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Abstract—An agent’s intention often remains hidden behind
the black-box nature of embodied policies. Communication using
natural language statements that describe the next action can
provide transparency towards the agent’s behaviour. We aim to
insert transparent behaviour directly into the learning process,
by transforming the problem of policy learning into a language
generation problem and combining it with traditional autore-
gressive modelling. The resulting model produces transparent
natural language statements followed by tokens representing the
specific actions to solve long-horizon tasks in the Language-
Table environment. Following previous work, the model is able
to learn to produce a policy represented by special discretized
tokens in an autoregressive manner. We place special emphasis
on investigating the relationship between predicting actions and
producing high-quality language for a transparent agent. We
find that in many cases both the quality of the action trajectory
and the transparent statement increase when they are generated
simultaneously.

Index Terms—Behaviour Transparency, Vision Language Ac-
tion Models, Robotics

I. INTRODUCTION

The field of robotics is progressing towards robots with
higher degrees of autonomy [1]. Eventually, robots could be
able to collaborate with humans after receiving only very little
instruction on how to complete a certain task. However, as a
robotic agent’s degree of autonomy increases, its actions tend
to remain opaque until the moment they are executed [2].
This is especially important for robots deployed in real-
life scenarios where the interacting human might not have
experience with that agent. In cases where the robot’s behavior
does not align with the expectations of the human, this can lead
to a loss of trust in the robotic agent and, as a consequence,
hinder the effectiveness of collaboration [3]. To avoid these
situations and establish a common ground, humans naturally
utilize language, among other behaviours, to coordinate tasks
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and solve problems effectively [4]. We hypothesize that au-
tonomous robotic agents should exhibit similar behavior to
collaborate in human-robot teams effectively.

Current robotics research focuses primarily on the training
of agent behavior by evaluating policy execution and success
rates within specific environments [1], [5]–[7]. Learning to
provide transparency at the same time is rarely a consideration
for the development of most agentic systems. Behavior trans-
parency can be achieved by different means, for example, by
providing an outline of the action trajectory before execution
or by generating a detailed plan of subsequent actions [8]. In
this work, we chose the domain that is the most commonly
used for communication between humans and robots for
transparency: natural language [8].

The success of Foundation Models, which have been trained
on a huge amount of data, especially in the domains of
language and vision, has led to researchers in robotics adopting
such models in their systems [1], [5]–[7], [9]. However, they
are mostly used either to learn a policy directly, which is no
longer transparent, or to map an observation to a lower-level
statement, which is then executed by a separately learned pol-
icy. The capabilities of producing language for communication
are then considered separately, if at all. We argue that for a
robotic agent to exhibit transparent behavior, learning to be
transparent should be incorporated into the learning process
from the beginning.

In this work, our aim is to increase the transparency of robot
behavior by utilizing a single model to generate the next action
and simultaneously provide a natural language statement.
Modern Vision-Language Models (VLMs) form a base for
effective grounded communication, as they have shown excel-
lent qualities in image understanding and question-answering
tasks [10]. We leverage the general language understanding
and generation capabilities of the VLM to a) communicate
the agent’s subsequent action in natural language, and b)
utilize specific action tokens to execute the agent policy by
turning the problem into a full language learning task. This
also allows us to specify additional contextual information like
the robot’s state into the query by mapping it to specific tokens
or providing a corresponding language utterance.

Our key contributions can be summarized as:
• Joint Action Language Generation formulated as a

transparent language-learning problem. We transform



the problem of learning the agent’s policy to steer the
actuators into a natural language processing task which
inherently produces transparent statements within the
same output. Contrary to prior work [5], [6], [9] that uses
VLMs for policy learning, we specifically investigate the
interplay between the production of language statements
and low-level actions.

• Actions benefit from transparency. Our results show
that autoregressively generating a transparent language
statement alongside action tokens positively impacts the
predicted trajectories as well as the language output.

The remainder of this paper is organized as follows:
Section II covers current work on Vision-Language-Action
Models and transparency in robotics. Section III describes the
details of our approach. In Sections IV and V we present our
experimental setup and results. The paper concludes with a
discussion and brief summary in Sections VI and VII.

II. RELATED WORK

A. Vision-Language-Action Models

Based on their high generalizability, recent works have
started to utilize VLMs in the field of robotics. Applied as
an interface for training language-conditioned vision-based
policies, they are termed Vision-Language-Action Models
(VLA). This is accomplished by either defining a textual
representation of the actions and treating the problem as a
conditional language generation task or using specific policy
heads that produce the action.

