Kolloquium SoSe 2019
Speaker
Prof. Dr. Kristian Kersting
TU Darmstadt, Germany
When: Mo, 20.05.2019, at 17:00
Where: Room B-201
Topic
Deep Machines That Know When They Do Not Know
Language: English
Abstract
Our minds make inferences that appear to go far beyond standard machine learning. Whereas people can learn richer representations and use them for a wider range of learning tasks, machine learning algorithms have been mainly employed in a stand-alone context, constructing a single function from a table of training examples. In this talk, I shall touch upon a view on machine learning, called probabilistic programming, that can help capturing these human learning aspects by combining high-level programming languages and probabilistic machine learning — the high-level language helps reducing the cost of modelling and probabilities help quantifying when a machine does not know something. Since probabilistic inference remains intractable, existing approaches leverage deep learning for inference. Instead of “going down the full neural road,” I shall argue to use sum-product networks, a deep but tractable architecture for probability distributions. This can speed up inference in probabilistic programs, as I shall illustrate for unsupervised science understanding, and even pave the way towards automating density estimation, making machine learning accessible to a broader audience of non-experts.
This talk is based on joint works with many people such as Carsten Binnig, Zoubin Ghahramani, Andreas Koch, Alejandro Molina, Sriraam Natarajan, Robert Peharz, Constantin Rothkopf, Thomas Schneider, Patrick Schramwoski, Xiaoting Shao, Karl Stelzner, Martin Trapp, Isabel Valera, Antonio Vergari, and Fabrizio Ventola.
Bio
Kristian Kersting is a Professor (W3) for Machine Learning at the Computer Science Department of the TU Darmstadt University, Germany, heading the machine learning lab and being a member of the Centre for Cognitive Science. After receiving his Ph.D. from the University of Freiburg in 2006, he was with the MIT, Fraunhofer IAIS, the University of Bonn, and the TU Dortmund University. His main research interests are statistical relational artificial intelligence (AI) and probabilistic deep learning. Kristian has published over 160 peer-reviewed technical papers and co-authored a book on statistical relational AI. He received the European Association for Artificial Intelligence (EurAI, formerly ECCAI) Dissertation Award 2006 for the best AI dissertation in Europe, a Fraunhofer Attract Research Grant with a budget of 2.5 Million Euro over 5 years (2008-2013) and two best-paper awards (ECML 2006, AIIDE 2015). In 2019 he was named Top 100 Influential Scholar 2018 for Aritificial Intelligence by AMiner. Kristian co-chaired the PC of ECML PKDD 2013 and UAI 2017, and is an elected PC co-chair of ECML PKDD 2020. He is the founding Speciality Co-Editor-in-Chief for Machine Learning and AI of Frontiers in Big Data, and (past) action editor of TPAMI, JAIR, AIJ, DAMI, and MLJ.
Contact
Prof. Dr. Chris Biemann
Video
Lizenz: CC-BY-DE 3.0