where we 
develop an approach to learning modality-specifc features on the 
released dataset. We apply this method to all three sub-problems in 
the challenge, namely detecting i) User Awkwardness (UA), ii) Ro-
bot Mistake (RM), and iii) Interaction Rupture (IR). Our experiments 
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show that our approach to learning modality-specifc representa-
tions outperforms a baseline where an otherwise similar neural 
network learns from combined input vectors of all the modalities. 
We also highlight the issue of class imbalance in the dataset and 
fnd that our approach handles class imbalance better than the base-
line. We also contribute to the discussion on the limitations of the 
current data collection approaches towards autonomous detection 
of interaction failures and suggest future directions. 

2 Related Works 
While many prior studies have examined interaction failures in 
human-robot interaction HRI [19], they focus on understanding 
the efects of such failures rather than developing methods for their 
automatic detection. Since this challenge aims to detect interaction 
ruptures by observing human reactions, we restrict our discussion 
to methods that process this type of information. 

2.1 Datasets 
Several datasets aim to collect implicit human feedback in the form 
of recorded reactions to robot’s actions in various domains. The 
reactions are usually collected while a human directly observes the 
robot or watches recorded videos. In the EMPATHIC dataset [6], Cui 
et al. collect human reactions from observing videos in two domains 
- a simulated taxi game and an object sorting task with a physical ro-
bot. The Response-to-Errors dataset [18] contains facial responses in 
the form of facial action units (AUs) to robot mistakes during three 
physical human-robot interaction tasks - collaborative assembly, 
collaborative cooking, and programming by demonstration. Zhang 
et al. collect participants’ facial expressions during interaction in 
virtual reality with a simulated robot for a navigation task [20]. 
Although these datasets are not directly aimed at detecting interac-
tion failures, they highlight the prevalence of using implicit social 
signals to recognize robot mistakes. In REACT [4], the authors col-
lect several implicit communicative signals such as head pose, and 
gaze, along with facial action units during collaborative gameplay 
and photography tasks. The dataset in ERR@HRI [16] also falls into 
a similar category. However, this dataset is explicitly annotated 
with the objective of interaction rupture detection. 

Apart from collecting social signals as feedback, other datasets 
employ more explicit feedback metrics. Yu et al. collect a dataset 
of scalar ratings from human observers who watch a robotic arm 
perform several manipulation tasks. Overall, except for REACT [4], 
much of the existing datasets are collected from relatively shorter 
interactions. As such, there is not sufcient evidence of whether the 
models trained on these datasets can be applied to longer interaction 
sessions as well. We discuss this further in Section 5. 

2.2 Methods 
There are only a handful of prior works that specifcally address 
detecting robot failures and disruptions by observing human re-
actions. Cui et al. [6] use fxed-length time windows to aggregate 
head pose and AU features extracted using OpenFace[1]. How-
ever, instead of explicit temporal modeling, the aggregated features 
are simply fattened and passed through a Multi-Layer Perception 
(MLP) for mapping implicit human reactions to an explicit reward 
model. Stiber et al. uses a two-layer neural network to detect robot 

mistakes from AU features [17]. Instead of temporal modeling at 
the input or feature level, their approach uses sliding window-based 
post-processing methods to flter spurious detections. Bremers et 
al. experiment with variants of 2D convolutional neural networks 
(CNNs) to detect machine failures from human reactions recorded 
through webcams [3]. CNNs are known to be efective for image 
understanding, although within the scope of our problem, we as-
sume pre-processed features as inputs. Other experiments include 
[2], where Ben-Yousef et al. use logistic regression to classify en-
gagement breakdowns from multimodal data. [20] compares CNN, 
graph-based, and transformer-based neural network architectures 
for jointly processing the robot’s navigation-related and observer’s 
facial features for error detection. 

The baseline provided in ERR@HRI also follows a similar win-
dowing approach [16], albeit with explicit temporal modeling with 
Gated Recurrent Units (GRUs). Given that numerous prior works 
have utilized Long Short-Term Memory Networks (LSTMs) for se-
quence modeling in several domains, we also base our temporal 
modeling approach using LSTM. However, in contrast to the base-
line, we propose separate LSTM encoders for distinct temporal 
modeling of the diferent modalities. 

3 Approach 
To capture the temporal variations in the features from the three 
modalities, we use recurrent neural networks to encode the features. 
Specifcally, we use LSTM layers that encode short-term tempo-
ral variations in human reactions. The decision to use separate 
modality encoders is based on our hypothesis that the informa-
tion across diferent modalities may not exhibit strict temporal 
synchronicity. For instance, an awkward facial expression might 
be succeeded by a noticeable change in body posture, rather than 
occurring concurrently1. Thus, events that are slightly separated 
in time in diferent modalities can be a part of the same interaction 
rupture. Further, having separate temporal encoders allows us to 
compensate for approximately synchronized data. This is because 
the pre-processed features in the challenge dataset are collected at 
separate frequencies, i.e., AU and pose features are collected at 30 
frames per second (fps); while the speech features are collected at 
100 fps. Our empirical evaluation further supports this decision, as 
described in Section 4. 

