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Abstract. To facilitate natural and intuitive interactions with diverse 
user groups in real-world settings, social robots must be capable of 
addressing the varying requirements and expectations of these groups 
while adapting their behavior based on user feedback. While previous 
research often focuses on specific demographics, we present a novel frame-
work for adaptive Human-Robot Interaction (HRI) that tailors interac-
tions to different user groups and enables individual users to modulate 
interactions through both minor and major interruptions. Our primary 
contributions include the development of an adaptive, ROS-based HRI 
framework with an open-source code base. This framework supp orts nat-
ural interactions through advanced speech recognition and voice activity
detection, and leverages a large language model (LLM) as a dialogue
bridge. We validate the efficiency of our framework through module tests
and system trials, demonstrating its high accuracy in age recognition and
its robustness to repeated user inputs and plan changes.

Keywords: Social Robotics · Symbolic Planning · Age Recognition · 
Large Language Models · Human-Robot Interaction

1 Introduction 

The field of Human-Robot Interaction (HRI) has often focused on examining 
specific demographic groups, such as the elderly and children, separately, due to
their unique interaction dynamics [2, 16, 21]. However, in real-life environments, 
a diverse range of people often live and work together, and social rob ots need to
adapt to different demands and expectations [10, 17]. Given that not eve ry person
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interacting with a social robot is an experienced user, the interaction design must 
prioritize usability principles. These include efficiency of use, minimization of 
cognitive load, consistency, feedback, e rror prevention, and ethical considerations
such as information privacy and maintaining user control [7]. 

Voice interaction is particularly effective at lowering cognitive load. It offers 
intuitive use and efficiency, does not require expert knowledge from the user
[22, 24], and is generally better received than other communication modes due 
to the familiar nature of vocal feedback from robots [8]. Speech also provides a 
range of paralinguistic cues, such as pitch, articulation, timing, and voice quality, 
which contain a dditional information about the user currently interacting with
the system [3]. This has previously been used to adapt the robot’s behavior b ased
on the detected emotion of the user [3], but more general cues, such as age, can 
also be used to personalize t he robot’s behavior for different user groups.

Vocal feedback from the robot can also increase interaction transparency 
and reduce the black-box effect. Ideally, the robot should p rovide explanations of
underlying decisions and processes tailored to the user [6]. To obtain the full ben-
efit of a transparent robot, we believe that explanations should always be paired 
with repair mechanisms. Previous work on action or trust repair has focused on
post-hoc repair mechanisms, usually for scenarios where social interaction was
not the main focus [27]. However, waiting until the end of an interaction to fix 
the robot’s behavior could leave the user feeling stuck in a faulty interaction, 
which could lead to an increased perceived loss of control. For social scenarios, 
automatic repair mechanisms have been examined, which increase user satisfac-
tion when combined with sufficient explanations but also circumvent the user’s
autonomy [14]. Therefore, we argue that it is vital to allow users to interrupt 
the robot at any time to avoid situations the user is uncomfortable with, to
adjust the actions to their preferences, or to perform trust, language, and action
repair [14, 29]. 

Achieving this level of reactivity and flexibility is challenging for logic-based 
systems and usually requires exp ert knowledge to design the system for active
inference [18]. However, large language models (LLMs), such as t he various GPT
models [20] or the LLaMa model series [25], offer a new way to build flexible HRI
scenarios [23, 26]. We believe that LLMs can bridge the gap in the communica-
tion between robot and user by pe rforming the necessary integration of natural
language queries and generating appropriate responses [24], without specifying 
and preparing f or all contingencies.

