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Abstract 
Providing explanations of a robot’s behavior is a key enabler of 
trust in robots. Such explanations should be intuitive to people 
who are not experts in robotics. Prior research suggests that us-
ing multiple modalities to deliver explanations improves clarity. 
However, current methods for generating multimodal explanations 
neither assess nor ensure the coherence of the information across 
modalities. Here, we present an experiment to understand the efect 
of possible incoherence in multimodal explanations. We perform a 
user study asking participants to observe a series of robot failures 
and predict the reason for failure when provided with a controlled 
variation of multimodal explanations. Specifcally, we present a 
methodology to compare incoherent and coherent explanations, 
aiming to understand their impact on perceiving robot failures. 

CCS Concepts 
• Human-centered computing → User studies; • Computer 
systems organization → External interfaces for robotics; • Com-
puting methodologies → Causal reasoning and diagnostics. 
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1 Introduction 
Explaining a robot’s behavior is crucial for user acceptance and 
trust calibration [26]. These explanations must be intuitive for non-
experts, especially when the robot behaves unexpectedly, i.e., during 
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a failure. For non-experts, explanations can help understand what 
went wrong and form accurate expectations about a robot’s abilities. 
However, this is challenging because it requires producing and pre-
senting simple, yet sufcient reasoning for a sequence of decisions 
derived from increasingly complex systems. Thus, explaining using 
a single modality may lead to an information bottleneck [4]. 

Nonetheless, most known methods for automatic explanation 
generation of robot behavior use text as the sole modality. Further, 
text may not be suitable for conveying certain types of information. 
For example, Kwon et al. use motion as a modality to explain a 
robot’s incapability of manipulation [11], which would be difcult 
to express using text. Angelopoulos et al. use gaze and gestures 
to explain a robot’s directional intent [2]. Hence, using multiple 
modalities to explain diferent types of information appears ben-
efcial. Recent studies on multimodal explanations also support 
this [1, 18, 29], although having very diferent scopes. 

However, one important attribute of multimodal explanations 
has been largely overlooked. Current approaches to generating mul-
timodal explanations neither evaluate nor ensure that the informa-
tion provided across diferent modalities is coherent. Without such 
deliberations, incoherence can arise because most existing methods 
generate explanations independently across modalities [8, 13, 16]. 
For example, in [14] the black-box explainer of classifers is de-
coupled from the dialogue policy. Similarly, in [8] and [16] the 
internal states of the robot are estimated and communicated inde-
pendently. Furthermore, the automatic generation of explanation 
text is prone to hallucinations [4, 12], making simplistic combina-
tions with other modalities potentially inconsistent. Further, in the 
case of approaches that jointly generate multimodal content, even 
though there is an attempt to maintain consistency of semantic 
content between the modalities, it is never guaranteed. Although 
less studied in robotics, this phenomenon is well-known in vision 
and language models [27, 28]. 

In this work, we study the efect of such incoherent explanations. 
More specifcally, we propose an experiment to study two levels of 
incoherence - Contradiction and Dissociation. Contradiction occurs 
when an explanation in one modality contradicts others, while Dis-
sociation refers to a lack of obvious semantic correlation between 
modalities. We provide examples in Figure 1b and a more formal 
description in Section 3.1.1. Our experiment aims to investigate 
how these incoherences afect people’s ability to understand the 
robot’s failures and their causes, as suggested in a recent work [17]. 
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Even though our experiment is exploratory, we hypothesize that 
Dissociation will be perceived as incomplete and Contradiction as 
incorrect, compared to coherent explanations. We summarize our 
contributions in the following. 

• We investigate how people are afected by incoherent multi-
modal explanations of robot failures. To our knowledge, this 
is the frst experiment on this topic. 

• Our initial fndings indicate that incoherence may impact 
the correctness and sufciency of multimodal explanations. 

2 Related Works 
Signifcant prior research on robot behavior explanations [3, 22, 24] 
falls into two categories based on the need for explanation. The frst 
assumes explanations are needed when a robot’s plan difers from 
a human’s typical world model, making the plan seem sub-optimal. 
Existing approaches to this focus on counterfactual explanations, 
and are generally based on formal reasoning over task plans [19– 
21]. We focus on a second category which assumes explanations are 
needed when a robot fails to achieve its task goal. This necessitates 
reasoning on both the plan and the robot’s observations. Failure 
explanations are crucial for non-experts because people perceive the 
need for explanations to be signifcantly higher in failure scenarios 
than when the robot’s plan seems sub-optimal [23]. Failure to fulfll 
a task goal is usually caused by fawed planning from an incorrect 
world model [12], limitations of sensing capabilities [9, 12], and 
physical constraints [6, 9]. Prior works typically do not address all 
three causes together. 