Figure 1 shows the proposed network architecture. More for-
mally, given a sequence of AU features �0 

� , . . . , ��
� , pose features 

�0 
� , . . . , ��

� , and speech features �0 
� , . . . , ��

� , each having a sequence 
length of �, we compute the fnal state of the LSTMs in the forward 
and backward directions, obtaining three hidden representations 
h� , h� , and h� . These are concatenated to obtain a multimodal 
representation z which is passed through a fully connected layer 
with a sigmoid activation for classifcation. We train the network to 
classify a binary label � ∈ {0, 1}. We further introduce the following 
regularizers to stabilize the training. We apply three regularizers to 
the LSTMs, a kernel regularizer, a recurrent regularizer, and a bias 
regularizer. Further, we add a dropout layer before z is passed to 
the FNN. Our network architecture remains the same for all three 

1We could not verify if such events exist in this dataset without the original videos. 
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Figure 1: Our multimodal learning framework that was submitted to ERR@HRI 2024. 

tasks - UA, RM, and IR. We describe the operations in the following. 
→− ←−

h� = [� � �� (�0 
� , . . . , ��

�); � � �� (��� , . . . , �0 
�)] 

→− ←−
h� = [� � �� (�0 

� , . . . , ��
� ); � � �� (��� , . . . , �0 

� )] 
→− ←−

h� = [� � �� (�0 
� , . . . , ��

� ); � � �� (��� , . . . , �0 
� )] 

[h�; h� ; h� ]z = 

� = argmax � (� |� � � (z)). 
� ∈{0,1} 

4 Experiments 
4.1 Data 
We experiment only with the ERR@HRI dataset [16], which con-
tains features extracted from 89 interaction sessions with a robot 
and 23 participants. The dataset is annotated with binary labels 
for three tasks. Similar to the released baselines, we use the same 
participant distribution, the same set of features, and the same se-
quence length (5). We do not perform any feature normalization. 
We experiment with a total of 762624 training and 235610 validation 
examples. We observe a severe class imbalance in the dataset. The 
imbalance is most signifcant for UA and RM tasks, where only 16% 
of examples are marked as Awkward and Mistake, respectively. For 
IR, 23% of the examples are labeled as positive, i.e., a presence of 
interaction rupture. 

4.2 Training 
We train the models with a cross-entropy loss and Adam optimizer. 
We use early stopping when the validation loss does not reduce 
over three consecutive epochs. Further, we reduce the learning rate 
by a factor of 0.5 when the validation loss does not reduce over 
two epochs. Instead of using the usual approach of saving model 
checkpoints based on accuracy, we monitor the macro F1 on the 
validation set due to the class imbalance. We could not perform 
extensive hyper-parameter optimization experiments due to limited 
time. However, we experiment with slight variations of the batch 

Hyperparameter UA RM IR 

LSTM units 768 768 128 
Batch size 512 512 256 

Table 1: Training hyperparameters of the submitted models. 

size, learning rate, and the number of LSTM units heuristically. 
Table 1 shows the hyperparameters used for training the models 
submitted in the challenge. Apart from these, we used the same 
hyperparameters in all three tasks - Dropout rate 0.5, learning rate 
0.0001, and regularization rate 0.01. We used the same seed (42) as 
the released baselines from the challenge. On a Quadro RTX 5000 
GPU, training the 768-unit model takes about a minute per epoch. 

4.3 Results 
As the test dataset was released without labels, we could not per-
form a detailed performance analysis on the test data. Instead, we 
report experiment results on the validation data. For completeness, 
we also report the ofcial results on the test dataset in Table 2. On 
the test set, our models perform somewhat similarly for the three 
tasks, with slight improvements on the time-tolerant metrics. At 
the time of writing, our models rank 3rd in the challenge results. 

In the following, we compare our approach to learning modality-
specifc representations with a baseline that uses a single encoder 
for all three modalities. This closely mimics the ofcial baselines 
released as a part of the challenge [16]. We report the compari-
son results in Table 3. Overall, our frst observation indicates that 
the severe class imbalance, as discussed in Section 4.1, leads to a 
highly imbalanced learning performance. Specifcally, due to the 
signifcantly lower frequency of the positive classes (e.g., Awkward), 
the models can consistently reduce the total loss and thus increase 
accuracy, without properly learning to classify the positive exam-
ples. We posit that the accuracy metric can be quite misleading 
in this scenario, and thus focus on analyzing the F1 scores. Our 
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Accuracytolerant Recalltolerant Macro F1tolerantTask Accuracy Precision Recall Macro F1 Precisiontolerant 

UA 0.76 0.54 0.51 0.45 0.77 0.67 0.51 0.46 
RM 0.82 0.53 0.5 0.46 0.82 0.53 0.5 0.46 
IR 0.68 0.53 0.5 0.42 0.69 0.77 0.51 0.42 

Table 2: Performance of the submitted models on the unreleased test set. 

