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Abstract—Current approaches in Explainable Deep Reinforce-
ment Learning have limitations in which the attention mask
has a displacement with the objects in visual input. This work
addresses a spatial problem within traditional Convolutional
Neural Networks (CNNs). We propose the Interpretable Feature
Extractor (IFE) architecture, aimed at generating an accurate
attention mask to illustrate both ”what” and ”where” the agent
concentrates on in the spatial domain. Our design incorporates
a Human-Understandable Encoding module to generate a fully
interpretable attention mask, followed by an Agent-Friendly
Encoding module to enhance the agent’s learning efficiency.
These two components together form the Interpretable Feature
Extractor for vision-based deep reinforcement learning to en-
able the model’s interpretability. The resulting attention mask
is consistent, highly understandable by humans, accurate in
spatial dimension, and effectively highlights important objects or
locations in visual input. The Interpretable Feature Extractor is
integrated into the Fast and Data-efficient Rainbow framework,
and evaluated on 57 ATARI games to show the effectiveness of
the proposed approach on Spatial Preservation, Interpretability,
and Data-efficiency. Finally, we showcase the versatility of our
approach by incorporating the IFE into the Asynchronous
Advantage Actor-Critic Model.

Index Terms—Interpretable, Reinforcement Learning, Atten-
tion

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has been developing
rapidly and showing outstanding performance in robotics,
games, and other decision-making processes. Many DRL
models have outperformed human experts in fields such as
AlphaGo [33] or MEME [16]. However, the social impact of
the DRL in reality has been underrated, especially in critical
applications such as Autonomous Driving and Healthcare due
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to its poor interpretability. Explainable Deep Reinforcement
Learning (XDRL) has been studied in many works to unveil
key insights into the decision-making process of the agent.
Saliency maps are generated in many works to visualize
the important locations regarding the policy changes [10].
Other works [7], [26] have successfully applied a multi-head
attention mechanism to reveal the task-relevant information
from the visual input. All the aforementioned works can
only interpret some of the games in the ATARI benchmark,
especially for the games in which the model can perform better
than humans but the attention maps are poorly understandable,
raising the concern about the effectiveness of the approach.
Furthermore, all of the proposed approaches rely on Convo-
lutional Neural Networks to extract the environment feature
from the visual input and therefore do not inherently enforce
spatial consistency. We construct and evaluate a versatile
Interpretable Feature Extractor (IFE) which can serve as a
reliable extractor for vision-based deep reinforcement learning.

In this paper, we address the spatial preservation problem
in XDRL, which leads to the dilemma between interpretability
and performance. On one hand, the convolutional neural net-
work (CNN) plays an important role in DRL which efficiently
extracts the spatial features from visual input. However, the
spatial consistency between input and output is not fully
preserved due to the overlap between convolution windows.
On the other hand, non-overlapping convolutional operations
can fully preserve the spatial information but will reduce the
efficiency during training (Sec. II-C). Rethinking the Feature
Extractor in DRL, an interpretable model is constructed that
balances spatial preservation and learning performance (illus-
trated in Fig. 1). Firstly, this approach uses non-overlapping
convolutional operation to extract the features from visual
input while fully preserving the spatial information, followed
by a soft attention mechanism to force the model to accurately
focus only on the important features relating to the decision
during training. The attention mask is computed on the forward
pass of the model during inference and is in a single map,
which is more efficient for visualization, and consistent with
the context. After that, the features will be transformed into



an agent-friendly domain, which allows the model to flexibly
encode the environment representation into the feature maps
that are efficient for the model to learn. As a result, the feature
extractor is interpretable and efficient for the Reinforcement
Learning agent to learn regardless of the learning type or
policy. We show that our Interpretable Feature Extractor
could produce an accurate, consistent, and highly human-
understandable attention mask from all 57 games in ATARI
environment 1. To promote the reproducibility and reusability,
our code is publicly available 2.

We summarize our contributions as follows:
• Address the spatial problem in Explainable AI and pro-

pose an easy but effective approach to minimize that
problem in Vision-based Deep Reinforcement Learning.

• Introduce a versatile and reliable feature extractor that is
integrated into Deep Reinforcement Learning Models to
enable interpretability.