In contrast, we study all of these causes of failure in our exper-
iment. In this regard, a previous experiment closest to ours is by 
Das et al. [4], which does consider the three causes. However, this 
study is based on unimodal explanations using text. Several other 
experiments study various aspects of failure explanations provided 
as natural language descriptions, either spoken or shown as text. 
Khanna et al. fnd a positive correlation of detailed explanations 
with increasing task complexity [10]. Melsion et al. compare the 
efect of explanation on trust in high and low-stake scenarios [15]. 
Hald et al. study post-explanation trust repair after mistakes made 
by a virtual robot. [5, 12] propose multimodal reasoning-based ex-
planation generation approaches, but the produced explanations 
are communicated as text. 

User studies on multimodal explanations are largely unexplored. 
Some relevant works include [16] which uses multiple modalities 
to provide transparency about a robot’s scene and language un-
derstanding. Robb et al. fnd improvements in several metrics in 
a study with an interactive multimodal interface, compared to a 
non-interactive one [18]. In a non-robotic setting, Alipour et al. 
fnd that the helpfulness of multimodal explanations is correlated 
with the system’s accuracy in a visual question-answering task [1]. 
However, no prior studies on multimodal explanations have been 
conducted in a robot-failure context, nor do they measure the efect 
of incoherence in such explanations. 

3 Method 

3.1 Design 
Our choice of modalities for the explanation is partly motivated 
by prior approaches to automated robot failure explanations and 

user studies. We envision a scenario where a robot explains its past 
failures to a nearby human user. We consider natural language as a 
modality due to its extensive use for explaining failure [4, 12] and 
plan optimality [7, 23]. Further, we choose to communicate concise 
language-based explanations using speech to complement other vi-
sual elements. The second modality is a visualization of the robot’s 
perception that includes names and state of the objects mentioned 
in the plan. The motivation is again, twofold. Firstly, as we consider 
sensing limitations as one of the reasons for failure, we posit that 
such limitations can be well-explained by overlaying the robot’s 
egocentric observations on the image. This is also motivated by pre-
vious attempts at providing transparency of the robot’s perception, 
such as [16] and [25]. Similarly, the third modality, which is shown 
beside the perception-visualization, is based on our consideration 
of planning failures and incorrect world models which may lead 
to unmet preconditions of the actions. This is somewhat similar to 
the explanation strategy chosen for plan suboptimality [20]. 

3.1.1 Coherence Conditions. In this study, we consider three coher-
ence conditions. As introduced earlier, we use the two conditions 
- Contradiction (C1) and Dissociation (C2) as two levels of inco-
herent explanations. We also include Coherence (C3) as the third 
condition, which refers to a scenario with an obvious semantic 
correlation between all pairs of modalities and no Contradiction. 
Figure 1b shows examples of Contradiction and Dissociation for the 
task of turning on a TV. The corresponding Coherence condition is 
the same as the example in Figure 1a. For a more formal defnition, 
let us consider that an explanation E is a conjunction of � propo-
sitions, i.e., E = P1 ∧ P2, ∧ · · · ∧ P� . In general, given any pair 
of explanations in two modalities from a set of total � modalities, 
denoted as {E�1 , E�2 } ∈ E�� 

1 , we provide a formal defnition of 
the conditions as the following. 

�1 ≡ ∃P� ∈ E�1 , ∃P� ∈ E�2 : P� ⊥P� . 

�3 ≡ ∃P� ∈ E�1 , ∃P� ∈ E�2 : P� |= P� ∧ ¬(�1). 
�2 ≡ ¬(�1 ∧ �3) . 