In this paper, we introduce a framework for handling speech and natural 
language-based user interruptions in HRI within a simulated kitchen environ-
ment. We categorize interruptions into minor (plan changes) and major (com-
plete stopping of the robot). We argue that incorporating user-specific traits 
as dialogue and interaction-mo dulating context variables provides an intuitive
approach to HRI for diverse user groups based on previous research for specific
demographics, e.g. senior citizens [2, 8]. We utilize the user’s age to adapt the 
interaction: For older adults, the interaction is simplified, and the behavior of the 
robot is more predictable, for example, through frequent vocalization of intent,
while the interaction focuses on efficiency for younger people.
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Our main contributions include an adaptive ROS-based framework for HRI 
with an open-source code base1 that extends the PyCRAM language [11]  with  
an Interrupt Client and recovery behavior. This framework enables natural user 
interactions through speech recognition and voice activity detection and imple-
ments an LLM as a dialogue bridge between the user and the robot.

We evaluate each module (speech/age recognition, dialogue bridge, robot 
planner) independently, and our entire architecture through system trials, where 
we demonstrate the effectiveness of our approach for two scenarios: fetching and 
replacing objects with minor interruptions, and setting the table and stopping
the system with major interruptions.

Fig. 1. The simulation environment with the kitchen scenario. Left: The robot moves 
around and interacts with the environment to search for the object. Right: It then 
places the object in front of the user on either the table or the counter.

2 Related Work 

Interrupting and redirecting a robot’s actions is crucial for handling failures in 
HRI. These failures must be communicated, perceiv ed, and efficiently resolved
by the robotic agent [9]. For instance, the “Robot Household Marathon Exper-
iment” [13] highlights the importance of robots recovering from failures in real-
world settings. Lee et al. [14] show that combining repair mechanisms with expla-
nations enhances user trust and satisfaction. Feedback is vital to the recovery 
process and can b e provided either through speech or system-specific feedback
loops [14, 27]. 

Even before large language models (LLMs), user feedback has been used for 
reactive action planning in robotic systems [18]. However, integrating LLMs into 
HRI has simplified handling requirements, such as natural language understand-
ing, reasoning, and natural language generation [23, 26, 30]. Bärmann et al. [5]

1 https://github.com/TPekarekRosin/UHH_UB_AgeAwareHRI. 
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implement an HRI scenario in which human instructions or observations feed 
into an LLM (GPT-3.5/GPT-4), which learns incrementally from the feedback 
of a second LLM that adapts the prompt based on the previous (faulty) interac-
tion. Similarly, Ye et al. [28] use ChatGPT to control a robot arm with natural 
language instructions from humans, finding that the LLM’s understanding of
human language nuances facilitates natural interactions.

These examples demonstrate the value of LLMs in HRI. Howeve r, even in
multi-user scenarios [14], there is an assumption that all users have the same 
needs and that all tasks require uniform levels of autonomy from the robot. 
Feedback is typically integrated post-hoc, despite findings from Gutman et al. [8] 
suggesting that highly autonomous robots should accept user feedback during the 
interaction to mitigate the perceived loss o f control. Additionally, since transient
information like emotion [3] is frequently used to modify robot behavior, constant 
factors such as age should b e used to tailor interactions for specific user groups.

Fig. 2. Our architecture and the ROS communication processes. The user interacts 
with the system using natural language and receives vocal feedback. The user’s speech 
is processed by an age and speech recognition model which transcribes the speech and 
detects the age group. This information is sent to the dialogue bridge, where commands
and parameters are extracted and forwarded to the robotic agent, which executes the
actions. The user can interrupt the robot at any time.

3 Approach 

Our interaction setup is a kitchen environment (Fig. 1), which we implement 
in the simulation environment BulletWorld2. Users can request specific items 
(‘milk’, ‘bowl’, etc.) or ask the robot to prepare breakfast, which triggers a 
sequence of actions to set the table. Our framework utilizes age recognition to 
initially configure the interaction, modifying the robot’s actions and feedback 
based on the user’s age. For older u sers, the robot more frequently vocalizes
its next steps and movements, addressing the common difficulty they face in
predicting the robot’s actions [7]. These age-related adjustments form the basis 
for personalized interaction within the HRI framework, and user feedback is then
2 https://www.cram-system.org/doc/pycram/bulletworld. 
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used to adapt the robot’s behavior to the individual user during the interaction.
We utilize the PR2 Robot3 as the robotic platform for our experiments. However, 
our code is designed to be compatible with multiple robotic platforms and the 
experiments can be conducted using robots within a real-world setting since it
replicates the setup of the real robots in our laboratory as demonstrated by
Kazhoyan et al. [12]. 