Task Model Label Precision Recall F1 

UA 

Baseline 

Ours 

Non-Awkward 
Awkward 
Macro avg. 
Non-Awkward 
Awkward 
Macro avg. 

0.84 
0.09 
0.47 
0.85 
0.34 
0.59 

1.00 
0.01 
0.5 
0.99 
0.18 
0.58 

0.91 
0.01 
0.46 
0.91 
0.23 
0.57 

RM 

Baseline 

Ours 

IR 

Baseline 

Ours 

No-Mistake 0.84 1.00 0.92 
Mistake 0.18 0.08 0.11 
Macro avg. 0.51 0.54 0.51 
No-Mistake 0.84 1.00 0.92 
Mistake 0.31 0.02 0.03 
Macro avg. 0.58 0.51 0.47 

No-Rupture 0.77 1.00 0.87 
Rupture 0.27 0.01 0.01 
Macro avg. 0.52 0.50 0.44 
No-Rupture 0.77 1.00 0.87 
Rupture 0.30 0.26 0.28 
Macro avg. 0.53 0.63 0.57 

Table 3: Performance on the validation set. We highlight cases 
where our model outperforms the baseline with boldface. 

comparison with the baselines suggests that for both UA and IR 
tasks, our approach of separate modality encoders outperforms 
the approach of aggregated input features used in the baseline. For 
the UA task, we fnd a signifcant improvement in the macro F1 
score (+0.11 points) in our approach. More importantly, our model 
learns a much better classifer for the low-frequency class, i.e., a 
signifcant improvement of 0.22 points in F1 for the Awkward class. 
We observe a similar trend in the IR class as well, where our model 
outperforms the baseline by 0.13 points in the macro F1 score, and 
by 0.27 points in the Rupture class. 

However, for the RM task, our F1 scores are lower than the 
baseline, even though we improve on the macro-precision and the 
precision on the Mistake class. We suspect this is due to a limita-
tion of our approach in data modeling, rather than the network 
design. More specifcally, we did not perform speaker diarization 
on the speech features to separate the robot’s and the human’s 
audio features. Since the RM task is primarily defned by the robot’s 
non-response and delayed responses, the speech features may not 
have been very informative without diarization. Somewhat surpris-
ingly, our models performed better on the RM task in the test set, 
compared to UA and IR tasks (Table 2). Whereas, our experiments 
with the validation set suggest otherwise. In the future, we shall in-
vestigate further to understand this contradiction better. However, 
this may have been due to class imbalance and our checkpointing 
strategy to optimize performance on the validation set. 

5 Discussion & Future Work 
A crucial limitation of the contemporary data-driven approaches 
to interaction rupture detection in HRI is two over-generalized as-
sumptions. One is to assume that given similar stimuli of interaction 
failures, people will behave similarly. Thus the data-driven meth-
ods may learn to associate common behavioral cues with failure 
instances. However, prior HRI studies suggest that personalization 
of such models may be needed [9]. Secondly, the current methods, 
datasets, and annotation schemes assume that the users of a robot 
will express themselves similarly over a long period. Again, several 
prior experiments seem to suggest otherwise. For example, Candon 
et. al fnd that users get less expressive over time during long-term 
interaction with a robot [4]. Therefore, an interaction failure detec-
tion model trained on more expressive data may not be accurate in 
the long term. We posit that this assumption should be relaxed and 
data collection and annotation strategies should consider this. 

Another direction of future work involves processing raw data 
instead of pre-processed features. The reason is threefold. Firstly, 
since the features are extracted using statistical models (e.g., Open-
Face and OpenPose), there is a signifcant chance of error prop-
agation from noisy feature extraction by the models. Second, by 
learning on pre-processed features that are more abstract, the mod-
els may not be able to access subtle changes that would otherwise 
be present in the raw data. Finally, learning on raw data can take 
advantage of the robust vision and audio encoders by transfer learn-
ing, which can further improve generalization with small training 
sets. However, we also acknowledge the privacy concerns of using 
raw video recordings as training data. 

For improving classifcation performance, several strategies can 
be explored to mitigate the efects of class imbalance, such as sam-
pling and focal loss [11]. Since the UA, RM, and IR tasks are quite 
similar, and IR is essentially a logical OR operation of UA and RM 
labels, multi-task learning and post-processing based on logical 
reasoning could be worth exploring in the future. 

6 Conclusion 
In this work, we present experiments on the ERR@HRI dataset for 
autonomous interaction rupture detection in human-robot interac-
tion. We propose an approach to learn multimodal representations 
by employing separate recurrent neural network (LSTM) layers 
to encode features from three diferent modalities. We compare 
our approach with a baseline that uses a single LSTM layer to en-
code concatenated features from the same three modalities. Our 
experiments suggest that our approach leads to better classifcation 
performance than the baseline in most cases. Further, we observe 
a better resistance to class imbalance in the dataset using our ap-
proach. We further point out limitations in the current data-driven 
approaches for this problem and discuss several future directions. 
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