The constraints defned above can be recursively applied to all 
pairs of modalities to decide the level of coherence. P� ⊥P� denotes 
that the proposition P� logically contradicts the proposition P� . 
As an example, consider the Contradiction example in Figure 1b. 
The proposition made by the robot about not fnding the TV in 
the spoken modality contradicts the visualization of its perception 
- which shows a bounding box detected around a TV. P� |= P� 
denotes that the proposition P� logically entails the proposition 
P� . This constraint is necessary, but not sufcient for C3, which 
also requires an absence of contradiction between other pairs of 
propositions. Considering the example in Figure 1a, the absence 
of a detected remote control in the graphical modality entails the 
spoken proposition about not fnding a remote on the table. This 
proposition also entails the precondition for picking up the remote 
control, as shown in the explanation of the plan. Further, there 
are no contradictory pairs of propositions. Similarly, ¬(�1 ∧ �3)
denotes an absence of both entailing and contradictory propositions. 
Thus, we posit that this denotes the absence of an obvious semantic 
correlation, i.e., C2. This happens when the primary cause of the 
failure and its detection by the robot do not coincide. In the example 
of Dissociation in Figure 1b, the spoken proposition of not fnding 
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Book

State: Closed

Table

I failed to turn on the TV because I could not find a remote control on the table.

Plan

I think I failed at this point. My plan so far was,

1. Navigate to table

To do this, I needed to know where the table was.

2. Pick up remote control from table

To do this, I needed to detect a remote control on the table.

(a) On the top - a textual representation of the spoken explanation, left - a visualization of the robot’s 
perception, right - a structured text that describes the robot’s plan. 

I failed to turn on the TV, because I could not find a remote control on the table.

Plan
I think I failed at this point. My plan so far was,

1. Navigate to table

To do this, I needed to know where the table was.

2. Pick up remote control from table

To do this, I needed to detect a remote control on the table.

3. Navigate to TV

To do this, I needed to know where the TV was.

4. Point remote control at TV

To do this, I needed to have the remote control in my gripper.

I failed to turn on the TV because I could not find the TV to point at, with the remote.

Dissociation

Contradiction

(b) Dissociation (C1) and Contradiction (C2): the content of the graphical and structured text 
modality (Plan) remains the same, while the spoken contents are diferent. 

Figure 1: Examples of the multimodal explanations used in the experiment. 

the remote and the corresponding precondition in the plan cannot 
be verifed in the visualization of perception. However, there are 
no contradictory propositions either. Thus, we manually develop 
the explanation variants to prevent confounding from automatic 
generation during the experiment. 

3.1.2 Tasks & Causes of Failure. We inject three failure types (see 
Section 2) in each of the robot’s three tasks, set in a mock-up living 
area with slight object re-arrangement per task. Figure 2 shows 
cropped snapshots of the robot’s working area for the three tasks 
detailed below. 

(1) Turning of a light - The robot aims to turn of a ceiling light 
using a switch which is blocked by a chair. This represents 
physical constraints. 

(2) Turning on a TV - The robot aims to turn on a TV using a 
remote on a table, partially occluded by a book. It cannot 
detect the remote, representing limited sensing capabilities. 

(3) Setting dinner table - The robot aims to pick up a plate from 
a rack (based on an incorrect world model), but it is in the 
sink instead, leading to fawed planning. 

3.2 Procedure 
The experiment was approved by the ethical committee of the 
University of Napoli Federico II. We assign a random triplet of 

Task 1 Task 2 Task 3

Figure 2: A Pepper robot attempting the three tasks. 

conditions × task types such that each participant receives the three 
distinct conditions for the three diferent tasks. The participants 
start with a brief introduction to the procedure, followed by a 
demographic questionnaire. Then the participants are asked to 
perform the following three times for the three task types. 

(1) The participants watch a video that displays two synchro-
nized views: one from the robot’s camera and another from a 
static camera behind the robot, capturing the entire workspace 
where the robot attempts tasks. 

(2) The participants answer an initial set of questions related to 
the measures described in Section 3.3. 

(3) The participants watch another video based on the assigned 
condition, which we mention to be produced by the robot. 
Essentially, the video plays a recorded audio of the expla-
nation, while showing the perception-visualization and the 
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structured description of the plan, as the example shown in 
Figures 1a and 1b. 

(4) The participants answer another set of questions on the com-
pleteness and correctness of the explanations, as detailed in 
Section 3.3. They are then asked to rank the three modalities 
in order of their helpfulness. 

Finally, the participants complete an attention-check questionnaire. 