During the interaction, users can interrupt the robot’s actions with plan 
changes, formally defined as minor interruptions (e.g., “I would like to eat corn-
flakes instead of bread”), or with major interruptions to stop the system entirely 
(e.g., “Stop!”). The flow of information is managed by a large language model
(LLM), acting as a dialogue bridge between the user’s natural language input
and the robot planner’s command execution. Figure 2 illustrates our architec-
ture, highlighting the interaction between the speech processing module and the 
robot planner through this dialogue bridge.

The speech processing module detects voice activity, recognizes speech, and 
estimates the user’s age from the audio stream. The transcribed sentence, age 
group, and speech confidence level are passed to the dialogue bridge, where the 
LLM identifies commands and extracts parameters. The user receives confir-
mation, and the robotic agent performs the requested action according to the 
user’s specifications. During the action execution, the LLM continuously pro-
vides feedback to the user based on the robot’s symbolic state, with a frequency
determined by the user’s age. Communication between the different modules is
implemented in ROS, and we publish our code on GitHub.

Fig. 3. The concept of the Dialogue Bridge. The LLM connects the user and the 
robot by processing the user’s utterances (U), turning them into a command (C) with 
extracted target properties (P) for the robot, as well as monitoring the internal state
(S) of the robot and generating an appropriate response (R) to the user.

3.1 Model 

Age and Speech Recognition. We utilize Voice Activity Detection (VAD) 
with Silero VAD4 to eliminate the need for wake-words, allowing for natural 
interaction with the user. Detected speech segments are processed using the
3 https://www.willowgarage.com/pages/pr2/overview. 
4 https://github.com/snakers4/silero-vad. 
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Faster Whispe r5 ASR model (whisper-small, float16 precision) based on Radford
et al. [19], alongside an Age Recognition (AR) model. The AR model integrates 
a pre-trained Whisper Encoder with an attention-based classifier to predict a 
binary age group (0: young, 1: old) for the dialogue bridge and robot planner. 
We set the threshold for the binary split at the age group ‘fifties’. We detect 
user traits at every interaction to allow more flexibility for future multi-person
scenarios but to prevent oscillations here, we pass along the age averaged over
the last five interactions.

The AR model is trained on a modified version of the Common Voice 11.0 [1] 
dataset. We combine the training and validation splits, exclude samples lacking 
age information (reducing the dataset by about 30%), and include only speakers 
with five or more samples. This results in a dataset of 176,448 utterances from 
5,217 speakers. T he classification model is trained for 10 epochs with an initial
learning rate of 1e-3 and a linear warm-up schedule, using a 70–30 train-test
split.

Dialogue Bridge. As shown in Fig. 3, we examine the abilities of LLMs to 
serve as a dialogue bridge between the user and the robot. Each turn of the 
message process can be formally represented:

R,C, P = LLM(U, S|prompts) (1) 

where U denotes the user’s utterance and age; S denotes the robot’s symbolic 
states (‘step’, ‘interruptable’, ‘move_arm’, ‘move_base’, ‘current_location’, and 
‘destination_location’); R denotes the response to the user; C denotes the 
commands (minor and major) to the robot, the minor commands include: 
‘bring_me’, ‘setting_breakfast’, ‘replace_object’, and ‘change_location’, the 
major command is ‘stop’; P denotes the target properties of the object (‘type’, 
‘size’, and ‘color’). While the robot can be interrupted by the user at any time, 
some of the atomic actions of the robot need to be finished before plan changes 
can be implemented (e.g. opening the cabinet to look for an object). We use the 
boolean ‘interruptable’ variable to inform the dialogue bridge of these specific 
actions. However, major interruptions are the exception and the robot immedi-
ately stops the current step, which is why the interaction needs to be restarted 
after a major interruption occurs. 