Driess et al. [11] embed robot state, pixel- and object-level
visual input, and language in a multimodal token sequence,
which is processed by a Large Language Model (LLM). A
separate control policy performs the actions based on the
language guidance provided by the model. They train their
PaLM-E model [11] on various multimodal tasks to increase
the quality of extracted features. Gosh et al. [12] propose
to train a transformer-based generalist agent, called Octo,
by training on a wide variety of mixed-modality data. Li et
al. [13] predict coordinates of gripper-related objects in the
field of view using specific queries to the VLM. Shridhar et
al. [14] utilize 3D Voxels as input and goal specification to the
Perceiver-Actor model. Kim et al. [6] propose OpenVLA, an
open-source VLA that generates action tokens using an LLM
backbone, which processes language and visual features. A
specific decoder de-tokenizes the output tokens into low-level
actions. The model is trained on a multitude of embodiments
for generalizability across domains [6]. Black et al. [9] utilize a
pretrained PaliGemma Vision-Language Model [10] and attach
an action expert to it for policy execution.

The RT-1 [1] model embeds language and visual input
into a joint token representation and produces discrete actions
using a transformer head. Its successor RT-2 [5] utilizes a
central LLM, which processes visual and language input to
predict action tokens and was trained across Visual Question
Answering among other tasks. RT-H [7] employs a two-
step querying strategy by first letting the model break down

the current task into a short-term action which serves as
the context for predicting the next action using the same
model. Similarly, Zhao et al. [15] break down an abstract task
description into concretely executable actions whose execution
is learned separately.

Although many models have been pretrained on language-
generation tasks, little to no emphasis is put on utilizing
the language-generative capabilities of the model to simul-
taneously make the actions more transparent. The aim is to
create an improved language-conditioned policy, in contrast
to a policy with explicitly high-quality language output. We
aim to move research a step forward towards agents that have
inherently learned to behave transparently.

B. Explainability and Transparency

Explainability and transparency in robotics are related top-
ics, but differ slightly in their goals. Explainability aims to
answer the why, what and how of robot behavior while trans-
parency is mostly concerned with the what and how, which
facilitates inferring the why without explicitly providing it [8].
Although we focus on transparency in this work, techniques
that train a model to provide an explanation contain aspects
of transparency as well. Both concepts have in common that
they aim to provide answers on the what and how with respect
to the agent’s behavior.

Work in interactive explanation learning [16] aims to im-
prove model-generated explanations with a human-in-the-loop
who acts as a critic of the model’s explanations, similar to
how LLMs are trained with Reinforcement Learning from
Human Feedback (RLHF) [17]. Stammer et al. [18] automate
the learning process by replacing the human with a surrogate
model that acts as the critic in the human’s place. Alternatively,
Duan et al. [19] train their VLM to provide natural language
explanations on robot failures, after specifically pretraining on
such cases.

Leveraging existing LLM or VLMs, Chain-of-thought meth-
ods can provide transparency by outlining multiple steps that
lead to some solution. However, since these are generated, they
can be erroneous themselves. The basic idea is to prompt an
LLM or VLM to think step-by-step instead of solely producing
an answer to a question and was proposed by Wei et al. [20].
As such, many variations of this process have been proposed
that incorporate different modalities into the intermediate step-
by-step thought chain [21], [22] or explore different possible
paths along consecutive thought chains [23].

Other methods like Kerzel et al. [24] equip a robot with
transparent behavior using a variety of modalities that high-
light different decisions that take place in the system. Besides
the progress of transparency in machine learning and robotic
applications, transparency is an active topic of research in the
fields of psychology and human-robot interaction [8]. Other
research investigates the use of different modalities to provide
transparency on robot behavior, even though language and
speech are among the most prominent choices [25].



III. METHOD

Our training procedure consists of two main steps. First, we
pretrain our models on visual question answering to generate
transparent statements in robotic settings. Then, we train on
robotic tasks to generate actions in addition to the transparent
statements. Figure 1 visually summarizes our approach.