3.3 Measure 
In the following, we describe the primary questionnaire. For all 
the questions (Q1-Q5), we asked the participants to answer from 
(Yes/No/Maybe) and provide justifcations for their answers in free-
form text felds. Firstly, after watching the robot attempt to perform 
the task, and before receiving any explanation, we asked the partic-
ipant for an evaluation of the robot’s behavior as follows: 

• (Q1) Do you think the robot completed the task? 
• (Q2) Do you think that something went wrong while the 
robot performed the task? 

After watching the explanations, the participants answer the fol-
lowing questions: 

• (Q3) Do you think something went wrong while the robot 
performed the task? 

• (Q4) Do you believe that the information provided by the 
robot was sufcient to understand what happened? 

• (Q5) Do you believe that the information was a correct de-
scription of what happened? 

• Which type of information was most helpful in understand-
ing what caused the robot to fail the given task (most helpful 
to least helpful): 
– The text description of the robot’s actions in its plan 
– The spoken information 
– The image shown 

3.4 Participants 
The attention checks excluded 28 participants, resulting in 74 valid 
participants (29 Female, 44 Male, 1 Other), aged 19-49 years (M = 
27.97, SD = 4.8). Most were Italian (61%), followed by Indian (8%), 
German (4%), and others including French, Turkish, Romanian (8% 
combined), and 13 other nationalities, one from each. One partici-
pant preferred not to say. When asked about their prior experience 
with robots, 44.6% of participants stated no prior exposure. From 
the rest, 40% interacted with a robot before, 36% seen robots on 
social media, 27% were involved in a study with robots, and 24% 
were roboticists. As the participants were randomly assigned to 
conditions × task scenario, we obtained 74 responses for “turning 
of the light” scenario; 65 responses for the “switching the TV on” 
scenario; and 74 responses for the “setting dinner table” scenario. 

4 Results 
Firstly, we aim to understand if the participants recognized the 
failures without explanations. We observe that most participants 
(Q1 - 87% and Q2 - 52%, respectively) agreed that the robot failed to 
complete its task and did something wrong. Next, to understand the 
efect of the incoherent explanations in the diferent experimental 
conditions, we conduct a series of chi-square tests of independence 

Question � 2 Value & Signifcance (� < .05) 

Q3 �2 (4) = 4.62, � = .329 
Q4 �2 (4) = 34.14, � < 0.001∗ 
Q5 �2 (4) = 30.75, � < 0.001∗ 

Table 1: �2 results for Q1, Q2, and Q3 responses. 

Table 2: Adjusted standardized residuals of the Crosstabula-
tion between Q5 responses and the conditions. 

Condition No Maybe Yes 

C1 1.88 0.00 -0.51 
C2 -1.20 -0.58 0.44 
C3 -0.80 0.51 0.12 

between the responses to questions Q3-Q5 (after manipulation) 
with the conditions (C1-C3). Table 1 summarizes the results. We 
found no statistically signifcant association between people rec-
ognizing that something went wrong during the tasks with the 
diferent explanation variants (Q3, p>.05). However, we observed 
statistically signifcant associations between the conditions with the 
participant’s belief in the explanation being sufcient (Q4, Cramér’s 
V = 0.28) and the perceived correctness of the explanations (Q5, 
Cramér’s V=0.27). As in this report, our primary objective is to 
highlight the perceived correctness of incoherent explanations, we 
further analyze the responses from Q5 to understand the contribu-
tion of each condition to the �2 statistic, as shown in Table 2. The 
results indicate that C1 (contradiction) shows a relatively stronger 
contribution to the correlation, compared to C2 and C3. 

5 Conclusion 
In this report, we present a novel experiment to understand how 
incoherence in multimodal explanations of robot failures afects the 
quality of the explanations along several attributes, and a prelimi-
nary analysis of the results. We introduce two types of incoherence 
in multimodal explanations - dissociation and contradiction. Our 
initial fndings indicate that the coherence levels of multimodal 
explanations are associated with the participants’ belief about the 
explanation’s correctness and sufciency. In the future, we aim 
to report a detailed analysis of the experiment. Particularly, we 
will compare the participants’ responses before and after receiving 
explanations, categorize and compare justifcation texts with the 
answers, conduct post hoc analysis, and compare the responses 
between the diferent failure types. Finally, we aim to fnd which 
modality helped the most in comprehending the failures. 
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