We prompt the LLM (GPT-3.5) to extract commands and properties from 
the user’s input and provide different levels of feedback depending on the user’s
age based on the robot’s symbolic state. We provide examples of the various
commands and their properties. For instance, “Please bring me a cup instead of
a bowl.” requires the LLM to identify ‘replace_object’, which is a minor inter-
ruption, and ‘cup’ as the replacement object for ‘bowl’. For older users, the
LLM initially generates information about the robot’s movement between dif-
ferent locations and arm movements while searching for objects, and the robot

5 https://github.com/SYSTRAN/faster-whisper. 
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is overall more vocal about its actions. For younger users, the feedback is ini-
tially reduced to simple confirmations a nd the robot displays a higher level of
autonomy.

Robot Planner. The robot planner is responsible for the execution of high-
level commands passed from the dialogue bridge. The planner is implemented
in PyCRAM6, a framework for developing cognitive robot control programs 
through symbolic plans. Based on the CRAM cognitive architecture [4]  and  
adapted for Python3, PyCRAM transforms symbolic plans into concrete param-
eters guiding robot actions [11]. This adaptive approach allows the same plan to 
be used for various tasks, incorporating user feedback without altering the core 
structure. 

The high-level goals provided by the dialogue bridge are handled through 
designators, which are symbolic descriptions filled at runtime. For example, a 
designator for picking up an object might specify the object type (e.g., ‘mug’), 
the arm to be used, and the grasp type, which consists of a series of atomic 
actions that represent the high-level action. At execution, the perception module 
provides the missing details, such as the orientation and placement of an object 
for grasping. In the simulation, a placeholder perception module is used alongside 
the IK solver, which communicates with the same parameters as the real-world 
equivalents would, to facilitate a switch between simulated and real robots. 

Our setup enhances PyCRAM with three key features for immediate 
responses to dynamic changes or emergencies initiated by a human agent: 1) 
an Interrupt Client, that allows flexible adjustments (minor interruptions) and
shutdown requests (major interruptions), 2) retry and monitor functionalities,
which enable recovery actions for plan failures, and 3) dynamic object handling,
which allows real-time updates to object states based on the interactions with
the user. The robot can navigate to objects, open drawers and doors, and per-
form pick-and-place actions, all while accommodating plan changes based on
user feedback. These additions to the PyCRAM language enhance the flexibil-
ity, robustness, and efficiency of robotic task execution in complex and dynamic
environments.

4 Evaluation and Results 

We evaluate each module in our framework separately and then perform a com-
prehensive system evaluation using two scenarios with 150 system trials each. 
We perform the system trials ourselves: 3 users (2 male, 1 female), with age 
groups ‘twenties’ and ‘thirties’. For the first scenario (‘bring_me’), we assess the 
system’s ability to adapt to plan changes with a minor interruption. Initially,
the user asks the robot to bring a cup, then interrupts to request a bowl instead.
The interaction is considered successful if the robot returns the cup and only

6 https://github.com/cram2/pycram. 
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Fig. 4. The confusion matrix for the Age Recognition model. The matrix shows that 
the model predicts either t he correct age group or one of the two adjacent groups.

the bowl is placed on the table. The second scenario (‘setting_breakfast’) evalu-
ates the system’s response to minor and major interruptions. The user requests 
breakfast, and while the robot is setting the table, they first ask for a cup as 
well (minor interruption) and then bring the rob ot to a standstill by saying
“Stop!” (major interruption). This scenario is successful if the cup is added to
the breakfast items and the system stops as requested.