A. Problem Formulation

To facilitate the learning process and to show that the model
can learn both the transparent statement in conjunction with
the policy, we train the model to imitate an expert’s behavior
and augment its actions with the natural language statement
given by the ground truth caption. Similar to Jang et al. [26],
we train our models in a supervised way using language-
conditioned behavior cloning. We extend the problem of
language-conditioned behavior cloning [27] with the additional
requirement of producing transparent statements. This problem
is often modelled as a partially observable Markov decision
process [28]. Conventially, the goal is to learn to predict the
next action that follows an expert’s policy given a language
instruction and some observation of the environment. We
extend this formulation by providing a long-term language
instruction for the input and expanding the output to generate
a transparent statement in the form of a short-term natural
language description alongside the action.

TABLE I
PROMPT DEFINITIONS

Prompt Target

Next action? Action tokens
Immediate next step and action? Description and action tokens

Immediate next step? Description

Context Definitions

Current task is: <Instruction>. <Prompt>
Given <State>. Current task is: <Instruction>. <Prompt>

In our case, the observations consist of a camera input from
the robot, the current end-effector state, and the language
query that contains the long-term goal instruction and the
corresponding question. To embed the action and state vectors
into the language prompts, we discretize each dimension of
the continuous action/state vector representations by applying
a binning strategy and mapping each associated bin onto
corresponding special tokens. Refer to Section III-E for the
detailed tokenization process.

Prior works have not explicitly investigated the quality of
statements which have been produced as intermediate output.
While the positive effects of intermediate outputs have been
seen, e.g., in Chain-of-Thought-like mechanisms [5], [7],
[20], the quality of these explanations is not clear. Here, we
specifically investigate the output quality concerning ground
truth statements.

B. Datasets

1) RoboVQA: The RoboVQA [29] dataset is a recent VQA
dataset specific to robotic settings. It contains video scenes

of different agents operating in robotic scenarios annotated
with question-answering pairs. The questions are asking for
different forms of planning, success recognition, and scene
understanding. We utilize the freeform planning questions to
pretrain our models. Here, the goal is to predict a single natural
language statement describing the ”immediate next step”. In
total, we utilize 94,997 freeform planning question-answer-
image triplets to pretrain our models.

2) Language Table: We split the Language-Table [30]
dataset into training, validation and test subsets on an episode
level. An episode consists of a long-horizon goal provided
in natural language. Furthermore, each episode is split into
multiple sub-episodes which are annotated with captions that
describe the current high-level action. A sub-episode ends once
the caption changes. We utilize the captions as our ground
truth labels for the agent’s transparent statements. The action
trajectory consists of a sequence of low-level actions, in this
case, 2D vectors referring to the translation of the robot arm’s
pointer across the board. This leads to a dataset with 23,019
episodes and 399,846 captions. We load a batch of episodes
and sample N observations for each caption to form our mini-
batch before shuffling and passing it into the network. To
sample the individual frames, we always select the first and last
frames and uniformly draw N − 2 frames from the sequence
in between these.

C. Pretraining
We pretrain our models on the freeform planning subset

of the RoboVQA dataset, which asks the model to predict
the subsequent step given the current frame and context. We
hypothesize that this extra fine-tuning step is beneficial since
robotic data is sparse and rarely encountered in general web-
scraped text-image datasets used to pretrain VLMs [31]. The
answer to the question is a transparent statement: a natural
language description of the immediate next action. Queries are
of the form: ”Current goal is: <goal description>, immediate
next step?” In some later configurations, we prepend the state
information to the query following the tokenization strategy
described in Section III-E. Refer to Table I for an exhaustive
overview of prompts used in our setup.

D. Model
Taking inspiration from Black et al. [9], we use the

PaliGemma model [10] for our experiments, due to its rel-
atively small size with ca. 3 billion parameters, which reduces
training and inference times, and the effective generalizability
across different multimodal tasks, which require language
grounding in visual inputs. We stick to an input resolution
of 224x224 pixels for the images, since higher resolutions
increase computational requirements, and previous work has
not found a worthwhile performance increase. While we chose
the PaliGemma model for the reasons above, our method can
be applied to any other Vision-Language Model.

E. Action and State Tokenization
We limit the range of possible action trajectories to (-0.05,

0.05) along each dimension and state trajectories to (-0.3, 0.35)



Transparent Action Language Modelling

Vision Language
Model

"E.g.: Move object slightly towards the left. [action] a2, a10, ..., a4 [action]"

Tokenized ActionsTransparent Statement

Visual ObservationInput Prompt

[state] s1, ..., s23 [state] 
Current goal is: <goal description>
Q: Immediate next step and action?