• Evaluate the approach on Spatial Preservation, Inter-
pretability, Data-efficient against the traditional CNN ap-
proach and the SOTA Interpretable Deep Reinforcement
Learning model (Mott et al. [26]) on ATARI environment.

II. PRELIMINARIES

A. Model-free Deep Reinforcement Learning

We consider Atari Gameplay to be a Markov Decision
Problem defined by tuple (S,A,P,R, γ). The State Space
S includes all possible states s presented by visual inputs
from the game engine. A is a finite set of possible discrete
actions a that the agent could perform given each state. P is
the state-transition distribution which indicates the probability
of state-transition for each tuple (s, a). The reward function
r is an output provided by the environment while performing
a specific action in a state, and the discount factor γ reflects
the weight of the reward signal over time. The agent, by per-
forming a series of actions based on the visual states to collect
the rewards, will try to explore the environment and maximize
the reward gained via training. There are several approaches
to tackling the large and possibly infinite state spaces that try
to estimate the expected sum of future reward when taking
the action following the optimal policy thereafter [2], [13],
[23], [25], [36]. Several frameworks have been developed to
improve the performance and learning efficiency of the agent
such as Deep Q-Network [36], Proximal Policy Optimization
[31], Actor Critics [19], Asynchronous Advance Actor-Critic
[23], Impala [8], MEME [16], etc. All of those approaches
use the Convolutional Neural Network Variant to extract the
features that represent the visual state which is then mapped
with the actions to indicate the state-action pair vector. Our
work focuses on improving the interpretability of the feature
extractor by explaining the perception of the agent regarding
the environment which could be applied in most of the vision-
based deep reinforcement learning models. However, due to

1Videos of all ATARI environments can be found at:
https://sites.google.com/view/pay-attention-to-windows

2https://github.com/tiencapham/IFE

the time-consuming training in deep reinforcement learning,
we only integrate the approach on Fast and Data-efficient
Rainbow [30] which serves as the main framework for our
evaluation due to its data efficiency in learning. We also extend
the approach to Asynchronous Advantage Actor-Critic (A3C)
with Long-Short Term Memory (LSTM) [23], which has a
different network structure as well as learning policy and
observation configuration, to prove its versatility.

B. Attention

Attention mechanism has been well studied recently in
multiple domains [4], [6], [26], [40]. The attention to visual
input will indicate the locations on the image on which the
model is focusing to decide the action. The key idea is to apply
a learnable attention weight over the spatial features, allowing
the model to adapt to focus on relevant spatial features in
the decision-making process. There are two main types of
attention mechanisms namely Multi-head Attention [37] and
Bahdanau Attention [4]. Multi-head attention simultaneously
creates multiple mappings between a query Q and a set of key-
value (K,V) pairs to an input, producing the low dimensional
vectors summarizing the input based on the query [37]. Each
mapping will create the attention map, together representing
the attention of the model in different spaces. By contrast,
Bahdanau Attention transforms the input into attention space
over the spatial dimensions, then bottlenecked into a single
value to create the attention weights. There are also other
forms and variations of the attention mechanisms that has been
used intensively to improve the model performance as well
as increase the interpretability of the model [39], [41]. This
work uses a soft mechanism in Bahdanau Attention (Sec. IV)
to produce the attention mask due to its training efficiency as
well as the interpretability of the mask.

C. Spatial Preservation versus Performance in CNN

Visual Domain Feature Domain

m

n
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I

Fig. 2. Illustration of overlapping convolutional operations result in one-to-
many transformation.

Traditional Vision-based Deep Reinforcement Learning re-
lies on Convolutional Neural Networks as a feature extractor
to gradually extract the visual features in Overlapping Spatial
Domain [9]. In many works on XDRL [7], [10], [26], [34], the
visual explanation such as attention or saliency map is com-
puted in the final features and transformed into visual space.
However, convolutional operation is non-invertible which does
not allow an accurate transformation from feature to visual

https://sites.google.com/view/pay-attention-to-windows
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Fig. 1. Proposed Interpretable Feature Extractor Architecture for Vision-based Deep Reinforcement Learning

domain. As a common practice, a simple upsampling approach
is used to retrieve the attention mask in visual input. Assuming
a feature has coordinates (m,n) in the feature domain and
is extracted by the Convolution Kernel size (L,L) with the
stride S from the visual input that has dimensions of (WI , HI).
After the upsampling process, the displacement between the
attention mask from this feature and its corresponding pixels
in Visual Input is defined as follows:

Dx = mS(1− 1
1+S−L

WI

) + lx(1− S
L

1
1+S−L

WI

)

Dy = nS(1− 1
1+S−L

HI

) + ly(1− S
L

1
1+S−L

HI

)
(1)

As a result, a spatial problem, where there are displace-
ments between the attention mask and its corresponding vi-
sual input, is unavoidable in Explainable Vision-based Deep
Reinforcement Learning using the traditional CNN approach.
Additionally, the one-to-many problem, where the object
located in overlapping regions could be extracted by multiple
convolution windows, is also caused by the overlapping con-
volutional operations. As a result, there are possibly multiple
features of the same objects (Fig. 2). In contrast, a non-
overlapping convolution, where S is equal to L, is fully spatial
preservable which could produce an accurate attention mask.
However, this approach loses the parameter sharing [9]
between convolutional operations, resulting in a reduction of
learning performance. The parameter sharing allows the model
to define which domain the features are extracted, giving
the transformation flexibility to learn and adapt to the task
respectively. Therefore, a dilemma between interpretability
and performance needs to be balanced to achieve Explainable
Deep Reinforcement Learning.

III. RELATED WORKS

Attention mechanism has been well-studied in Deep
Learning to improve the interpretability and performance of
the models, such as text translation [4], [37], image captioning

[14], [20], [40], question answering [12], [24], object tracking
[18] and reinforcement learning [7], [22], [26], [34]. Those
approaches use attention masks to provide the perception
of the models regarding the input that highlights the most
task-relevant information. For vision-related tasks, all of the
aforementioned works use a Convolutional Neural Network
as a backbone to extract the visual features and apply the
attention mechanism to create the masks highlighting the
locations with high attention weight. However, we observe that
the CNNs cause the spatial problem mentioned in Sec. II-C.
To the best of our knowledge, we are the first to address and
solve the spatial problem in the vision-based attention model.

Interpretable Deep Reinforcement Learning. Inter-
pretability of the RL model could be explored by several
aspects, from self-interpretable modeling to reward decompo-
sition and post-training explanation [11]. The reward decom-
position [15], [21] could be used to interpret the action of the
agent based on the re-engineered reward. The saliency map
[3], [28] could be extracted from the traditional RL model to
explain the agent’s decision after training. Other works [11],
[28] identify the critical states for the final rewards of the
agent. Our work focuses on enabling the interpretability of
the agent by designing an interpretable feature extractor.

Attention in RL. There have been several works that
applied attention mechanisms to unveil the information in
Deep Reinforcement Learning during the decision-making
process [7], [26], [34]. Sorokin et al. [34] proposed a Deep
Attention Recurrent Q-Network combining soft or hard atten-
tion mechanisms with LSTM to extract the time-dependant
attention-weighted features. However, the attention visualiza-
tion is vague and does not accurately focus on the important
objects. Shi et al. [32] proposed an interpretable feature
extractor by self-supervised training of the network with a
decoder, producing an attention map to indicate the agent
focus. Shi et al. [17] design an attention bottleneck model
to concatenate the latent representation of the network. Choi
et al. [7] incorporate multi-head attention with LSTM to create



a Multi-focus Attention Network (MANet) to improve the
agent’s capability to focus on significant elements through
the utilization of multiple concurrent attention mechanisms. A
similar approach was also proposed by Mott et al. [26] which
apply a Soft, Spatial Sequential, Top-Down Attention (S3TA)
to generate the attention masks in ATARI environment and
unveil some important information underlying the decision-
making. The two works combine a multi-head attention mech-
anism with LSTM layer to create the query vector and extract
the attention from small informative regions. The multi-head
attention creates multiple attention heads which represent
different perceptions of the model towards the input, thus
creating the inconsistency in interpretability between heads.
In contrast, our soft attention creates only one attention mask
which achieves better interpretability evaluated in Sec. V-B.
Additionally, our approach has a minimal modification on
the network and training procedure, and does not rely on
the LSTM layer which could be integrated into multiple
types of Reinforcement Learning models without adding new
components.