4.1 Age and Speech Recognition 

We measure the performance of the age recognition model by its c lassification
accuracy, as described in Sect. 3.1. The model can differentiate between older 
and younger voices with an accuracy of 97.8 % on the Common Voice dataset. 
To better illustrate the model’s performance, we also include a more detailed 
evaluation of the nine different age groups (‘teens’, ‘twenties’, ..., ‘nineties’). The
AR model reaches an accuracy of only 59.5 % on the Common Voice dataset for
the prediction of the nine age groups, but the confusion matrix in Fig. 4 shows 
that even in failure cases, the model predicts one of the two adjacent age groups. 
This behavior is replicated in the system trials, but the AR model classifies the 
binary age group of the users c orrectly every time. This will need to be verified
in a future user study with older participants and more gender variety.

The speech recognition model is evaluated with word error rate (WER) and 
character error rate (CER), which measure the number of words or characters 
transcribed falsely. The model reaches 14.84 % WER and 5.20 % CER on the
Common Voice test dataset.
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Since transcripts are not available during the system trials, we instead exam-
ine the occurrence of incomplete or erroneous sentences (IES) during the inter-
action with the user. A sentence is considered incomplete if the transcription 
is cut off prematurely, and erroneous if the transcription introduces errors to 
the system (e.g., understanding ‘pole’ instead of ‘bowl’). We a lso evaluate the
repetition rate (RR), which measures the average number of times the user must
repeat a command for it to be executed correctly in one scenario.

The results show that for ‘setting_breakfast’ the percentage of IES is on 
average 25.50±%14.32%. For ‘bring_me’ the mean value is 29.28%±22.95%.  The  
evaluation of the RR shows that for ‘bring_me’ the user has to repeat themselves 
on average less than once (m =  0.8644 ± 0.2573) during successful interactions, 
which amounts to 75.33% of all interactions. For ‘setting_breakfast’ t he RR is
slightly higher (m = 1.1121± 0.9941), which indicates that on average the user
has to repeat themselves more than once in successful interactions (86%).

Table 1. Command and Object Properties Recognition Average Accuracy(%)±Standard 
Deviation. ‘Add object’ refers to object requests, and ‘Delete object’ refers to object 
changes. Type is the object identifier. Color, size, and location are additional properties.

LLM Command Add object Delete obj ect
Type Color Size Location Type Color Size Location 

gpt-3.5-turbo-1106 81.57 89.08 86.60 68.40 84.53 83.12 85.54 83.77 99.96 
±0.003 ±0.004 ±0.003 ±0.001 ±0.001 ±0.003 ±0.001 ±0.002 ±0.000 

gpt-3.5-turbo-0125 80.93 82.43 88.56 69.28 85.48 76.48 84.75 82.04 99.99 
±0.003 ±0.002 ±0.003 ±0.003 ±0.004 ±0.004 ±0 ±0.002 ±0.000 

4.2 Dialogue Bridge 

To quantitatively evaluate the dialogue bridge, we constructed a benchmark 
dataset comprising five objects (‘milk’, ‘bowl’, ‘cereal’, ‘spoon’, and ‘cup’) with 
four colors (‘green’, ‘blue’, ‘red’, ‘white’), three sizes (‘small’, ‘normal’, ‘big’), 
and three locations (‘countertop’, ‘dishwasher’, ‘cabinet’). We collect ten tem-
plate instructions to request an object (e.g. “Bring me the small red cup.”) and 
generate 800 instructions for the command ‘bring_me’ by combining different 
object attributes. Interruptions to replace an object can either be expressed 
in a single sentence containing all necessary information (e.g. “Bring me a cup 
instead of a bowl.”), or require extracting the object from the context of previ-
ous instructions (e.g. “Bring me the bowl instead.”). In this module test, we only
consider the first situation. We collect 15 template instructions for replacing one
object with another, resulting in 1770 instructions by combining different object
attributes. Additionally, we collect 41 variants to request breakfast preparation
from the robot, leading to 2611 generated instructions for the benchmark dataset
overall.
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In the module test, we examine two different GPT-3.5 models (gpt-3.5-turbo-
1106 and gpt-3.5-turbo-0125) due to their cost efficiency. Table 1 shows their 
performance in recognizing command and object properties in the generated 
instructions. The models perform similarly on the benchmark dataset across 
three experiments, with overall above-average accuracies and low standard devi-
ations, indicating consistent performance. Because our instructions for replacing 
objects do n ot include location details, the accuracy of deleting object locations
is nearly 100%. We decided to use gpt-3.5-turbo-1106 for our system trials, due
to its higher performance in command recognition.