Action Vector

Action/State Discretization

Action/State Vector Binning

"[action] a2, a10, ..., a4 [action]"

Tokenized Action/State String

RoboVQA Pretraining

A: stack the cups on
top of existing stack.

Refill paper cups and
evenly distribute them in the

cup holder.
Q: Immediate next step?

Visual Question Answering

Fig. 1. Method Overview. We utilize the Vision-Language Model PaliGemma to produce a transparent statement and action tokens given an input prompt,
describing the current task, and the visual observation of the environment. The model is pretrained on visual question answering in robotic settings. We
discretize the state and action vectors into special tokens to embed these directly into the input prompt and target strings.

along the x-axis and (0.2, 0.6) along the y-axis. These ranges
ensure that we capture at least one standard deviation of each
trajectory dimension based on the distribution of our training
data. We discretize the two-dimensional action and state space
by mapping each dimension of the trajectory and robot state to
special tokens, which we add to the vocabulary of our model
and tokenizer. We associate each of the action and state bins
with a number to create the special tokens ”a0” - ”aN” and
”s0” - ”sN” for the tokenized actions and states. Additionally,
we surround the tokenized state and actions with the special
tokens ”[state]” or ”[action]” to mark the beginning and end
of the state and actions. We perform the same procedure on
the robot state as in RT-2 [5] and OpenVLA [6].

IV. EXPERIMENTS

We train our models on an Nvidia A100 GPU using the
Adam optimizer. The training duration of our models is
three epochs, each containing 160,000 examples. The mini-
batches contain 8 samples, but we accumulate the gradients
between mini-batches to reach an effective batch size of 256.
We sample 3 frames from each sub-episode, following the
procedure outlined in Section III-B, to ensure that our model
sees a high variety of captions during training. To calculate the
MSE and Cosine Similarity between the generated and target
trajectories, we map the generated action tokens back to their
respective discrete bins and compare the mean value of the bin
with the continuous trajectory. Additionally, we investigate the
ability to produce coherent language output using common
metrics found in natural language processing: namely the

BLEU [32] and ROGUE-1 [33] scores. All measurements
presented in Section V are presented with the corresponding
standard deviation across the test set.

V. RESULTS

We provide the results on the language table dataset using
supervised imitation learning. We investigate both the model’s
ability to reproduce the expert’s action and the quality of
the language statements. Previous work has already shown
that VLMs can generate actions for execution on robotic
systems [1], [5]–[7]. Of special interest is the effect that
producing the verbal statement alongside a trajectory has on
the quality of the trajectories.

TABLE II
ACTION BEFORE LANGUAGE

Actions First ROUGE↑ BLEU↑ CosSim↑ MSE↓
✗ 0.5087 0.1511 0.0106 0.0024
✓ 0.5247 0.1334 0.0377 0.0024

A. How well does the model produce transparent statements?

Based on the output of our test set, the model learns
to generate comprehensive statements in natural language
alongside a trajectory. Figure 3 presents a collection of sample
input-output pairs. We include three positive and three negative
samples. A sample is considered positive when the meaning
of the generated transparent statement semantically resembles
the ground truth statement or hints towards a similar action.



(a) Effects on language modeling. (b) Effects on action quality.

Fig. 2. Comparison between different orders of joint output: action tokens
before or after the language statement.

The results further highlight the difficulty of evaluating learned
transparent behavior. Even though the statement provided by
the agent seems like a logical step towards approaching the
provided goal, it can differ drastically from the ground truth
wording. Sample 2 presents a good example of this, where the
generated verb move is semantically similar to the target place.
Word and n-gram-based metrics, like BLEU and ROUGE, do
not reflect this behavior, even though they can give an intuition,
and can lead to lower scores. In addition, the target direction
of the pushing action is generated as towards center while
the ground truth refers to diagonal to the green star. Without
supplementing visual input, it is also difficult to determine
whether these two utterances refer to the same location. When
it comes to the negative samples, it can be challenging to
determine whether the language output does present a viable
option for achieving the goal despite the output not matching
the ground truth. Regarding the actions, the predicted action
tokens rarely exactly equal the ground truth tokens. However,
this does not mean that the generated trajectories are of low
quality. We refer to our other analyses which investigate the
quality of trajectories after detokenizing the action tokens
again.