IV. METHOD

Recognizing the dilemma mentioned in Sec. II-C, we for-
mulate the interpretable feature extractor as follows:

• Interpretability in Human Understandable Domain:
The purpose of Explainable Deep Reinforcement Learn-
ing is to generate a Visual ”Explanation” understood by
humans during the decision-making process. Therefore,
the attention mask needs to be produced in a Human-
Understandable Domain. At this stage, the model encodes
the visual input into a feature domain where the semantics
should be spatially maintained.

• Performance in Agent-Friendly Domain: The output
of the feature extractor needs to be used by the agent
to predict the action that optimizes the future reward. To
improve the data efficiency of a reinforcement learning
model, the output feature should be in an Agent-Friendly
Domain. This allows the model to be flexible in con-
verting the features into the domain where it promotes
training efficiency.

A. Human-Understandable Encoding (HUE)

We introduce the first module in Interpretable Feature
Extractor named Human-Understandable Encoding which
primarily focuses on generating the visual explanation. An
observation (a stack of grayscale frames) is processed through
non-overlapping convolutional layers to extract the important
features in the fully spatial preservable domain. The output
tensor [zi] has a lower resolution of the visual input, which
reduces the computational intensity of the attention process but
is still fine-grained enough to produce an accurate and sharp
attention mask. First, the feature tensor [zi] is permuted to
flatten the two spatial dimensions, accelerating the transforma-
tion. We define a learnable transformation ϕ that converts the
vectors representing the features extracted in spatial locations
into attention weights [αi] which indicates the importance of

features relating to the tasks. The feature vectors are then
masked by the attention which only exaggerates the feature in
important locations while reducing the values of non-related
spatial features, producing attention-weighted spatial features
zmasked
i .

αi = ϕ(zi) (2)

zmasked
i = ziαi (3)

The attention transformation fatt is constructed by two fully
connected layers. The first layer is used to transform the
feature vector zi into an attention domain A. Subsequently,
the second layer converts this to a single value representing
the importance weights ei. To force the model only selecting
the truly important features, a soft-max activation is applied,
which results in a clear and interpretable attention mask.

ei = fatt(zi) (4)

ϕ(zi) =
exp(ei)∑L

k=1(exp(ek))
(5)

This mechanism provides a learnable method to adjust the
features by increasing the weight of important spatial features
and reducing the weight of non-relating ones. Finally, the
Attention-Weighted Spatial Features are permuted back to the
original shape for the next processing. It is worth noticing that
Human-Understandable Encoding is fully differentiable due
to the combination of the convolutional layers and attention
mechanism which could be trained via back-propagation. The
Reinforcement Learning Model, while updating its weights to
maximize future return, will also adjust the attention mech-
anism to select the important spatial features that contribute
to the decision-making process. As a result, the Attention-
Weighted Spatial Features only contain high values in impor-
tant locations and negligible weights otherwise. Besides, the
attention mask, where the spatial characteristic is maintained,
could be overlayed on the visual input and provide the visual
explanation of ”what” and ”where” the model is focusing on.

B. Agent-Friendly Encoding

While Human-understandable Encoding could extract the
feature from visual input and create an accurate attention mask
highlighting the important locations, its lack of parameter
sharing could reduce the training efficiency which is the ad-
vantage of the Convolutional Feature Extractor. We introduce
the second component, namely Agent Friendly Encoding,
allowing parameter sharing in feature extraction and facili-
tating the training process. Convolutional layers are used in
an overlapping manner followed by the activation functions,
pooling or normalization layers, and other neural network
variations. There is no constraint or specific requirement on the
network type or architecture to be used in this module, as long
as it facilitates the training efficiency of the overall network.
Therefore, this approach could be adopted by multiple types
of Deep Reinforcement Learning Model. Our work uses the
IMPALA-Large model [8] as the main framework which uses
a Max Pooling layer, two consecutive Residual Blocks, and an



Adaptive Max Pooling Layer in the Agent-Friendly Encoding.
We also integrate the approach onto A3C-LSTM which uses
two convolutional layers with a fully connected layer followed
by an LSTM layer.

C. Interpretable Feature Extractor

The two aforementioned components together form an In-
terpretable Feature Extractor (IFE) which could be used in
a Vision-based Deep Reinforcement Learning Model. By com-
bining the IFE with the Decision-Making Layer depending on
the type of Reinforcement Learning Model such as Dueling or
Actor-Critic Network, the model becomes interpretable. The
interpretable model is able to produce the attention mask on
the spatial domain, and agent-friendly features to be effectively
involved in the decision-making process.