During the system trials, the dialogue bridge handles the flow of informa-
tion between modules, complicating live evaluation. Instead, we document the 
behavior of the model across the 150 trials. While the system works as intended
for a majority of the cases, as discussed in Sect. 3.1, the most common reasons 
for unsuccessful interactions are 1) the LLM wrongly classifying the request for 
object replacement and fetching two obj ects instead of one, 2) the LLM not
responding, and 3) the ASR system sending faulty transcriptions.

4.3 Robot Planner 

We evaluate the robot’s capability to interrupt and adapt its behavior dur-
ing transporting tasks by generating permutations of possible commands in the 
form of ROS messages from a list of objects in our environment (‘milk’, ‘bowl’, 
etc.). We ensure that we only evaluate scenarios similar to those encountered in 
the overall system evaluation to maintain comparable rates of executed actions. 
After each command the robot receives, we check its properties and structure 
and whether it leads to correct robot behavior. During both the individual e val-
uation and the system trials, we measure the overall performance with the rate
of successfully executed commands and the rate of ignored commands. Ignored
commands include commands classified as ‘other’, unknown command types,
unavailable objects in the environment, or objects not meeting the specified
criteria.

The results of the module tests, as shown in Table 2, demonstrate the high 
success rate of the robot for ‘bring_me’ and ‘setting_breakfast’. In the first 
scenario, involving fetching and replacing objects, the robot successfully exe-
cutes 98% of all received commands. In the second scenario, involving setting 
the table and stopping the robot, the robot successfully performs 92% of the 
received commands. The percentages o f ignored commands are due to issues
with the IK solver during grasping or the timing of the replace command, such
as the command reaching the robot after the fetching action has already been
completed.

For the system trials, the robot receives a larger number of commands overall, 
due to noise introduced by the repetition rate (RR) and incomplete and erro-
neous sentence (IES) rate, as well as potential misclassifications by the dialogue 
bridge. This is reflected in the higher number of ignored commands. In the first
scenario 88.58% and in the second scenario 78.47% of all received communica-
tions are either classified as ‘other’ or contain formatting errors and are thereby
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ignored. However, the overall success rate of the system trials shows the robot 
executes the plan changes correctly in 75.33% of all trials for scenario one and
in 86% of all trials for scenario two.

Table 2. The results of the evaluation of the robot planner. The percentage of ignored 
commands compared to correctly identified and executed commands is displayed for 
each scenario. ST Success Rate is the percentage of 150 trials that were executed
successfully for each scenario.

Scenario Command Robot Evaluation System Trials (ST) ST Success Rate

1 bring_me 50% 7.96% 75.33% 

replace_object 48% 3.46% 
ignored 2% 88.58% 

2 setting_breakfast 46% 8.10% 86.00% 

bring_me 42% 9.34% 
stop 4% 4.08% 
ignored 8% 78.47% 

5 Discussion 

In our work, we introduce a framework that uses user traits, such as age, to 
adapt Human-Robot Interaction (HRI) scenarios to specific user groups and 
incorporates interruptions to integrate plan changes during action execution. 
We evaluate our architecture per module a nd in two scenarios, each with 150
system trials, achieving an overall success rate of 75.33% for scenario one and
86% for scenario two.