B. Action Before Language
We find that producing the action tokens first and the

statement last leads to more accurate action tokens than
vice versa. The results in Table II show a slightly lower
BLEU score but a higher ROUGE score when producing the
language statement last. The increased ROUGE score means
that this model generates more words that are part of the target
statement than in the setting that produces the statement last.
However, it also generates more words that are not part of
the ground truth, resulting in a lower BLEU score. Figure 2
further highlights this observation.

TABLE III
STATE INCLUSION

State ROUGE↑ BLEU↑ CosSim↑ MSE↓
✗ 0.4463 0.1360 -0.0045 0.0024
✓ 0.4596 0.1495 -0.0196 0.0024

C. Robot State Inclusion
From the results in Table III and Figure 4a we find that the

inclusion of state tokens in our input prompt has a slightly

beneficial impact on the language generation capabilities of
our model. The quality of the action remains the same, as
can be seen in Figure 4b. It should be noted that introducing
additional tokens for the robot state possibly increases the size
of the word embedding, leading to increased computational
cost.

D. Tokenization Resolution

We investigate the influence of different resolutions of the
action tokens on the quality of the produced trajectories and
language statements. We hypothesize that a lower resolution
(fewer discretization bins) results in higher scores. We can
observe this when producing the joint output of the language
statement and the action trajectories, as shown in Figure 5.
When only producing the action tokens we do not observe
this decreasing trend, and the action trajectory quality stays
roughly within the same range. The precise measurements can
be found in Table IV. In addition, generating both the trans-
parent statement and the action trajectory can be observed to
have a positive impact on the quality of the action trajectories.

TABLE IV
TOKENIZATION RESOLUTION

Resolution Output ROUGE↑ BLEU↑ CosSim↑ MSE↓
10 Action - - 0.0060 0.0024
25 Action - - -0.0113 0.0023
50 Action - - 0.0152 0.0023
10 Full 0.5471 0.1696 0.1454 0.0021
25 Full 0.5338 0.1560 0.0965 0.0022
50 Full 0.5255 0.1511 0.0106 0.0024

E. Pretraining Influence

As illustrated in Table V pretraining our models on the
RoboVQA dataset leads to a higher quality of action trajec-
tories than without pretraining. At the same time, we notice
slightly higher scores in the language metrics. Note that when
only producing the action tokens as output, the pretraining on a
language generation task does not increase the accuracy of the
action tokens. A reason for this could be the fact that the task
of action generation introduces new tokens to the vocabulary
that have not been encountered during the pretraining phase,
lowering its effectiveness.

TABLE V
PRETRAINING

Checkpoint Output ROUGE↑ BLEU↑ CosSim↑ MSE↓
None Action - - 0.0152 0.0023
None Full 0.5255 0.1511 0.0106 0.0024

RoboVQA Action - - 0.0108 0.0023
RoboVQA Full 0.5309 0.1541 0.1601 0.0020

F. Freezing the Vision Encoder

We observe little differences on the language generation
performance (±0.04 on the ROUGE and BLEU scores) when
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Perform Action:  [action] a24 a22 [action]

Ground Truth
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blocks together in the bottom left corner.

Goal

Output

push the yellow hexagon to the top center 
of the board. 
Perform Action:  [action] a49 a0 [action]
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5

place green circle diagonal to the green 
star. 
Perform Action:  [action] a49 a28 [action]

Ground Truth

put the yellow blocks in the bottom right
corner, the red blocks in the center left, the
blue blocks in the top left corner, and the
green blocks in the center right.

Goal

Output

move the blue cube towards blue triangle. 
Perform Action:  [action] a24 a26 [action]

Ground Truth

Output

slide the yellow heart diagonal to the 
bottom left of the yellow hexagon. 
Perform Action:  [action] a44 a0 [action]

4

place green circle diagonal to the green 
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Ground Truth

make a smiley face out of the blocks
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Perform Action:  [action] a32 a0 [action]

push the blue blocks into the top of the 
yellow blocks. 
Perform Action:  [action] a11 a0 [action]

Ground Truth

push the blue cube into the yellow 
hexagon. 
Perform Action:  [action] a32 a0 [action]

place green circle diagonal to the green 
star. 
Perform Action:  [action] a49 a28 [action]