V. RESULTS AND ANALYSES

TABLE I
HYPERPARAMETERS FOR TRAINING

Parameter Rainbow A3C-LSTM
Discount factor γ 0.99 0.99
Q-target update frequency 32,000 frames –
Importance sampling β0 for PER 0.45 –
n in n-step bootstrapping 3 20
Initial exploration ϵ 1 –
Final exploration ϵ 0.01 –
Exploration decay time 1,000,000 frames –
Learning rate 0.00025 0.0001
Optimizer Adam Adam
Adam parameter 0.005/batch size Use Amsgrad
GAE Parameter – 0.92
Gradient clip norm 10 –
Loss function Huber –
Batchsize 256 –
Frameskip 4 4
Framestack 4 1
Grayscale Yes Yes

A thorough evaluation is performed on 57 ATARI Games
(OpenAI Gym v0.18.0 [5]) based on our proposed approach
integrated into the Fast and Efficient Rainbow model [30].
Details about the network architectures used in the evaluation
are shown in Fig. 3. Due to the space limitation of the
paper, we only show a few examples for each evaluation, for
a thorough understanding of how the interpretable attention
masks are visualized, we would suggest visiting our project
webpage1. Additionally, we use the Multi-head Attention
Model (S3TA) from [26] as the baseline for our evaluation
as they are considered as the SOTA approach for Interpretable
Deep Reinforcement Learning with similar settings 3.

Attention Visualization. To visualize the attention mask
during the inference, we first input the visual observation
into the interpretable model and retrieve the attention mask
(illustrated in Fig. 4). The mask is then upsampled to have a
similar shape to the visual input. Finally, the attention mask is
overlaid on the darkened input for clearer visualization. Dark
attention shows a small value while the bright mask illustrates

3The visualization of S3TA can be found at
https://sites.google.com/view/s3ta.
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Fig. 4. Visualization of the attention mask overlayed on visual input

substantial attention weights highlighting the ”where” and
”what” the agent is looking at.

A. Spatial Preservation

We compare the attention maps produced by our proposed
model against the normal CNN architecture (using overlapping
convolution operations in HUE). Our model can accurately
localize the important objects while there are random shifts in
CNN attention (See Fig. 5). Note that the input of the state
St is the 4 consecutive frames (Ft−3, Ft−2, Ft−1, Ft) which
causes the displacement of the objects in visual input, leading
to the trajectory attention in the mask. Out of 57 ATARI
games, we observe that our proposed model can produce clear
and accurate attention masks in all environments regardless of
the scoring performance. This observation supports the claim
that the proposed framework mitigates the spatial preservation
problem compared to the traditional CNN approach.

Comparing the S3TA approach shown in Fig. 6, we found
that our attention mask is accurate and consistent with the
environment context while there is a shift from S3TA vi-
sualization due to the spatial preservation problem. Taking
Space Invaders (Fig. 6(a)) as an example, the attention mask
on enemies is shifted to the top-left in attention head 2, but
to the bottom-left in attention head 4. In the Riverraid case
(Fig. 6(b)), the attention on the Fuel Tank is also shifted to

https://sites.google.com/view/s3ta
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(a) (b)

Fig. 5. Example of 5 consecutive inputs of the model with the attention
mask overlay. The figures show the comparison between the proposed model
with the traditional CNN model in (a) Pong and (b) Enduro. The attention
visualization of the proposed model is much clearer and more interpretable,
while that of the CNN approach is distorted and blurred by multiple attention
masks for the object. We can also see the attention consistent with the
movement of the objects such as the ball or the car.

the left in attention head 2, while multiple attentions on that
tank are found in attention head 3 with random shifts from
left to top. A similar problem could also be found in S3TA
visualization on other games but not in our proposed approach.
Furthermore, the inconsistency of attention heads also appears
in the S3TA model. For example, the attention on the character
could appear on attention head 3 in Space Invaders (Fig. 6
(a)) or attention head 1 in Riverraid (Fig. 6 (b)), which could
raise the concern of the model interpretation. Our approach
produces all the attention in a single mask, leading to more
computationally efficient and approachable interpretations.