We chose age as the user-specific trait to modulate interactions within our
framework. The confusion matrix (Fig. 4) and accuracy values on the Common 
Voice dataset demonstrate that our age recognition (AR) model can reliably 
identify age ranges rather than specific age groups. The increased confusion in 
the ‘nineties’ category is mainly due to the limited training data for older age 
groups, which does not affect our scenario, as we only distinguish between older 
and younger speakers. The high accuracy in binary age classification (97.8%) and 
the AR model’s performance in the system trials demonstrate that the model 
is robust against age-range fluctuations. This should be validated in future user 
studies since the only age groups presented in the system trials were ‘twenties’ 
and ‘thirties’. During system trials, we observed that the large language model
(LLM) was able to distinguish the user’s age and generate different responses
at the beginning of each interaction. However, this behavior diminished after
several iterations due to the LLM’s memory capacity. As new conversations are
appended to the conversation history, the LLM tends to forget the initial prompt.
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In addition to providing feedback based on the detected age and robot state, 
the dialogue bridge is responsible for connecting user input to robot actions. The
results in Table 1 demonstrate that the model reliably identifies correct com-
mands and object properties in module-based evaluations. However, the system 
trials introduce noise in the form of repetitions and erroneous sentences, leading 
to a higher number of i terations per interaction. The high standard deviation
values in the incomplete and erroneous sentence (IES) rate, discussed in Sect. 3.1 
indicate that user voice characteristics and microphone quality greatly impact 
the reliability of voice activity detection. The repetition rate (RR) is influenced 
not only by the IES rate but also by the rate of command misclassifications by 
the LLM. In scenario one, repetitions were equally caused by automatic speech 
recognition (ASR) and LLM errors. In scenario two, the higher RR was more
frequently due to transcription errors associated with shorter sentences, which
provide less contextual information.

Additionally, in its current state, the LLM passes every user input on to the 
robot planner, resulting in a higher number of commands being sent overall and 
an increased rate of ignored c ommands by the robot. Since the robot planner
performs with high accuracy during the module test (Table 2), we can infer that 
the lower number of correctly received commands is due to that influx of unclas-
sified utterances. This indicates a need for future iterations of the dialogue bridge 
to include pre-filtering mechanisms to address faulty or unknown transcriptions 
from the speech module. Moreover, refining the robot’s interrupt handling will
further enhance its responsiveness and reliability.

During preliminary trials, we observed that high levels of vocal feedback 
sometimes interfered with user interruptions when the sound played over the 
loudspeakers. This issue arose because the speech recognition system is turned 
off while the robot is speaking to prevent self-talk. For evaluation purposes, we
disabled this functionality, but future iterations will address this by implement-
ing approaches to filter out self-talk from the audio stream [15]. 

6 Conclusion 

We present a framework for human-robot interaction that leverages interrup-
tions and adaptive feedback to enhance personalization while maintaining a low 
cognitive load for the user. By using user-specific traits to create intuitive start-
ing points, our system adapts to individual users through feedback and real-
time plan adjustments. Our results demonstrate reliable performance across each 
module during isolated tests, highlighting the system’s modularity. System tri-
als provide an initial exploration into the opportunities and limitations of our
architecture, with the framework successfully handling user interruptions and
repeated input in 75.33% of trials for scenario one and 86% for scenario two.

Future work will focus on optimizing interruption handling, feedback mech-
anisms, and recovery procedures to reduce ignored commands and improve the 
success rate of command classification and message generation. Additionally,
extending experiments to real-world settings through user studies with diverse
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age groups will further validate our simulation results and ensure the robustness 
of the framework in diverse environments.

We believe that our framework will significantly contribute to the develop-
ment of more intuitive and user-friendly HRI systems, ultimately enhancing their 
practical application in everyday scenarios. 
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