Ground Truth

push the blue cube into the yellow 
hexagon. 
Perform Action:  [action] a32 a0 [action]

slide the group of blocks closer to blue 
cube. 
Perform Action:  [action] a27 a49 [action]

Ground Truth

push the yellow hexagon and red star left a 
bit. 
Perform Action:  [action] a12 a47 [action]

Goal

Output

6

place green circle diagonal to the green 
star. 
Perform Action:  [action] a49 a28 [action]

Ground Truth

Goal

Output

push the blue cube into the yellow 
hexagon. 
Perform Action:  [action] a32 a0 [action]

push the blue blocks into the top of the 
yellow blocks. 
Perform Action:  [action] a11 a0 [action]

Ground Truth

Goal

Output

push the blue cube into the yellow 
hexagon. 
Perform Action:  [action] a32 a0 [action]

place green circle diagonal to the green 
star. 
Perform Action:  [action] a49 a28 [action]

Ground Truth

Goal

Output

push the blue blocks into the top of the 
yellow blocks. 
Perform Action:  [action] a11 a0 [action]

Ground Truth

Output

3

put the red and green blocks together in
the center, then put the blue and yellow
blocks together in the bottom center.

Fig. 3. Sample outputs of our model on our test set including positive and negative samples. We removed the surrounding prompt-specific tokens for
readability.

training only the LLM part of the model compared to the full
model, as visible in Table VI. The performance of generating
action trajectories increases slightly when training the full
model. It is likely that the model learns to pay more attention
to different novel visual features when having to generate the
next trajectory, resulting in this behavior.

VI. DISCUSSION

Learning transparency is an inherently difficult task and
depends on many factors. In this work, we opt for learning nat-
ural language statements that were provided by large-scale an-
notations. While learning by imitating in this way is certainly

TABLE VI
RESULTS WEIGHT AND OUTPUT CONFIGURATION

Training Output ROUGE↑ BLEU↑ CosSim↑ MSE↓
LLM Action - - -0.0069 0.0023
LLM Full 0.4462 0.1360 -0.0044 0.0024
Full Action - - 0.0121 0.0023
Full Full 0.4436 0.1375 -0.0018 0.0024

an option, datasets with ground truth language annotations for
transparent statements in robotics are sparse and expensive to
create, calling for novel methods to train transparent policies.



Even when these annotations are given, creating both language
utterances and actions does not mean that these two outputs
are semantically aligned; e.g., there is no guarantee that the
description adheres to the executed trajectory. Future work
could address this by explicitly investigating measures that
evaluate the quality and alignment of actions and language.
With respect to the semantic differences between generated
and ground truth language, our results further highlight in
Section V-A the need for more advanced metrics to evaluate
transparency via natural language. In addition, transparency
should incorporate the human’s perspective [34]. What one
human might perceive as transparent could not have the same
effect on another. Further research could investigate incorpo-
rating the human as context to provide different statements
depending on the user’s preference.

(a) Effect on language modeling. (b) Effect on action quality.

Fig. 4. Effects of including the tokenized state vector in the input prompt.

A problem we faced when training the model to pre-
dict an action embedded into the language output using the
traditional Cross-Entropy Loss is that this loss assigns the
same importance to every token, which leads to the model
not differentiating between different degrees of error when
generating the action tokens. For example, if the goal action
was ”a20 a25”, the corresponding error will not necessarily
reflect the trajectory deviation for the output of ”a5 a45” (large
difference in trajectory) and the output of ”a21 a24” (similar
trajectory). Addressing this could prove highly useful in future
work using VLMs for policy generation.

Fig. 5. Effects of varying action tokenization resolutions on action quality.

Regarding a practical implementation, it is not necessary
to provide a new transparent statement at each timestep, but
rather once the described action has been performed. Such

a mechanism could be implemented with a specific prompt
or an external module which only asks for a new transparent
statement when certain conditions are met.

VII. CONCLUSION

Driven by the need for more transparent robots, we pre-
sented a method to train agents to be transparent about their
behavior using natural language while simultaneously learning
low-level action trajectories. Our model learns transparent
behavior alongside a policy by combining both tasks into
a single supervised language generation problem. While we
show promising results on the Language-Table dataset and find
that transparency can benefit the model’s action quality, we
also highlight a need for methods to semantically analyze the
quality of transparent agents, which we leave for investigation
in further research.
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