Ours S3TA

(a)

Ours S3TA

(b)

(c) (d)

Fig. 6. Attention Masks Comparision between our work and S3TA [26] in
(a) Space Invaders, (b) Riverraid, (c) Kungfu Master, and (d) Assault. Four
attention heads of S3TA are presented in left-to-right order.

B. Interpretability Evaluation

Interpretability is difficult to measure and depends on vari-
ous subjective and objective factors. There is currently no stan-
dard benchmark to evaluate the interpretability of the model.
However, we could intuitively claim that our interpretable
model produces clear and accurate attention masks for all of
the games in ATARI benchmark.

Ours S3TA

(a)

Ours S3TA

(b)

Fig. 7. Attention Masks Comparision between our work and S3TA [26] in
(a) Atlantis, (b) Jamesbond. There are random and uninterpretable attention
masks captured in the S3TA approach (attention 2 in Atlantis and attention 1
in Jamesbond)

Examining the S3TA visualization, we observe that the
displacement between attention and objects, as well as the
hard-to-understand attention, appears in most of the games

(Fig. 6 and Fig. 7), reducing the interpretability of the visu-
alization. Similar problems could also be seen in the CNN
network with attention (Fig. 5). This could be explained by
the spatial and one-to-many problems in CNN mentioned
in Sec. II-C that blurs the attention masks and generates
uninterpretable attention in the visual domain. By contrast, the
proposed approach has mitigated that problem by forcing the
model to encode the image in a fully-preserved spatial domain
and produce a sharp, accurate, and interpretable attention
mask, confirming the superior interpretability of the proposed
approach.

Interpretability in successful learning environment. By
observing all the visualizations in ATARI benchmark, we con-
clude that our model is interpretable for all the environments
but not the case in the S3TA model. We observe environments
that the S3TA model can learn with the Human Normalized
Score > 10% but its visualization is hard to understand
(the attention mask is generated randomly, difficult to link
between the attention mask and the visual input context, see
Fig. 8). This phenomenon is caused by the severe spatial
problem in CNN where the agent-friendly domain is extremely
different from the human-understandable domain. As a result,
we cannot interpret the attention mask which should have the
meaning for the agent to gain the reward.

Ours S3TA

(a)

Ours S3TA

(b)

(c) (d)

Fig. 8. Attention Masks Comparison between our work and S3TA [26] in
(a) Ice Hockey, (b) Boxing, (c) Chopper Command, and (d) Crazy Climber.
We show four examples of games in which the attention mask of the S3TA
model is hard to understand while Human Normalized Score > 10%

C. Data efficiency in training and versatility
We evaluate the data efficiency of the proposed model

against the traditional CNN with an attention approach and
one model variation, where only HUE is used for the feature
extractor. The models are trained for 50, 000, 000 frames with
the benchmark performance shown in Table II. We found
that our proposed model has comparable performance to the
traditional CNN, while the HUE-only model has the worse
performance due to the lack of parameter sharing mentioned
in Sec. V-A. Details of performances and learning curves are
presented in our project web page 1. Due to the lack of open-
source code of S3TA as well as its high computing requirement
for training (200, 000, 000 frames), we compared the efficiency
of our proposed approach on only 6 ATARI games including
Pong, Space Invaders, Boxing, Ms Pacman, Defender, and
Breakout. Our proposed approach outperformed S3TA in both
mean and median metrics.

To evaluate the versatility of Interpretable Feature Extractor,
we integrate the IFE into the A3C LSTM framework which has



TABLE II
HUMAN NORMALIZED SCORES ON ATARI

Model Median Mean
Baseline [57 games] 922.43% 139.75%
CNN with attention [57 games] 955.48% 145.99%
HUIE-only [57 games] 896.16% 133.52%
Proposed [57 games] 944.36% 157.21%
S3TA [6 games] 1513.4 % 1796.6 %
Proposed [6 games] 1549.71 % 1969.82 %

different learning categories (on-policy), different observation
configurations (single grayscale frame), and different network
components (LSTM Layer) compared to Fast and Efficient-
Rainbow [35]. We observe a similar visualization where the
attention mask accurately highlights the important object in
visual input, which successfully shows ”where” and ”what”
the agent perceives to decide the action (shown in Fig. 9).

Boxing BreakoutPong Chopper 

Command

Crazy 

Climber

Ice Hockey Space 

Invaders

Star Gunner

Fig. 9. Showcases of Interpretable Feature Extractor integrated to A3C LSTM

D. Attention in Transfer Learning

Transfer Learning or continuous learning is the type of
learning where we leverage the training knowledge in one task
to transfer to another task, which has been emerging recently
in various studies [1], [27], [38]. We conducted an experiment
on how attention map is transferred in the context of continual
learning on Krull and Hero games, which are used to evaluate
Continual Learning in ATARI benchmark [29]. We used the
model trained in one game to evaluate in another game and
found that the attention mask could also be transferred (Fig.
10), which indicates the interpretable feature extractor partially
transferred the knowledge from an encoder. This result also
illustrates that the attention mask is still reliable given the
unknown observation during training.

Krull Model

(b) Evaluation on Krull Game

Hero Model

(a) Evaluation on Hero game

Hero Model Krull Model

Fig. 10. Transfer Knowledge of Interpretable Feature Extractor

VI. LIMITATIONS

While our approach has shown promising results and proven
to be superior to the current state-of-the-art in Interpretable
Deep Reinforcement Learning, we acknowledge several lim-
itations in our work. Due to resource constraints and the

computational intensity of Deep Reinforcement Learning, we
were able to evaluate our approach only on the Fast and
Data-efficient Rainbow framework and a few environments
using A3C LSTM. Consequently, aspects such as data-efficient
learning in Interpretable A3C LSTM, a thorough comparison
of our approach’s data efficiency with S3TA, and its perfor-
mance in other Reinforcement Learning frameworks were not
included in our evaluation. Additionally, we noticed that in
some ATARI environments, the model could become trapped
in sub-optimal solutions (e.g., doing nothing, resulting in zero
reward). This causes the environment to remain static, provid-
ing no new visual input and therefore no useful information
for learning, which leads to blurred attention visualizations.
To mitigate this issue, we had to run multiple experiments on
games like Tennis and Montezuma’s Revenge.

VII. CONCLUSION

We have successfully addressed, formulated, and developed
an approach to mitigate the spatial preservation problem in
vision-based Interpretable Deep Reinforcement Learning. Our
approach incorporates Human-Understandable Encoding com-
bined with a Soft Attention module to extract spatial attention
from visual input, followed by Agent-Friendly Encoding to en-
hance the model’s training efficiency. Together, these elements
form an interpretable feature extractor.

Our proposed method can produce an attention mask that
visualizes the agent’s perception of the visual input during the
decision-making process. We have evaluated and demonstrated
the superiority of this approach in terms of spatial preservation,
interpretability, and data efficiency compared to traditional
CNN methods and the current state-of-the-art in Interpretable
Deep Reinforcement Learning within the ATARI environment.
We believe that our framework serves as a reliable Inter-
pretable Feature Extractor, deepening our understanding of the
underlying mechanisms in vision-based Deep Reinforcement
Learning models.
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Piotr Mił oś. Disentangling transfer in continual reinforcement learning.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35,
pages 6304–6317. Curran Associates, Inc., 2022.

[39] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon.
Cbam: Convolutional block attention module. In Proceedings of the
European conference on computer vision (ECCV), pages 3–19, 2018.

[40] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption generation with visual attention. In In-
ternational conference on machine learning, pages 2048–2057. PMLR,
2015.

[41] Chenggang Yan, Yunbin Tu, Xingzheng Wang, Yongbing Zhang, Xin-
hong Hao, Yongdong Zhang, and Qionghai Dai. Stat: Spatial-temporal
attention mechanism for video captioning. IEEE transactions on
multimedia, 22(1):229–241, 2019.

http://www.deeplearningbook.org

	Introduction
	Preliminaries
	Model-free Deep Reinforcement Learning
	Attention
	Spatial Preservation versus Performance in CNN

	Related Works
	Method
	Human-Understandable Encoding (HUE)
	Agent-Friendly Encoding
	Interpretable Feature Extractor

	Results and Analyses
	Spatial Preservation
	Interpretability Evaluation
	Data efficiency in training and versatility
	Attention in Transfer Learning

	Limitations
	Conclusion
	References

